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1. Introduction 
The objective of this work is to evaluate the 

performance of SystemC [1] in modeling a pipelined 
multiprocessor at a cycle accurate level. The 
multiprocessor consists of a number of DLX 
processors [2] connected through a unidirectional 
ring (Figure 1), where every pair of adjacent nodes 
can send and receive messages concurrently. The 
predecessor in a ring can only forward the message to its 
successor. In a ring of n processors, a message from node 
i to node j must go through the path (i, i+1 mod n, i+2 
mod n,  j-1 mod n, j)  

 

Figure 1: Architecture of a DLX and its adjacent 
nodes 

2. The Model  
Figure 2 is an UML diagram [3] representing the 

different classes used to describe the DLX 
multiprocessor. 

2.1. The DLX pipeline 
The DLX pipeline has 5 stages: IF (Instruction Fetch, 

ID (Instruction Decode), EX (Execution), MEM 
(Memory) and WB (Write Back). The first one is 
responsible of getting the instructions out of the ROM 
(program memory), the second stage is responsible of 
selecting the operand registers, decoding the instruction 
and evaluating the branching condition. The third stage is 

responsible for arithmetic and logical computations as 
well as memory address calculation. The RAM (data 
memory) access is performed in the fourth stage. Finally, 
the results are written back to the destination register if 
necessary.  

Figure 2: Class diagram of the multiprocessor model  

2.2. The Bridge 
The DLX processor exchanges messages on the ring 

using a memory-mapped mechanism (Figure 3). The 
bridge intercepts the memory access commands from the 
DLX and either sends them as messages over the ring or 
as an access to the local RAM memory.  

2.3. The Ring Interconnect 
At each clock cycle, the ring devices exchange 

information. The exchange is unidirectional and cannot 
be blocked. When a message reaches its destination, it is 
sent to the DLX processor and a free space on the ring is 
available. Messages issued by DLX i cannot be accepted 
by the ring device until a free slot (i.e., no message is 
transiting from node i-1 to i during that cycle) is 
available. 
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Figure 3: Memory-Mapped  Message Exchange 

3. The DLX benchmarks 

3.1. typical6.asm 
We generated a synthetic program in conformance of 

a typical fixed point arithmetic programs described in 
[2]. We generated random hexadecimal numbers. We 
then took these numbers and assembled them using 
EBEL-DLX [4] (a DLX assembler, disassembler and 
instruction set simulator). We then disassembled the 
program and removed the instructions with invalid codes, 
and fine-tuned the program until we obtained the 
instruction coverage described in [2] based on 
SPECint92 benchmarks; we then added a global loop. 
The program has wide instruction coverage. It is used to 
measure the performance of the model of a unique   
processor; it will be also used in the multiprocessor 
model. 

3.2. interconnect_test.asm 
This program is derived from the typical6.asm 

program described previously; the difference is that it 
tries to send a message over the ring, at each iteration of 
the outmost loop. The message consists of the address of 
the destination as a 32-bit word and the body of the 
message on 32 bits too. The program is built to send 
1000 messages at a rate of nearly 1 message per 100 
cycles. Each Processor i will send all its messages to 
processor i-1. Therefore, each message has to go through 
n-1 hops before reaching its destination. A DLX node 
cannot issue a new message until the previously issued 
one has been accepted by the ring device. In our test, we 
limited the number of simulation cycles to 320,000.  

4. Experimental Results 
The model was constructed using SystemC 1.2.1, then 

ported to the new version SystemC 2.0. Both versions of 
SystemC were evaluated. The results were obtained 
using a Linux machine (Pentium III, 450MHz); they 

report the time taken by the program by using the Unix 
command /usr/bin/time. Each experiment has 
been run three times; and the result tables contain the 
average of these three independent runs.  
 

We run the monoprocessor DLX model for 249,026 
cycles. The pipeline stages were modeled first using 
SC_METHODS and then by using SC_THREADS. From 
Table 1 and Figure 4, we can see that the fastest model 
can run on a very respectable frequency of 76 KHz. 
Unfortunately the same model will run at 40Khz for 
SystemC 2.0, on the same 450-MHz machine. 

Our results seem to indicate that the increase of 
capabilities of SystemC 2.0 resulted in a decrease of 
performance at RTL (or cycle accurate level). We may 
conclude that the early models cannot be exported 
directly (without change) from earlier versions if we 
want to keep the same performances. 

Table 1: performance of a monoprocessor model 

SystemC Version Time 
(sec.) KHz 

1.2.1 (SC_METHOD) 3.29 75.69
1.2.1 (SC_THREAD) 4.59 54.25
2.0 (SC_METHOD) 6.17 40.36
2.0 (SC_THREAD) 8.32 29.93
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Figure 4: SystemC 1.2 vs. 2.0 performances for a 

DLX monoprocessor 

We run also different models for the multiprocessor 
DLX. Table 2 summarizes the obtained results, where n 
indicates the number of processors. As previously, the 
pipeline stages were modeled using SC_METHODS and  
SC_THREADS. The usage of SC_THREADS results in a 
30% increase in the execution time. Usage of SystemC 
2.0 instead of SystemC 1.2.1 results in a less severe 
increase of execution time compared to the 
monoprocessor case (about 60%). 
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Table 2: Performance of N-node multiprocessor 
model 

SystemC 1.2.1 SystemC 2.0 
n SC_METHOD 

(sec.) 
SC_THREAD 

(sec.) 
SC_METHOD 

(sec.) 
SC_THREAD

(sec.) 
2 8.76 12.86 18.06 23.96
4 19.56 28.35 36.62 46.31
8 46.07 65.24 74.43 95.92

16 105.98 144.10 153.15 204.77
32 230.01 327.43 343.04 484.84
40 296.80 432.08 465.36 656.94
64 524.72 804.61 868.12 1239.99
96 875.36 1403.87 1504.14 2085.94

128 1235.98 2010.82 2063.81 2796.77
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Figure 5: Execution time of the multiprocessor 
depending on the number of nodes 

As the number n of the processors increases on the 
ring, the n2 phenomenon due to all the messages that 
should transit through the interconnect is more apparent. 
As discussed earlier each message should go through n-1 
hops before reaching its destination, since each processor 
issues 1000 messages, this results in 1000n2 hops to go 
through. As we limited the number of simulated cycles to 
320,000, the effect of this n2 phenomenon has little 
impact on the reported results. In our opinion, the non-
linear shape of the curves in Figure 5 is due to the 
simulator overhead in dealing with more complex 
systems. The model can run as slowly as 14KHz for 128-
processor machine, as indicated in Table 3. This figure of 
performance is computed as the number of cycles 
divided by the execution time, the result being multiplied 
by the number of processors (Equation 1). 

Equation 1: Combined frequency of a multiprocessor 
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Table 3: “Clock Frequency” of the multiprocessor 
model 

SystemC 1.2.1 SystemC 2.0 
n SC_METHOD 

(KHz) 
SC_THREAD 

(KHz) 
SC_METHOD

(KHz) 
SC_THREAD

(KHz) 
2 73.09 49.78 35.44 26.71
4 65.43 45.15 34.95 27.64
8 55.57 39.24 34.39 26.69
16 48.31 35.53 33.43 25.00
32 44.52 31.27 29.85 21.12
40 43.13 29.62 27.51 19.48
64 39.03 25.45 23.59 16.52
96 35.09 21.88 20.42 14.73
128 33.14 20.37 19.85 14.65

 

5. Conclusions 
We have given some experimental results of SystemC 

1.2.1 and 2.0 using a multiprocessor machine modeled at 
a cycle accurate level. We have shown that models scale 
harmoniously with the number of processors. 
Unfortunately, the performances at this level of 
abstraction of SystemC decreased in the new 2.0 version.  
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