

Designing with SystemC: Multi-Paradigm Modeling and Simulation
Performance Evaluation

L. Charest, E.M. Aboulhamid and A. Tsikhanovich

DIRO, Université de Montréal
2920 Ch. de la TourCP6128 Centre-Ville

Montréal, Qc, Canada H3C 3J7
Phone: +1(514)343-6822, FAX: +1(514)343-5834

{chareslu, aboulham, tsikhana}@iro.umontreal.ca

Abstract

The objective of this paper is to demonstrate the
benefits of the multi-paradigm design methodology in
hardware or hardware/software design, and to show that
the advantages to use it outweigh the risks.

We will show that with this methodology we will be
able to develop more resilient specifications and models,
express different behaviors and views of the same
“entity”, facilitating design exploration, ease of
specification and libraries development.

We focus on the multiple paradigms of SystemC to
implement typical hardware concepts. This work may be
considered as a design methodology for RTL and
architectural models using SystemC. We conclude the
paper by a performance evaluation of SystemC
simulation engine on a multiprocessor case study.

1. Introduction

SystemC is a modeling platform consisting of C++
class libraries and a simulation kernel for design at the
system-behavioral and register-transfer-levels. Designers
create models using SystemC and standard ANSI
C++[1]. Different models of computation and design
methodologies may be used in conjunction with
SystemC. The design libraries and models needed to
support these specific design methodologies are
considered to be separate from the SystemC core
language standard. This work may be considered as a
design methodology for RTL and architectural models.
By its nature, SystemC inherits the capabilities of C++,
like the support of multiple paradigms: classes,
overloaded functions, templates, modules, ordinary
procedural programming, and others. The freedom
afforded by these capabilities may also bring new
difficulties to the understanding of the model or the
ability to synthesize it. The objective of this paper is to
demonstrate the benefits of this multi-paradigm
environment, and show that the advantages outweigh the
risks. We will show that we will be able to develop more

resilient specifications and models, express different
behaviors and view of the same “entity”, facilitating
design exploration and ease specification and
development of libraries.

We will illustrate this by comparing SystemC
capabilities with those of the VHDL hardware
description language. The lack of some useful paradigms
in VHDL has already been described as early as 1991 as
summarized in [2]. Early attempts tried to augment
VHDL with other constructs, but since systems have
more and more software programmable components,
many designers are leaning toward a common language
for hardware and software modeling. In order to make a
fair comparison, we intentionally restrict ourselves to
hardware modeling both at the functional and RTL level.
We will mention only in passing the system design
capabilities of SystemC 2.0 (like Channels and
interfaces). System-level capabilities using C++ and/or
SystemC are well described elsewhere [3, 4]. This may
serve also as guideline for VHDL designers to
understand and potentially adopt the SystemC
methodology. In our comparison, we will use the concept
of commonality and variation developed by Coplien [5,
6] to compare the two environments. Multi-paradigm
design, defined in [5, 6] is a specific approach to domain
engineering that builds on a collection of paradigms
supported by some programming languages. This
methodology is based on an application domain analysis
– definition of the commonality and variation for the
components of a model, and a solution domain analysis –
a commonality and variation matching to the
implementation technology structures. In digital design
the commonalities and variation are expressed by means
of the HDL constructs.

In the next sections we will consider how SystemC
multi-paradigm design applied to hardware or
hardware/software modeling can help hardware
designers to increase design reuse and facilitate a
development of hardware libraries and executable
specifications.

The section 2 succinctly describes the support of
commonality and variation in VHDL. Section 3 brings
some solutions using C++ paradigms to build hardware
libraries. Section 4 highlights the relations between the
commonality and variation concept and some interesting
SystemC/C++ constructs. Section 5 draws a sketch of
ways of combining multiple paradigms together. Section
6 presents a concrete SystemC test bench built using
some paradigms presented in this article. Simulation
performance evaluation of SystemC is given in section 7
and finally, section 8 concludes this work.

2. Commonality and Variation in VHDL

VHDL allows the expression of commonality by what
is called design units. A design unit is a VHDL construct
that may be independently analyzed and inserted in a
design library. These design units are:

• Entity declaration: describes the interface view of a
component (like a Data Book description). It is
implementation independent.

• Architecture body: describes an implementation of
an entity (like a single schematic diagram).A single
interface may have alternative architectures.

• Package (declaration and body): contains
information common to many design units. This
information consists of functions, types, signals, and
constants. It hides details, simplifies design, and may
invoke other packages.

• Configuration: relates local entity and architecture
references to actual units in libraries (like a parts
reference list).

Commonality can also be expressed by generate
statements and generic constants for regular structures,
like a ripple carry adder or an interconnection network.

 Variation is obtained by configuration, which allows
the designer to choose architecture among many others
during design space exploration. Variation can also be
obtained by giving a specific value to a generic
parameter, or by overloading functions and subprograms
in coordination with packages. Overloading allows the
reuse of models even if the basic data types are changed,
like going from a bit type to a 9-valued standard logic.
Commonality between processes is very limited, except
if we choose very complex ways like concurrent
procedure calls rendering models quite cryptic.

3. Design Reuse and Hardware Libraries
using SystemC

As seen before, the main mechanism for design reuse in
VHDL is libraries of design units. Structural hierarchy is
the way to reuse components declared in a library.
SystemC has the same capability as VHDL and also

other mechanisms, based especially on inheritance,
templates and overloading.

3.1. Module Inheritance in SystemC

In designing a library of gates, latches... we can specify
all the properties related to gates in a module Gate from
which, And, Or, Xor... will be derived later. The purpose
of the Gate module is to act as an interface. All the
properties and methods for Flip-Flops will be captured in
a similar module (Setup and hold time, delays, etc.). This
is an example of simple inheritance of a module:
class Gate : public sc_module
{
 public :
 Gate(const sc_module_name& name)
 :sc_module(name)
 { (...) }
};

class And : public Gate {
public :
 SC_HAS_PROCESS(And);

 And(const sc_module_name& name) : Gate(name)
 { (...) }
};

3.2. Using Inheritance to Insert Tags or
Attributes

In VHDL, we can reuse a component with a variation
of behavior or semantics based on attributes. For
example, we can use attributes to specify that a process is
at the RTL or behavioral level. However, it is impossible
to derive processes from previous ones, or specialize
their methods. In modern software-oriented
methodology, recommendations are made supporting a
common root for all objects in the software design;
sc_object constitutes such a root in the core of the
SystemC library. For the purpose of modeling a library
of components and IPs, sc_module can be the
building block for the models. From this, we may derive
other specialized modules, as described in the Figure 1.

sc_module

sc_hierarchical_modulesc_software_module sc_hardware_module

Figure 1: Module specialization

Then these basic building blocks can be used to
construct our libraries. With this kind of construct, we
can specify how the module should be instantiated.
Because all three modules inherit from the same
sc_module, they have the same behavior (unless we
choose otherwise). A designer could decide that a

particular software module should be implemented in
hardware, by simply changing the ancestor of his design.
The kind of construction could be recognized by
synthesis analyzers without having to alter the SystemC
model. However, as it is part of the static configuration,
the drawback of this approach is the necessity of
recompiling the code, when a configuration modification
is required.

3.3. Hierarchical Module Construction for
SystemC Hardware Libraries

Class hierarchies can be a great help when designing
hardware libraries. Here are some proven advantages:

• Modularity of structure: construction of
hardware properties are reused in derived
classes.

• Locality of code: modifications may be limited
to a class or its ancestor(s) without spreading all
over the model.

• Reusability of code: software implementation
in base classes may be reused in derived class.

+sc_hardware_module()

sc_hardware_module

+Gate()

+input_port_1 : sc_in
+input_port_2 : sc_in
+output_port : sc_out

Gate

+And()

And

+Xor()

Xor

Figure 2: Behavioral hierarchy

There is no need in the “child” class to declare again
the port information (this is not possible in VHDL). All
we need to do is to implement a sensitive method to these
ports and have these methods be set sensitive in each of
the constructors.
And::And(...) : public Gate(...)
{
 SC_METHOD(main_process);
 sensitive << input_port_1 << input_port_2;
}

This duplication of definition of the sensitivity list,
illustrated also in Figure 3, can be avoided; if the virtual
init() method defined in the Processor class is sensitive to
some signals, then the derived init methods in classes
such as DLX_Processor will inherit this sensitivity.
Therefore, adding and refining the hardware components
could result in the construction of a library from ground
up.

4. Communality, Variation and
Configurations

4.1. Multiple Architectures

Using VHDL, we can have multiple architectures
related to the same entity. We can consider the entity as
the abstract class and different architecture as the derived
classes from the basic abstract class. Note that in VHDL,
this derivation process is limited to two levels of
abstractions. In SystemC, this refinement process can
continue indefinitely as illustrated in Figure 3.

+sc_hardware_module()

sc_hardware_module

+Processor()
+init()

Processor

+DLX_Processor()
+init()

DLX_Processor

+Intel_Processor()
+init()

Intel_Processor

+Arm_Processor()
+init()

Arm_Processor

+Pipelined_DLX_Processor()

Pipelined_DLX_Processor

+Tomasulo_DLX_Processor()

Tomasulo_DLX_Processor

Figure 3: Behavioral refinement

4.2. Generation and Configuration of Regular
Structures

In VHDL, generate statements are used to model
regular structures composed of processes or components.
In SystemC, a simple declaration of an array of
components is sufficient, as illustrated below.
Configuration is obtained in a very natural way by
instantiation.
Processor *processor_array[10];
Processor_array[0]= new Arm_Processor();
processor_array[1]= new DLX_Processor();
processor_array[2]= new Intel_Processor();

The configuration could be put in a file and then read
at execution time during elaboration. A switch statement
could then be used to instantiate the different processors.
This has no correspondence in VHDL:
int i = 0;
FILE input = fopen("cpu.cnf", "rt");
while (!eof(input)) {
char buffer[500];
buffer = fgets(input);
switch(atoi(buffer)) {
 case ARM :
 Processor_array[i++]=new Arm_Processor();
 break;
 case INTEL :
 Processor_array[i++]=new Intel_Processor();
 break;
 (…)
 }
}

4.3. C++ Polymorphism in SystemC Library

If we reexamine the UML behavioral refinement of
Figure 3, we note that the abstract class Processor has a
pure virtual method init(). This method is defined in
the next level of abstraction in the derived classes
DLX_Processor, Intel_processor and
Arm_processor. If general enough, these methods are
reused in the third level of refinement without having to
redefine them. Modularity of code is very important to
achieve reusability. A module, which uses these
processors, can be written using only the abstract class
processor. Depending on the true instance of the
processor the right init method will be invoked by
polymorphism:
for (int i = 0; i < 10; i++)
 //initialize all processors
 processor[i]->init();

If the same effect is desired in VHDL, we would need
a special signal Reset_Processor, which should
feed only processor components, is required. This is less
elegant and less readable. It is also more time consuming
during simulation because events on signals put a very
heavy burden on the VHDL simulator.

4.4. Using Overloading Mechanism to Change
the Behavior

In VHDL, overloading is limited to functions and
procedures. In SystemC, not only methods but also
constructors of classes can be overloaded, allowing more
dynamic configuration of threads and modules. To
determine the correct method to call, the compiler only
looks at the type of the parameter(s) when the method
call is issued. Here is an example of overloaded
constructor for a Processor object:
Processor::Processor(const sc_module_name &name,
 int bus_format)
 : sc_hardware_module(name)
{
 bus = new sc_in<int>();
 (...)
}
Processor::Processor(const sc_module_name &name,
 char bus_format)
 : sc_hardware_module(name)
{
 bus = new sc_in<char>();
 (...)
}

4.5. Using Overloading to Speedup Simulation
or Specify a Particular Behaviour

In VHDL, specification of a generic entity with n
ports can be achieved by defining a generic and then
declaring an array of n ports. However, if for a specific
number of ports we have a particular behavior or any

optimization, the only way is to test the parameter inside
the architecture related to the generic entity.

In SystemC, by using overloading we can perform
this in a more efficient way as illustrated below:

void And::compute(void); {
 output_port = input_port_1 &&
 input_port_2;
}
void And::compute(int n_ports); {
 if (n_ports != 0)
 for (int i = 0; i < n_ports; i++)
 (...)
}

4.6. Using Templates to Describe Regular
Behavior and its Elaboration at
Compilation Time

Interconnection networks or other behaviors can be
easily described recursively. Using templates, we can
have very abstract descriptions translated in an iterative
behavior at compile time, hiding these abstractions from
the simulator, and potentially the synthesis tool.
template<int n_ports>
class Gate : public sc_module
{
 public :
 sc_in<bool> input_ports[n_ports];
 sc_out<bool> output_port;
 (...)
};

//this is the recursive generic part
template<int N>
class Compute
{
 public :
 static inline void compute(bool &result,

 sc_in<bool> *input_ports)
 {
 Compute<N-1>::compute(result, input_ports);
 result = result & input_ports[N-1];
 }
};

 //this is to end the recursive construction,
 //”overload” the generic part
class Compute<2> {
 public:
 static inline void compute(bool &result,

 sc_in<bool> *input_ports)
 {
 result = input_ports[0] & input_ports[1];
 }
};
template<int n_ports>
class And : public Gate<n_ports> {
 public :
 SC_HAS_PROCESS(And);
 void compute_process(void) {
 bool result;
 while(1) {

 //this is the call that will be
 //statically resolved by the compiler
 Compute<n_ports>::compute(result,
 input_ports);
 output_port = result;
 wait();
 }
 }

 And(const sc_module_name& name)
 : Gate<n_ports>(name)
 {
 SC_THREAD(compute_process);
 for (int i = 0; i != nb_ports; i ++)
 sensitive << input_ports[i];
 }
};

Templates are resolved at compilation time. The
instantiation of a specific And gate can be done either
by:
#define FOO 10
new And<FOO>("simple_And");

or by:
const int foo = 10;

new And<foo>("simple_And");

The compilation of the following code:
while(1)
{
 Compute<n_ports>::compute(result, input_ports);
 output_port = result;
 wait();
}

would result in the following iterative hardware
structure:
while(1)
{
 result = input_ports[0] & input_ports[1];
 result = result & input_ports[2];
 result = result & input_ports[3];
 (...)
 result = result & input_ports[9];
 output_port = result;
 wait();
}

This is because the compiler unrolls the template inlined
method calls. This allows the compiler to perform very
useful optimizations. As mentioned in section 2.2.2, due
to the use of a static configuration (like in VHDL), the
drawback of this approach is the necessity of recompiling
the code, when a configuration modification is required.

5. Combining Mechanisms

The highest configuration flexibility is achieved by
combining many paradigm mechanisms together. In
Figure 4, we used the multiplexor as a “container” of
other modules (gates). In the following we describe two
modeling alternatives.

A first way would be to have base class to describe a
hardware_module. Child classes are then all
hardware_modules by definition. The problem using
this approach is that the multiplexor ability to contain
other module is not well highlighted and isolated from a
standard basic hardware. One might like to create a new
type of module and to be able, with the help of this new
class, to distinguish a hardware module from a software
module and from a hierarchical module. Figure 1
illustrates partly this solution.

Using overloading and polymorphism, the behavior of
the component can be changed. In the hierarchy
represented by Figure 4, the Gate may be derived from
hardware_module but have the multiplexor derived from
hierarchical_module. The process in the Gate base
class is the process() method which is abstracted but
redefined by the children (similar to the init() method
of Figure 3). Each gate is then responsible of their
implementation of the process.

If we want to push further this methodology, we can

have a behavioral_process()in the base class that
would suggest that the derived module could have such a
behavioral process that would simulate the module from
a behavioral perspective, while
structural_process() would be the one that should
represent the module by composition from other
modules. Because the initialization phase might be
different, init_behavioral() and
init_structural() methods would be provided, and
the general init() method would be responsible for
calling the appropriate initialization method. The
constructor of the hierarchical_module is the one
that builds the module and chooses whether the
behavioral or the structural definition of the derived class
would be used.

When the hierarchical module is composed of only
one module (might even be decided or changed at run
time during initialization phase), we could supply a
method has_subcomponent() to determine the real
nature of the module. This might hide the Boolean value
that would be adjusted by the constructor at compile
time. The list of sub-modules would be adjusted to allow
an easy traversal of the hierarchy.

Another approach which would be appropriate uses a
design patterns approach [7].

+And(in name : sc_module_name&)
#process()

And

+Chip(in name : sc_module_name&)
-Gates : Gate*

Component

+Or(in name : sc_module_name&)
#process()

Or

+Mux(in name : sc_module_name&)

Mux

nb_bits:int

+hardware_module(in name : sc_module_name&)

hardware_module

+Gate(in name : sc_module_name&)
#process()

+input_ports : sc_in*
+output_port : sc_out

Gate

Figure 4: A multi-paradigm module description

6. Applying the SystemC multi-paradigm
modeling methodology

6.1. Pipelined DLX multiprocessor

In the following, the use of the SystemC multi-
paradigm modeling methodology is shown in terms of an
example of pipelined DLX multiprocessor model. In this
model we have used only some of the SystemC
paradigms described above.

The pipelined DLX processors are connected through
a unidirectional ring, where every pair of adjacent nodes
can send and receive messages concurrently. As it can
see in Figure 5, the sc_module class serves as a building
block for the model from which the others modules have
been derived. In the pipelined DLX multiprocessor
model we have used the following C++ families of
abstractions:

- Data, group related values
- Inheritance, groups classes with similar behavior
- Preprocessor constructs, such as #ifdef, used for

fine-grain variations in code and data
All the modules in our example are the structs or

classes to unify a common family. This paradigm is
directly supported by SystemC core standard. The next
paradigm, used in the pipelined DLX multiprocessor
model is inheritance, that groups modules with the same
basic behavior. We have constructed two class
hierarchies with the Addressable_Device as a base
class : a hierarchy defined different types of memory and
one defined communication devices. This paradigm helps
sufficiently decrease the development time of
specialized modules with similar behaviors. With the
help of this base module, we defined a way, for modules,
to communicate together.

Preprocessor directives as it mentioned in [4] are most
useful to express exceptions to the rule. We use this
paradigm to ease the debugging process with our model.
We can, at will, enable or disable debugging of modules
independently.

This multiprocessor is used as a general benchmark to
obtain some figures of merit concerning the performance
of SystemC in modeling and simulating a multiprocessor
at a cycle accurate level.

DLX_CPU stage_IF

stage_ID

stage_EX

stage_MEM

stage_WB

sc_module

1

1

1

1

1

Addressable_Device

Memory

Mem_ROM Mem_RAM

RingDevice

Bridge

Device_Info

*

Figure 5: Class diagram of the multiprocessor model

7. Simulation Performance Evaluation

A detailed experimentation of SystemC environment
is described in [8]. This section summarizes some of the
findings. We run different models for the DLX
multiprocessor on two SystemC versions. The pipeline
stages were modeled using SC_METHODs and
SC_THREADs: We first built the DLX using
SC_METHODSs, which ends up being quite faster than
SC_THREADs, then for the purpose of simplicity, we just
changed the pipeline for SC_THREADs while keeping the
rest of the model as being SC_METHODs. The usage of
SC_THREADs results in a 30% increase in the execution
time for the DLX pipeline only. We think that converting
other methods to threads will result in more dramatic loss
of performance. A positive point for SC_THREADs is that
it could bring other benefits we could have used (such as
the possibility to use wait statements) which would have
helped us lower the total number of methods.

Usage of SystemC 2.0 instead of SystemC 1.2.1
resulted in up to 60% deterioration of performance.
Again for the purpose of simplicity, we converted
directly version 1.2.1 code to version 2.0 code, by
inserting dont_initialize() clauses in the original
code. This quick conversion is recommended by the
specification manual, and we do not think that the
dont_initialize() is responsible for the slow down.
The metric used in our evaluation is as follows: In a
DLX multiprocessor the figure of merit is computed as
the number of cycles divided by the execution time, the
result being multiplied by the number of processors.

The model can run as fast as 76 KHz (76,000
simulated DLX cycles per second) for a monoprocessor
model running on a 450-MHz Linux machine, and as
slow as 14KHz for a 128-processor model where nodes
exchange messages between them.

8. Conclusion

This paper gives an overview of the multi-paradigm
design methodology and demonstrates its application in
hardware modeling in order to minimize the impact of
the increasing complexity and the shrinking of the time
to market of consumer products.

Multiple paradigms of C++ were explored to show the
possible solutions to the typical modeling problems,

some of them have been used with success in the
modeling of a DLX multiprocessor.

 SystemC offers a very interesting simulation
performance and allows also the adoption of other
Software Engineering Methodologies, such as design
patterns, which were not addressed specifically in this
work.

0

10

20

30

40

50

60

70

80

0 20 40 60 80 100 120 140
Number of Processors

Fr
eq

ue
nc

y
(K

H
z)

SystemC 1.2.1 with sc_methods SystemC 1.2.1 with sc_threads
SystemC 2.0 with sc_methods SystemC 2.0 with sc_threads

Figure 6: Multiprocessor DLX performance on a 450 MHz Linux intel pentium machine

References

[1] Open SystemC Initiative (OSCI), Functional Specification for SystemC 2.0, http://www.systemc.org, 2001.
[2] S. Swamy, A. Molin, and B. Covnot, "OO-VHDL: Object-Oriented Extensions to VHDL," Computer, vol. 28, pp.

18-26, October 1995.
[3] D. Verkest, J. Kunkel, and F. Schirrmeister, "System Level Design using C++," Proceedings of Design,

Automation and Test in Europe, Paris, France, 27 - 30 March, 2000.
[4] Open SystemC Initiative (OSCI), SystemC, http://www.systemc.org, 1999-2001.
[5] J. Coplien, D. Hoffman, and D. Weiss, "Commonality and Variability in Software Engineering," vol. 15, pp. 37-

45, November/December 1998.
[6] J. Coplien, Multi-Paradigm Design for C++. Reading, MA: Addison-Wesley, 1999.

[7] L. Charest, E.-M. Aboulhamid, and G. Bois, "Applying patterns and multi-paradigm approaches to
hardware/software design and reuse," in Patterns And Skeletons For Parallel And Distributed Computing, F.
Rabhi and S. Gorlatch, Eds. London: Springer-Verlag, 2002, pp. in preparation.

[8] L. Charest, E. M. Aboulhamid, C. Pilkington, and P. Paulin, "SystemC Performance Evaluation Using A Pipelined
DLX Multiprocessor," Proceedings of Design and Test in Europe Designers' Forum, Paris, March, 2002.

