
DLX_CPU mem_ROM

bridge mem_RAM

ring_device[i]

ring_device[i+1]ring_device[i-1]

connected to previous DLX bridge connected to next DLX bridge

SystemC Performance Evaluation using a Pipelined DLX Multiprocessor

L. Charest, E.M. Aboulhamid

C. Pilkington, P. Paulin

DIRO, Université de Montréal
2920 Ch. de la Tour
CP6128 Centre-Ville

Montréal, Qc, Canada H3C 3J7
{aboulham, charestlu}@iro.umontreal.ca

System-on-chip Platform Automation
 STMicroelectronics, Central R&D

16 Fitzgerald Road, Suite 300
Nepean Ontario K2H 8R6 CANADA

{chuck.pilkington, Pierre.paulin}@st.com

1. Introduction
The objective of this work is to evaluate the

performance of SystemC [1] in modeling a pipelined
multiprocessor at a cycle accurate level. The
multiprocessor consists of a number of DLX
processors [2] connected through a unidirectional
ring (Figure 1), where every pair of adjacent nodes
can send and receive messages concurrently. The
predecessor in a ring can only forward the message to its
successor. In a ring of n processors, a message from node
i to node j must go through the path (i, i+1 mod n, i+2
mod n, j-1 mod n, j)

Figure 1: Architecture of a DLX and its adjacent
nodes

2. The Model
Figure 2 is an UML diagram [3] representing the

different classes used to describe the DLX
multiprocessor.

2.1. The DLX pipeline
The DLX pipeline has 5 stages: IF (Instruction Fetch,

ID (Instruction Decode), EX (Execution), MEM
(Memory) and WB (Write Back). The first one is
responsible of getting the instructions out of the ROM
(program memory), the second stage is responsible of
selecting the operand registers, decoding the instruction
and evaluating the branching condition. The third stage is

responsible for arithmetic and logical computations as
well as memory address calculation. The RAM (data
memory) access is performed in the fourth stage. Finally,
the results are written back to the destination register if
necessary.

Figure 2: Class diagram of the multiprocessor model

2.2. The Bridge
The DLX processor exchanges messages on the ring

using a memory-mapped mechanism (Figure 3). The
bridge intercepts the memory access commands from the
DLX and either sends them as messages over the ring or
as an access to the local RAM memory.

2.3. The Ring Interconnect
At each clock cycle, the ring devices exchange

information. The exchange is unidirectional and cannot
be blocked. When a message reaches its destination, it is
sent to the DLX processor and a free space on the ring is
available. Messages issued by DLX i cannot be accepted
by the ring device until a free slot (i.e., no message is
transiting from node i-1 to i during that cycle) is
available.

DLX_CPU stage_IF

stage_ID

stage_EX

stage_MEM

stage_WB

sc_module

1

1

1

1

1

Addressable_Device

Memory

Mem_ROM Mem_RAM

RingDevice

Bridge

Device_Info

*

Figure 3: Memory-Mapped Message Exchange

3. The DLX benchmarks

3.1. typical6.asm
We generated a synthetic program in conformance of

a typical fixed point arithmetic programs described in
[2]. We generated random hexadecimal numbers. We
then took these numbers and assembled them using
EBEL-DLX [4] (a DLX assembler, disassembler and
instruction set simulator). We then disassembled the
program and removed the instructions with invalid codes,
and fine-tuned the program until we obtained the
instruction coverage described in [2] based on
SPECint92 benchmarks; we then added a global loop.
The program has wide instruction coverage. It is used to
measure the performance of the model of a unique
processor; it will be also used in the multiprocessor
model.

3.2. interconnect_test.asm
This program is derived from the typical6.asm

program described previously; the difference is that it
tries to send a message over the ring, at each iteration of
the outmost loop. The message consists of the address of
the destination as a 32-bit word and the body of the
message on 32 bits too. The program is built to send
1000 messages at a rate of nearly 1 message per 100
cycles. Each Processor i will send all its messages to
processor i-1. Therefore, each message has to go through
n-1 hops before reaching its destination. A DLX node
cannot issue a new message until the previously issued
one has been accepted by the ring device. In our test, we
limited the number of simulation cycles to 320,000.

4. Experimental Results
The model was constructed using SystemC 1.2.1, then

ported to the new version SystemC 2.0. Both versions of
SystemC were evaluated. The results were obtained
using a Linux machine (Pentium III, 450MHz); they

report the time taken by the program by using the Unix
command /usr/bin/time. Each experiment has
been run three times; and the result tables contain the
average of these three independent runs.

We run the monoprocessor DLX model for 249,026
cycles. The pipeline stages were modeled first using
SC_METHODS and then by using SC_THREADS. From
Table 1 and Figure 4, we can see that the fastest model
can run on a very respectable frequency of 76 KHz.
Unfortunately the same model will run at 40Khz for
SystemC 2.0, on the same 450-MHz machine.

Our results seem to indicate that the increase of
capabilities of SystemC 2.0 resulted in a decrease of
performance at RTL (or cycle accurate level). We may
conclude that the early models cannot be exported
directly (without change) from earlier versions if we
want to keep the same performances.

Table 1: performance of a monoprocessor model

SystemC Version Time
(sec.) KHz

1.2.1 (SC_METHOD) 3.29 75.69
1.2.1 (SC_THREAD) 4.59 54.25
2.0 (SC_METHOD) 6.17 40.36
2.0 (SC_THREAD) 8.32 29.93

(SC_METHODs)
(SC_THREADs)

SystemC 2.0

SystemC 1.2.1

75.692

54.254

40.361

29.931

0

10

20

30

40

50

60

70

80

Processor speed (K
H

z)

Figure 4: SystemC 1.2 vs. 2.0 performances for a

DLX monoprocessor

We run also different models for the multiprocessor
DLX. Table 2 summarizes the obtained results, where n
indicates the number of processors. As previously, the
pipeline stages were modeled using SC_METHODS and
SC_THREADS. The usage of SC_THREADS results in a
30% increase in the execution time. Usage of SystemC
2.0 instead of SystemC 1.2.1 results in a less severe
increase of execution time compared to the
monoprocessor case (about 60%).

Status

Data

Receive address
Receive data

Transmit address
Transmit data

00003000h

00003004h

00003008h

0000300Ch

00003010h

00003018h

00000000h

00002FFFh

Bridge

CPU
RAM

Ring Device
registers

Node count
00003014h

Table 2: Performance of N-node multiprocessor
model

SystemC 1.2.1 SystemC 2.0
n SC_METHOD

(sec.)
SC_THREAD

(sec.)
SC_METHOD

(sec.)
SC_THREAD

(sec.)
2 8.76 12.86 18.06 23.96
4 19.56 28.35 36.62 46.31
8 46.07 65.24 74.43 95.92

16 105.98 144.10 153.15 204.77
32 230.01 327.43 343.04 484.84
40 296.80 432.08 465.36 656.94
64 524.72 804.61 868.12 1239.99
96 875.36 1403.87 1504.14 2085.94

128 1235.98 2010.82 2063.81 2796.77

0

500

1000

1500

2000

2500

3000

0 50 100 150

N

Se
c.

1.2.1(M) 1.2.1(T) 2.0(M) 2.0(T)

Figure 5: Execution time of the multiprocessor
depending on the number of nodes

As the number n of the processors increases on the
ring, the n2 phenomenon due to all the messages that
should transit through the interconnect is more apparent.
As discussed earlier each message should go through n-1
hops before reaching its destination, since each processor
issues 1000 messages, this results in 1000n2 hops to go
through. As we limited the number of simulated cycles to
320,000, the effect of this n2 phenomenon has little
impact on the reported results. In our opinion, the non-
linear shape of the curves in Figure 5 is due to the
simulator overhead in dealing with more complex
systems. The model can run as slowly as 14KHz for 128-
processor machine, as indicated in Table 3. This figure of
performance is computed as the number of cycles
divided by the execution time, the result being multiplied
by the number of processors (Equation 1).

Equation 1: Combined frequency of a multiprocessor

timesimulation
n

timesimulation

timeexecutionprocessor

cyclesprocessornbfrequency clockcombined

n

i

n

i i

i

_
320000

_
320000

_

1

1

==

=

∑

∑

=

=

Table 3: “Clock Frequency” of the multiprocessor
model

SystemC 1.2.1 SystemC 2.0
n SC_METHOD

(KHz)
SC_THREAD

(KHz)
SC_METHOD

(KHz)
SC_THREAD

(KHz)
2 73.09 49.78 35.44 26.71
4 65.43 45.15 34.95 27.64
8 55.57 39.24 34.39 26.69
16 48.31 35.53 33.43 25.00
32 44.52 31.27 29.85 21.12
40 43.13 29.62 27.51 19.48
64 39.03 25.45 23.59 16.52
96 35.09 21.88 20.42 14.73
128 33.14 20.37 19.85 14.65

5. Conclusions
We have given some experimental results of SystemC

1.2.1 and 2.0 using a multiprocessor machine modeled at
a cycle accurate level. We have shown that models scale
harmoniously with the number of processors.
Unfortunately, the performances at this level of
abstraction of SystemC decreased in the new 2.0 version.

6. References

[1] Open SystemC Initiative (OSCI), Functional
Specification for SystemC 2.0,
http://www.systemc.org, 2001.

[2] J. L. Hennessy and D. A. Patterson, Computer
Architecture: A Quantitative Approach, Second
ed: Morgan Kaufmann Publishers, 1995.

[3] G. Booch, I. Jacobson, and J. Rumbaugh, The
Unified Modeling Language User Guide 1/e:
Addison Wesley, 1999.

[4] E. Bergeron and E. Lesage, EBEL-DLX,
http://www.iro.umontreal.ca/~bergeret/EBEL-
DLX/, 2001.

