

A Methodology for Interfacing Open Source SystemC with a Third Party

Software

Luc Charest Michel Reid E.Mostapha Aboulhamid Guy Bois
Université de Montréal Ecole Polytechnique de Montréal

{chareslu, reid, aboulham}@iro.umontreal.ca bois@vlsi.polymtl.ca

 Abstract

SystemC is a new open source library in C++ for

developing cycle-accurate or more abstract models of
software algorithms, hardware architecture and system-
level designs. SystemC is meant to be an interoperable,
modeling platform allowing seamless tool integration.
Our objective is to evaluate the feasibility of linking a
third party software to SystemC without modifying the
SystemC source. We chose the development of a GUI as
such an application. This application illustrates a set of
applications following the observer pattern defined
recently in software engineering. This class of
applications can be loosely coupled to a platform
designed following specific rules of software reuse.

1. Introduction
In 1999, systems and embedded software companies

announced the "Open SystemC Initiative" (OSCI) and
availability of a C++ modeling platform called SystemC
for free distribution [3][6]. SystemC enables system-level
intellectual property model exchange and co-design using
a common C++ modeling environment containing a class
library and a standard ANSI C++ compiler. Electronic
design automation (EDA) vendors have access to the
SystemC modeling platform necessary to build
interoperable tools.

Our goal is to explore how easy it is to create such
tools with as little as possible modification to SystemC.
Since SystemC has presently no GUI (Graphical User
Interface), we chose such an application as a candidate.
Presently, it is possible to generate a waveform trace
available only after the simulation has ended and must be
viewed by, usually, a tool similar to Synopsys Waveform
Viewer [3]. For feedback during the course of the
simulation, the user has to incorporate calls to printf or
cout in the design itself. If the user decides to view
additional results, he must change his model and
recompile the code. It is also possible to use a debugger
like GDB, but, although it is a very powerful solution, it
might not offer a very intuitive way of viewing the

This work is supported by a GRANT from NSERC Micronet Centre of
Excellence

results. One would appreciate an interactive visualization
tool with a GUI rather than an aftermath solution.

Our objectives are:
• Since SystemC is constantly evolving, it is desirable to
develop a loosely coupled GUI to SystemC so that both
can evolve independently but cooperate afterwards.
• Use open source libraries to develop the GUI. This
will shorten the design time and allow the GUI to evolve
in an open environment too.
• Seamless use of the GUI by the designer meaning that
the designer can use the present SystemC models without
any new syntax. For example, we could have introduced
a new class of signals aware of the interface, but this will
change the modeling style of the designer and the
resulting model could not be exchanged easily.
• Use a Software Engineering methodology enabling
other tools to be coupled to SystemC without hampering
its own evolution, and providing a standard framework
for such integration.

Section 2 describes the concept of software patterns.
Section 3 introduces SystemC architecture. In section 4,
implementation issues are discussed. The GUI prototype
is described in section 5. A generalization of the use of
design patterns is the topic of section 6. Section 7
concludes this paper.

2. Software Patterns and O.O. Paradigms
The software engineering and object-oriented

programming communities are advocating the use of
software design patterns, which have received a lot of
attention since the publication of the book [2] late 1994.
Design patterns contribute to the process of software
development by providing a common design vocabulary,
documentation and learning aids, support for the process
of converting an analysis model into an implementation
model, and encouragement for reuse of already designed
code[4][7][8][12].

These patterns identify, document, and catalog
successful solutions to common software problems.
Patterns aid the development of reusable software by
expressing the structure and collaboration of components
to developers at a level higher than source code or object-
oriented design models that focus on individual objects
and classes.

23 preliminary design patterns are catalogued in [2].
Each pattern is described by its intent, motivation,
applicability, structure (in an UML-like format[1]), its
implementation, a sample code and its known uses. We
will concentrate on the observer pattern, which fits most
our application. Its intent is to define a one-to-many
dependency between objects so that when one object
(subject) changes state, all its dependents (observers) are
notified. The number of observers may vary. All the
objects are loosely coupled by using abstraction as
described later, allowing evolution of the implementation
of each object without affecting the other participants.

Design pattern methodology relies heavily on two
object-oriented concepts: abstraction and templates.

To implement abstraction, we usually define a base
class, which contains certain methods common to all or
some children. We then redefine these methods in
children that need to override the common behavior given
by the base class method. Such an overriding is called
polymorphism.

This is done via the keyword virtual in C++. If a
method is not declared virtual, a call to this method, using
pointers, may lead to the base class method, even if the
child class overrides it.

The base class can be defined as abstract if one or
more of its method is declared as pure virtual. A pure
virtual method is a method for which no implementation
is given and must then be overridden in all children
classes. An abstract class cannot be instantiated.

The purpose of templates is to allow programmers to
generalize the behavior of a method or a class [5]. When
using templates, the programmer does not have to
implement the same kind of methods for different types.
Only a general statement is given and the compiler
analyses the program to know which type is needed. Only
needed methods are generated by the compiler following
the programmer's template.

3. SystemC Architecture
Understanding the internals of SystemC class library is

important if we want to link it to another tool and propose
changes to improve its reuse. Figure 1 illustrate its object
structure as well as the relation between objects. This
structure has been abbreviated from an UML
representation of SystemC. Note that italic means that a
class is abstract or a method is virtual. A member
preceded by "+", "-", or "#" means the member is public,
private, or protected respectively. sc_object is the base
class of most C++ objects. It contains important basic
methods and properties for identifying and classifying
SystemC objects. sc_module is an organizational
SystemC object. An instance of this class contains among
other objects a list of ports, although this list is private.
sc_port is an object, which describes the connections
between signals. Ports are important structural

information contained usually in modules.
sc_port_manager is responsible for managing all the
ports during simulation. sc_signal_base is a general
abstract base class for all signals types; it cannot be
instantiated but all other signal classes are derived from
it. sc_signal is a template class which enables the
definition of signals of different types.
sc_object_manager is responsible for managing
different SystemC objects and contains a private list of
them (i.e. modules, signals, clocks, etc.). Although this
list is private, objects in it are available through public
querying methods.

+update()

sc_signal_base

#update()
+read() : class T

sc_signal

class T

+first_object() : sc_object*
+next_object() : sc_object*

sc_object_managersc_port_manager

+name() : const char*
+kind() : const char*

sc_object

sc_module

sc_port

+time_stamp() : double
+get_port_manager() : sc_port_manager*
+get_object_manager() : sc_object_manager*

-signals_to_update : sc_signal_base* *
-port_manager : sc_port_manager*
-object_manager : sc_object_manager*

sc_simcontext

Figure 1: Partial SystemC architecture

4. Implementation Issues

4.1. Prerequisites
Since we want to build a GUI to observe simulation

results and control its evolution, we need the signal list so
we can insert that list into a menu allowing the user to
choose the signal(s) he wants to display. We would also
need the value of that signal and the time associated with
every signal change. Simulation time is provided by the
sc_time_stamp() method; however getting signal
values is more difficult as it will be seen later.

Obtaining the list of modules and the list of ports
would allow us to display the signals according to their
associated ports making the output more readable.

We explored the existing SystemC code looking for
some of the non-documented methods to query its
« internal database » of signals and module structure. The
search was unsuccessful since its data is well
encapsulated behind protected/private properties. A
balance should be stroke between flexibility and reuse on

one hand, and data protection on the other. In our
opinion, the implementation we are proposing reaches
that balance.

Note that the changes we are proposing is a new class,
which is an abstraction, it includes pure virtual methods
and some static members.

4.2. Necessary changes to SystemC
In this section we review the changes that we must

bring to SystemC in order to allow a loose coupling
between SystemC and the GUI. One solution was to
implement a method in the sc_simcontex class that
could fetch the signals and return them as const objects.
Methods such as get_first_signal() and
get_next_signal() would have accomplished this
task. However since sc_signal is a C++ template class,
it is complicated to keep track of the type of each of its
instances. An elegant solution is obtained by abstraction,
SystemC designers used an sc_signal_base as an
abstract class for the sc_signal and so they were able
to create a list of « sc_signal_base * ». When they
insert a pointer toward any signal type derived from
sc_signal_base, its type is cast automatically.

The problem we are facing is that even though we now
have a pointer to an sc_signal_base, our GUI is not
aware of what type the signal is. If we could know the
type of signal, we could type cast the signal to its original
form, (e.g.: (sc_signal<bool> *) signal) and then
use any method of the original signal type.

Because SystemC needed to update all the signals
using a general pointers list, they defined a virtual
update(void) in the sc_signal_base class and by
redefining a update(void) in SystemC sc_signal
class, when this method is called from a generalized
pointer, the appropriate update() is called according to
the sc_signal data type and it is the signal
responsibility to update itself.

The problem is that the read() method, which returns
the actual value of the signal is not virtual and is not in
the base class. The reason is that at no point, SystemC
needs to read or modify the value of the signal. The
signal is read and modified by the user who actually
knows which type of signal he is dealing with since he
created the signal. We would have liked to implement a
new virtual read(), but this would require virtual
template methods, which are forbidden in C++ [11]. We
opted for the declaration of a new pure virtual method
notify_interface() in the sc_signal_base
class, which must be redefined in derived classes.
When SystemC performs its crunch() cycle, we added a
call to notify_interface() for every modified signal.
So from there, it is the responsibility of the signal to
notify the GUI of any change using this method. Since
the signal knows its data type, it is easy to pass the value
of the signal with the appropriate data type to the GUI.
Figure 2 illustrates the proposed SystemC architecture.

Graphical User Interface

SystemC

+update_signal()
+get_bound_instance() : const sc_interface*
+is_bound() : bool
+bind()

-bound_instance : sc_interface*
sc_interface

+time_stamp() : double
+crunch()
+initial_crunch()

-signals_to_update : sc_signal_base* *
sc_simcontext

+update()
+notify_interface()

sc_signal_base

#update()
+read() : class T
+notify_interface()

sc_signal

class T

+update_signal()

my_sc_interface

Figure 2: Proposed SystemC architecture

4.3. Constructing the interface
As stated previously, it is the signal responsibility to

notify the GUI, but how can it notify the interface? One
possibility is sending a message via a method to the GUI.
Since SystemC is a standalone library and since we want
our GUI to be independent from SystemC, how can we
build the SystemC library without having to supply the
GUI code to SystemC? Sending a message is usually
done by calling a known method of the recipient class.
How can we call this method if we do not supply the
recipient class?

These questions are answered by following the
observer pattern defined earlier (Section 2). In fact, we
used a special case of this pattern, since our GUI does not
modify any signal and gives no feedback to SystemC;
furthermore the pattern allows for more than one
observer, but we implemented only one. We defined an
abstract class called sc_interface. We named this
class following the general unwritten naming convention
of SystemC. This class is abstract because one (in this
case all) of its member methods is (are) pure virtual(s), so
the class cannot be instantiated. We do not want the class
to be instantiated because this class has only one purpose:
defining a standard for implementing derived classes. The
derived class must implement every method that are pure
virtual before it can be instantiated.

Once the interface class is well defined, we can
compile SystemC and have it call methods that will be
implemented later, in the third party projects. In our case,
the notify_interface() method of the sc_signal
class calls the appropriate update_signal() of the
sc_interface class according to the data type. Since
we cannot define virtual template methods [11], we were

forced to « unroll » the template by prototyping every
method with all possible data types.

4.4. SystemC and the GUI interaction
We have also to define the way the sc_interface

interacts with its derived class and SystemC. This is due
to the fact that we cannot supply a reference of the
derived class of sc_interface to SystemC since the
class is not yet defined when we construct the SystemC
library. Therefore we have to provide a pointer to the
instance of the derived class, this is accomplished by
having a static pointer in the abstract class to point to the
instance of the derived class. The static member is
common to all instances of the class (and derived classes)
and can be used without having any instantiation of the
class. We have implemented a method (namely
sc_interface::bind()) that binds the derived
interface to SystemC by setting this static member
(bound_instance). In our case, the derived class of
sc_interface is named my_sc_interface. So upon
instantiation of my_sc_interface, the constructor
automatically calls the bind method.

When SystemC executes initial_crunch() and the
crunch() loop, a call to sc_interface::is_bound()
is made, the return value indicates whether the user has
attached an interface of his own or not. If a custom
sc_interface is bound, the message
sc_signal::notify_interface() is generated, and
a call to sc_interface:: get_bound_instace() is
issued to get the bound interface. The method
update_signal() of this interface is then called (via
polymorphism and inheritance) with the proper data type.
Figure 3 illustrates this interaction.

4.5. Cost and benefits
The cost in execution time for the modification we

propose is negligible if no interface is bound. In that case
the only addition to the simulation is two if tests during
a call to sc_interface::is_bound(), which purpose
is to return a boolean value. The first test is made once
for each signal in the initial_crunch() loop. The
second test is made in the crunch() loop, each time a
signal is updated. Of course, if an interface to a third
party tool is bound, the simulation time increases when
the control is given to it. Cost in time will mainly be in
recording or analyzing the data shipped via the
notification. Among the benefits of this approach, is to
get rid of the printf or cout statements, which clutter
the model and slow the simulation.

sc_simcontext

crunch()

notify_interface()

sc_signal<> sc_interface my_sc_interface

update_signal()

This object is part of the GUI. From here, the GUI has been
notified and can process the message and the data.

 Messages
sent by

polymorphism

is_bound()

{return = true}()

get_bound_instance()

{return = sc_interface *}()

Figure 3: Interaction SystemC - GUI

5. GUI Prototype
In our development, we chose Qt because it is a fully

object-oriented, cross-platform C++ GUI application
framework providing application developers with all the
functionality needed to build GUIs [10]. Qt is available
on a wide range of platforms including Linux and it is
free for development of free/Open Source software under
Unix/X11. Qt offers objects like menus, windows,
buttons, etc. We also used the STL library [9] when
objects like lists, queues, and vectors were needed. This
results in minimizing time for development as well as
increasing code efficiency.

The GUI prototype displays Boolean signals traced
and listed in windows as in Figure 4. Fundamentals C++
types, such as integers, can be displayed but there is still
work to do for the more complex SystemC basic types.

Figure 4: Displaying the signal value

For now, each signal change is memorized only if the
user asked to visualize this signal. The simulation speed
is not affected by unselected signals. When the user asks
for a signal, the recording starts. The user may start, stop
or step the simulation at will as shown in Figure 5

The GUI system is compiled independently from the
end user’s project and is linked as a library. Few
modifications must be made to end user's code to create
the main window and then pass the execution control to
it. If the user wants to be able to debug his signals with
meaningful names, he must also attribute a name to each
of his signal by modifying his code to use an
undocumented SystemC signal constructor.

Figure 5: Simulation control from the GUI

6. design patterns to solve more general
problems
As an extension of this work, it seems that the

sc_interface class can be generalized to be used as a
facade pattern. A facade is a pattern that provides a
unified interface in a subsystem. The facade pattern
defines a higher-level interface that makes the subsystem
easier to use. The class sc_simcontext seems to be a
kind of core to the SystemC simulation. We have thought
about using the class sc_simcontext as a facade by
deriving it and using the child class in the same way as
sc_interface is now used. This implies that
sc_simcontext would now be playing two roles: a
simulation control role and an interface with a third party
role. We found it more convenient to separate the
responsibilities between two classes, simplifying at the
same time the classes structure.

If the sc_interface would act as a portal between
SystemC and third party applications, this class should be
designed carefully to include all the necessary utility
methods. This way, a programmer would have a variety
of querying, and modifying tools to design his SystemC
« plug-in » modules. So our recommendation is to use the
sc_interface as a kind of two-way facade with
SystemC, and provide as many methods as we can. If
implementing all the interfacing methods is too
overwhelming, « dummy » methods, returning default
values, can be defined instead. This would provide a
standard on which third party tools may be developed.
Programmers of the third party tools could then easily
verify that the method as been implemented by checking
its returned value. As soon as SystemC implements these

methods, all third party tools will have their behavior
immediately changed without having to be re-engineered
or recompiled.

There is another pattern, « adapter », that enables the
communication between two systems, which have
different protocols or structures. The sc_interface
may serve as an adapter, if one desires to adapt an
existing tool to SystemC, by deriving and implementing
sc_interface. If SystemC wishes to modify
fundamentally its core, sc_interface input could be
manipulated to fit the old sc_interface standard and a
new one could be defined, in parallel, in the same
sc_interface.

7. Conclusion
SystemC is a step ahead compared to closed systems.

It offers a lot of opportunity, as we have shown through
this experiment. It is relatively easy to add a class of
applications, GUI, testbench development, assertion and
verification of properties. All these applications follow
the observer software pattern.

If the SystemC community embraces this
methodology and the pattern is well defined, well
maintained and adequately documented, it could be a
powerful framework on which third party software could
be built without having to modify the SystemC core or
the end user model while keeping the data encapsulated
and oblivious to outside manipulation.

8. References
[1] G. Booch, I. Jacobson, and J. Rumbaugh, The Unified Modeling

Language User Guide 1/e: Addison Wesley, 1999.
[2] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design

Patterns: Elements of Reusable Object-Oriented Software:
Addison Wesley, 1994.

[3] J. Gerlach and W. Rosenstiel, "System Level Design Using the
SystemC Modeling Platform ," Worshop on System Design
Automation SDA 2000, pp. 185-189.

[4] S. Krishnamurthi and M. Felleisen, "Toward a formal theory of
extensible software," Proceedings of ACM SIGSOFT sixth
international symposium on Foundations of software
engineering, pp. 88 - 98, 1998.

[5] S. B. Lippman and J. Lajoie, C++ Primer, 3/e: Addison Wesley,
1998.

[6] Open SystemC Initiative (OSCI), SystemC version 1.1 beta
documentation: http://www.systemc.org, 2000.

[7] D. C. Schmidt, "Using design patterns to develop reusable object-
oriented communication software", Commun. ACM, vol. 38, 10,
pp. 65 - 74, Oct., 1995.

[8] D. Schmidt, "Using design patterns to guide the development of
reusable object-oriented software," ACM Comput. Surv., vol. 28,
4, Dec., 1996.

[9] Silicon Graphics Computer Systems, Standard Template Library
Programmer's Guide: http://www.sgi.com/Technology/STL,
1999.

[10] Trolltech AS, Qt On-Line Reference Documentation:
http://doc.trolltech.com, 2000.

[11] Publications by Bjarne Stroustrup:
http://www.research.att.com/~bs/papers.html, 2000.

[12] Patterns Home Page, http://hillside.net/patterns/patterns.html,
June 1999

