
Minimizing Sensitivity to Clock Skew Variations
Using Level Sensitive Latches

François-R. Boyer*, El Mostapha Aboulhamid*, and Yvon Savaria�

Abstract � We propose a method for improving the toler-
ance of synchronous circuits to delay variations on the
clock distribution. Instead of retiming and clock skew
scheduling applied to edge-triggered flip-flops, as used by
most other methods, we use level-sensitive latches placed
based on a schedule of the operations. The resulting cir-
cuit can have a non-zero tolerance even at the optimal
clock period, which is impossible with edge-triggered flip-
flops.

1 Introduction
As clock frequencies get higher and the clock distribu-
tion network gets larger, the fluctuation on the arrival
time of the clock signals gets important compared to
the clock period. Clock distribution networks can be
made more precise [4], but they are not perfect. For a
circuit to work properly at high speed, it must be de-
signed to have tolerance to delay fluctuations.

Previous methods trying to maximize the tolerance
used mainly retiming and clock skew scheduling [3].
Each of these approaches used separately will not guar-
antee maximum tolerance, and combining them is not
trivial. The method in [5] finds an optimal combination
of these two, using a mixed-integer linear program, for
which there is no known polynomial time algorithm.
Also, only single-phase edge-triggered circuits are sup-
ported. We will show that the optimal solution they
find is no more optimal if level-sensitive latches and
multiple phases are permitted.

We present a new way to have a higher tolerance to
the timing variations on the clock, placing level-
sensitive latches according to a schedule found by a
software-pipelining technique. This is an extension to
what we presented in [1], where the goal was to
achieve the optimal clock period, but where clocks
were supposed to be perfect.

The main contributions of this work are:
- It permits tolerance to clock skew and clock jitter

while running at optimal clock period. Method [5]
trades clock frequency for higher tolerance.

- It permits more tolerance than any method based on
retiming and clock skew scheduling.

- It demonstrates the existence of a tradeoff between
register count (hardware complexity) and tolerance.

- The method has a polynomial execution time, and it
is very fast as illustrated by the experimental results.

Combining small time complexity and possibility of

tradeoff between tolerance and hardware complexity
permits an exploration of the design space, where a
satisfying tolerance, not necessarily optimal, is ob-
tained, while keeping the register count within an ac-
ceptable limit.

2 Preliminaries
2.1 Input Circuit Definition
As most methods do, we support single-phase edge-
triggered circuits formed by combinational computing
elements separated by registers, similarly to the original
retiming article [7]. With the reference model, circuits
are represented as a finite, vertex-weighted, edge-
weighted, directed multigraph G = 〈V, E, d, w〉. The
vertices V represent the functional elements of the cir-
cuit, and they are interconnected by edges E. Each
vertex v ∈ V has a propagation delay d(v) ∈ Q, which is
the maximum delay before its outputs stabilize. Each
edge e ∈ E is weighted with a register count w(e) ∈ N,
representing the number of registers separating two
functional elements. All registers are edge-triggered
and controlled by the same clock.

We extend the d and w functions for paths in the
graph. For any path v ap vk = v0 be0 v1 be1 … bk vk, we
define:

∑
−

=
=

1

0
)()(

k

i
ivdpd ∑

−

=
=

1

0
)()(

k

i
iewpw

For registers a on an input arc of operation v, and b
on an input arc of v′, we define a ap b as v ap v′.

We also support lower bounds on the delay of an
element, which requires another vertex-weight
dmin(v) ∈ Q. To simplify figures and readability, the
minimum delay is considered zero in the examples.

2.2 Scheduling and software-pipelining
A schedule s is a function s : N × V → Q, where sn(v) ≡
s(n, v) denotes the time at which the nth iteration of
operation v is starting. A schedule s is said to be peri-
odic with period P (all iterations having the same
schedule), if:

∀ n, ∀ v ∈ V, sn+1(v) = sn(v) + P
A schedule is valid iff the operations terminate before

their results are needed (whilst respecting resource con-
straints if any). If the only constraints come from data
dependency, s is valid iff for all edges v be v′,

sn(v) + d(v) ≤ sn+w(e)(v′).
A periodic schedule that satisfies those constraints

can be found in O(|V| |E|) using a longest path algo-

* DIRO, Université de Montréal, Québec, Canada.
E-mail: {boyerf, aboulhamid}@IRO.UMontreal.CA.

� DGEGI, École Polytechnique de Montréal, Québec, Canada.
E-mail: savaria@VLSI.PolyMtl.CA.

rithm like Bellman-Ford, for any valid period. The
problem of finding the minimal period is the same as
the well known minimal cost-to-time ratio cycle prob-
lem, the cost being the number of registers and the time
being the combinational delays, which can be solved in
O(|V| |E| log(|V| dmax)) using Lawler�s algorithm [6]. A
cycle is called critical if its ratio is the same as the
minimum ratio, and a path is critical if all its edges are
on a critical cycle. Note that the optimal period is the
inverse of the minimum ratio.

For example, the circuit of Fig. 1 (the same as in [7])
has a clock period of 24. Using retiming techniques we
can obtain a single phase clocked circuit with a period
of 13. An optimal period of (3+7)/1=10 can be
achieved. This minimal period is determined by the
critical cycle shown with the gray arrow [1]. Meeting
this performance necessitates a multi-phase clock; and
a feasible register placement is shown in Fig. 2. On
non-critical edges, more than one register may be re-
quired to respect the desired maximum distance be-
tween registers; this can increase tolerance to timing
variations as will be explained later.

7

3 3 3 3

77

0

1 1 1 1

0

00
0

0 0 0

v1 v2 v3

v5v6v7

v8

v4

Fig. 1. A simple circuit with delays on vertices and register count on
edges. A critical cycle is shown in gray.

7

3 3 3 3

77

0

v1 v2 v3

v5v6v7

v8

v40 6

963

9
63

3

Fig. 2. A possible way to place registers in Fig. 1, with a period of
10. The phases of the registers are indicated beside them.

3 Clock and Register Constraints
We consider that registers can be activated at any time
using multiple clock phases. Each register is activated
at a specific phase of the clock, according to the sched-
ule, all clock signals having the same period. This
permits to follow any periodic schedule.

3.1 Edge-triggered Registers
In a circuit with edge-triggered registers, a register
must not be activated before the combinational circuit
preceding it has stabilized. That is, a register placed on
an input of operation v must be activated following a
valid schedule for v. There is another constraint, as the
circuit calculates values at each cycle. All registers
must be activated before the result start to change for
the next result. Therefore, for each path a ap b, be-

tween registers a, and b, with no other register between
them, we have:

sn(a) + d(p) ≤ sn+k(b) ≤ sn+1(a) + dmin(p)
where k is 0 or 1 if b depends on a from the same or

from the previous iteration, respectively.
This forces to place at least one register on each path

p longer than the period P + dmin(p), for periodic sched-
ules. Algorithm BreakPath [1] resolves this problem
when dmin is considered to be zero.

If there is no slack in the schedule, the time at which
registers are activated must be exact, as any deviation
will make the schedule invalid. A circuit using edge-
triggered registers on a critical path has zero tolerance
to schedule variations when running at the optimal
clock period. The method in [5] finds the maximum
tolerance for single-phase edge-triggered circuits with a
relaxed period, if only retiming and clock skew sched-
uling is permitted.

For example, on the circuit of Fig. 3 (containing only
a critical cycle of Fig. 1) at the optimal period of 10,
registers can be placed at either a or b, or both a and b
using two clocks as shown on Fig. 4.

3 7
1

v1 v70 b

a

Fig. 3. The critical cycle from Fig. 1, with the two possible positions
for registers (a, b).

a

b

3 7
Fig. 4. Clocks when both a and b are edge-triggered registers in Fig. 3.

3.2 Level-sensitive Registers
With level-sensitive registers, the constraints seem
similar, but are in fact more flexible, as will be shown
in the following. A value must not be latched (by the
disabling edge of the clock) before it has stabilized, but
the register can be enabled some time before (by the
enabling edge of the clock). To correctly follow the
schedule of operations, and not delay them, a latch
placed on an input of operation v must be enabled be-
fore the schedule of v. The register must still be en-
abled at the schedule of v and must be disabled before
the value starts to change for the next one. Then it
must stay disabled long enough for a valid value to
propagate to other registers. If we have a valid sched-
ule for an edge-triggered circuit, we can use level-
sensitive latches if the following constraints can be met
with a non-null enabling period (the enable time differ-
ent from the disable time, for each register). For each
path a ap b, between registers a and b, with no other
register between them,

sn+k(be) ≤ sn+k(b) ≤ sn+k(bd) ≤ sn+1(ae) + dmin(p),
where ae and be are the enabling time of the latches,

and ad and bd is the disabling time of the latches; the
other values are as in the edge-triggered case.

Here we consider the value of register a to be valid at
time sn(a), even if it is disabled only at a later time:
sn(ad). As the original edge-triggered schedule was
valid, we can prove that this is true [1].

Even if there is no slack in the schedule of operations,
there may be slack on the enable and disable time of
registers. Since no clock is sent according to the
schedule of operations, small errors in clocks arrival
times may be tolerated.

With the same example as in the edge-triggered case
(Fig. 3), using level sensitive latches permits to have
imperfect clocks even at the optimal period, as shown
on Fig. 5.

a

b

3 7
Fig. 5. Clocks when level-sensitive registers are at both a and b in
Fig. 3. All clock edges can move as indicated by the small arrows,
without changing the circuit�s behavior.

4 Maximum Tolerance to Clock Variations
This section analyses how much error can be tolerated
on the enable time and the disable time of a register.
We say that a circuit has a tolerance of δ if all clock
edges can be randomly moved by ±δ time units from
their nominal values, without changing the result pro-
duced by the circuit. Note that in [5], the tolerance τ is
defined as the width of the interval, thus τ = 2δ.

4.1 Tolerance at Optimum Clock Period

THEOREM 1. At optimum clock period, the maximum
tolerance for registers a and b on a critical path, with-
out registers between them, is (P � (sn+k(b) � sn(a)) +
dmin(a a b))/4, where dmin(a a b) is the minimum
dmin(p) for all paths a ap b.

PROOF. On a critical path, when the circuit runs at
maximum frequency, the schedule must be followed
exactly. From previous section, we must satisfy the
following constraint for all paths a ap b:

sn+k(be) ≤ sn+k(b) ≤ sn+k(bd) ≤ sn+1(ae) + dmin(p)
The lower bound on dmin(p) is dmin(a a b), from the

definition, and as the schedule in periodic sn+1(ae) =
sn(ae) + P (if there is no error on the clock). So we
have that:

sn+k(be) ≤ sn+k(b) ≤ sn+k(bd) ≤ sn(ae) + P + dmin(a a b)
To have a tolerance of δ, we must be able to move all

clock edges by that value and still satisfy the constraint.
We want to maximize δ under:

sn+k(be) + δ ≤ sn+k(b) ≤ sn+k(bd) � δ
 sn+k(bd) + δ ≤ sn(ae) + P + dmin(a a b) � δ

sn+1(ae) + δ ≤ sn+1(a)
We obtain the maximum δ when the inequations are

at equality. Putting them together, we get:

(sn+k(b) + δ) + δ = (sn(a) � δ) + P + dmin(a a b) � δ
⇔ δ = (P � (sn+k(b) � sn(a)) + dmin(a a b))/4 c

The tolerance to clock edge deviations depends on the
distance between registers; a shorter time between them
gives a higher tolerance. The maximum tolerance will
be obtained when registers are placed on all edges in
the graph.
LEMMA 1. At optimum clock period, the maximum
tolerance on critical paths is (P � max v∈ V { d(v) �
dmin(v) })/4.

PROOF. To minimize the distance between registers
and have a valid schedule, the distance will be the de-
lay of one operation. LEMMA 1 follows directly from
THEOREM 1, as the longest operation will determine the
maximum distance between registers. c

LEMMA 2. At optimum clock period, the required
number of registers on each cycle of the graph will be
multiplied by at least 1/(1 � 4 δ/P) if all paths are criti-
cal and dmin is zero.

PROOF. From THEOREM 1, δ = (P � dist)/4, where dist
is the distance between registers with a path between
them. In the optimum case, the registers will have
equal distances; a cycle containing m registers will
have a length of m⋅dist. P is optimal and all paths are
critical, so for any cycle P = m⋅dist/n, where n is the
original number of registers. We obtain δ = (P �
P⋅n/m)/4, which means that m/n = 1/(1 � 4 δ/P). c

For our example of Fig. 3, the maximum tolerance is
(10 � 7)/4 = ¾, if dmin is considered zero. Looking at
Fig. 5, we see that to maximize the length of the four
arrows in the section lasting 3 time units, each arrow
must be one fourth of the 3 time units. This is also the
maximum tolerance for the circuit of Fig. 2, as the
longest delay between registers is the same.

To show how more registers will give more tolerance,
we will use the circuit of Fig. 6. The circuit has an
optimal period of 16 and would have no tolerance at
that speed if one edge-triggered register were used. If
level-sensitive registers are placed at a and c, a toler-
ance of (16 � 8)/4 = 2 can be achieved, and if registers
are added at b and d, that tolerance can go up to (16 �
4)/4 = 3. In that later case, the clocks will be as shown
in Fig. 7.

4 4a 4 4
1

0 0 0b c d

Fig. 6. Simple loop circuit to show possible tolerance.

a

b

4

c

d

Fig. 7. Clocks with highest tolerance for circuit Fig. 6 with period 16.

4.2 Tolerance with a Relaxed Period
If we give some slack time to the circuit, using a longer
period or on non-critical paths, the circuit could have a
higher tolerance. As a small error on sn(a) can be ac-
cepted, the tolerance could be higher than half the
width of the enabling interval (between ae and ad) of
the register. Of course we must still guarantee that
sn(ae) ≤ sn(ad), which is not a problem because what-
ever the variations on the delays are, the transitions on
a wire will always keep the same order. We do not
currently have a method to optimize tolerance on non-
critical paths, they are optimized as if they were also
critical, which may underestimate the actual tolerance.

5 Experimental Results
We have implemented a method to place registers
based on THEOREM 1. The distance between registers
must be bounded by a value lower than the optimal
period in order to achieve a non-zero tolerance. It has
been applied to some .edif circuits from LGSynth93
benchmark suite [8]. To compare the results with those
presented in [5], we tried to use the same circuits and
delay model, but their delays are a bit randomized.
Gate delays are a + b⋅(fanout ± ½), where a and b de-
pends on the gate type and come from the library
iwls93.mis2lib. The library gives a and b for the rise
and fall time, for each case we add or subtract ½ from
the number of connections to the output of the gate
(fanout), then the highest and lowest values of the four
calculated delays are used as maximum and minimum
delays, respectively.

In the first part of Table 1, we obtain the same toler-
ance as in [5] without deviating from optimal clock
period. A zero tolerance would be obtained with the
method [5]. The last two circuits are there to show that
our method is fast even on larger circuits. The columns
|V| and |E| give the size of the circuit graph in number
of vertices and edges, P is the optimal period and the
period at which we want to run the final circuit. The
targeted tolerance is δ, and the register count in the
resulting circuit with that tolerance is ×reg times that of
the original circuit (not the one at optimal period). The
time taken for the optimization and register placement,
in seconds on a PII 450MHz, is shown in the column
CPU (s). The time for the placement of registers to
achieve a specified tolerance is about 12% of that total
time. To compare with the time taken by the method in
[5], the circuits s713 and dk512 took 13.6 hours and
21.5 hours, respectively, also on a PII (as stated in
their paper). Our method is fast but does not currently
minimize the number of registers, and it does not ex-
ploit the slack on some paths.

The number of registers to achieve a certain tolerance
is shown on Fig. 8. Both axis have been normalized:
the tolerance is the fraction of the period and the regis-
ter count is the factor by which the number of registers
increased compared to the original circuit. The solid
line shows the theoretical minimum number from

LEMMA 2. The dots are the values obtained by trying
different tolerances on the benchmark circuits.

6 Conclusion and Future Work
We showed that a circuit with a tolerance higher than
that of any edge-triggered circuit could be obtained
using level-sensitive latches activated by different
clock phases. The tolerance cannot be over ¼ the pe-
riod, when running at the optimal period, but can be
non-zero, which is impossible with edge-triggered cir-
cuits. A higher tolerance requires more registers,
which leads to possible tradeoffs. Currently the algo-
rithm does not minimize the number of registers and
does not exploit slack times on non-critical path, or
when running the circuit at a relaxed clock period. We
plan to develop an algorithm that gives higher tolerance
with fewer registers, using those slack times.

Circuit |V| |E| P δ ×reg CPU (s)
bbtas
dk14

dk512
s208
s713

35
73
44
43

397

75
199
122
93

575

4.63
6.16
4.83
4.22

47.34

0.315
0.7

0.35
0.835
1.89

2
1.25
3.2

28.17
2.05

0
0

0.016
0.016
0.125

s9234.1
s38417

2931
23985

4057
33248

30.25
27.78

2
2

2.10
2.36

0.750
8.703

Table 1. Tolerance (δ) and register increase (×reg) for some circuits.

0.05 0.1 0.15 0.2 0.25

10

20

30

40

50

δ/P

×reg

Fig. 8. Register count for different tolerance from 0 to ¼ the period.
Solid line is the bound from LEMMA 2; dots are actual results.

References
[1] F. R. Boyer, E. M. Aboulhamid, Y. Savaria, and M. Boyer,

�Optimal design of synchronous circuits using software pipe-
lining techniques,� ACM Transactions on Design Automation of
Electronic Systems, vol. 7, no. 2, April 2002, in press, available
on www.acm.org.

[2] F. R. Boyer, E. M. Aboulhamid, and Y. Savaria, �An efficient
verification method for a class of multi-phase sequential cir-
cuits,� IEEE International Conference on Electronics, Circuits
& Systems, December 2000, in press.

[3] J. P. Fishburn, �Clock skew optimization,� IEEE Transactions
on Computers, vol. 39, pp. 945-951, July 1990.

[4] E. G. Friedman, �Clock distribution networks in VLSI circuits
and systems,� IEEE press, 1995.

[5] E. G. Friedman, X. Liu, and M. C. Papaefthymiou, �Minimiz-
ing sensitivity to delay variations in high-performance synchro-
nous circuits,� Proceedings of Design Automation and Test in
Europe, 1999, pp. 643-649.

[6] E. Lawler, �Combinatorial Optimization: Networks and Ma-
troids,� Saunders College Publishing, 1976.

[7] C. E. Leiserson, and J. B. Saxe, �Retiming synchronous cir-
cuitry. Algorithmica,� vol. 6, no. 1, 1991, pp. 3-35.

[8] http://cbl.ncsu.edu/CBL_Docs/lgs93.html

