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Abstract 
 

The objective of this paper is to demonstrate the 
benefits of the multi-paradigm design methodology in 
hardware or hardware/software design, and to show that 
the advantages to use it outweigh the risks. 

We will show that with this methodology we will be 
able to develop more resilient specifications and models, 
express different behaviors and views of the same 
“entity”, facilitating design exploration, ease of 
specification and libraries development. 

We focus on the multiple paradigms of SystemC to 
implement typical hardware concepts.  This work may be 
considered as a design methodology for RTL and 
architectural models using SystemC. We conclude the 
paper by a performance evaluation of SystemC 
simulation engine on a multiprocessor case study. 

1. Introduction 

SystemC is a modeling platform consisting of C++ 
class libraries and a simulation kernel for design at the 
system-behavioral and register-transfer-levels. Designers 
create models using SystemC and standard ANSI 
C++[1]. Different models of computation and design 
methodologies may be used in conjunction with 
SystemC. The design libraries and models needed to 
support these specific design methodologies are 
considered to be separate from the SystemC core 
language standard. This work may be considered as a 
design methodology for RTL and architectural models. 
By its nature, SystemC inherits the capabilities of C++, 
like the support of multiple paradigms: classes, 
overloaded functions, templates, modules, ordinary 
procedural programming, and others. The freedom 
afforded by these capabilities may also bring new 
difficulties to the understanding of the model or the 
ability to synthesize it. The objective of this paper is to 
demonstrate the benefits of this multi-paradigm 
environment, and show that the advantages outweigh the 
risks. We will show that we will be able to develop more 

resilient specifications and models, express different 
behaviors and view of the same “entity”, facilitating 
design exploration and ease specification and 
development of libraries.  

We will illustrate this by comparing SystemC 
capabilities with those of the VHDL hardware 
description language. The lack of some useful paradigms 
in VHDL has already been described as early as 1991 as 
summarized in [2]. Early attempts tried to augment 
VHDL with other constructs, but since systems have 
more and more software programmable components, 
many designers are leaning toward a common language 
for hardware and software modeling. In order to make a 
fair comparison, we intentionally restrict ourselves to 
hardware modeling both at the functional and RTL level. 
We will mention only in passing the system design 
capabilities of SystemC 2.0 (like Channels and 
interfaces). System-level capabilities using C++ and/or 
SystemC are well described elsewhere [3, 4]. This may 
serve also as guideline for VHDL designers to 
understand and potentially adopt the SystemC 
methodology. In our comparison, we will use the concept 
of commonality and variation developed by Coplien [5, 
6] to compare the two environments. Multi-paradigm 
design, defined in [5, 6] is a specific approach to domain 
engineering that builds on a collection of paradigms 
supported by some programming languages. This 
methodology is based on an application domain analysis 
– definition of the commonality and variation for the 
components of a model, and a solution domain analysis – 
a commonality and variation matching to the 
implementation technology structures. In digital design 
the commonalities and variation are expressed by means 
of the HDL constructs. 

In the next sections we will consider how SystemC 
multi-paradigm design applied to hardware or 
hardware/software modeling can help hardware 
designers to increase design reuse and facilitate a 
development of hardware libraries and executable 
specifications.  



The section 2 succinctly describes the support of 
commonality and variation in VHDL. Section 3 brings 
some solutions using C++ paradigms to build hardware 
libraries. Section 4 highlights the relations between the 
commonality and variation concept and some interesting 
SystemC/C++ constructs. Section 5 draws a sketch of 
ways of combining multiple paradigms together. Section 
6 presents a concrete SystemC test bench built using 
some paradigms presented in this article. Simulation 
performance evaluation of SystemC is given in section 7 
and finally, section 8 concludes this work. 

2. Commonality and Variation in VHDL  

VHDL allows the expression of commonality by what 
is called design units. A design unit is a VHDL construct 
that may be independently analyzed and inserted in a 
design library. These design units are: 

• Entity declaration: describes the interface view of a 
component (like a Data Book description). It is 
implementation independent.  

• Architecture body: describes an implementation of 
an entity (like a single schematic diagram).A single 
interface may have alternative architectures.  

• Package (declaration and body): contains 
information common to many design units. This 
information consists of functions, types, signals, and 
constants. It hides details, simplifies design, and may 
invoke other packages.  

• Configuration: relates local entity and architecture 
references to actual units in libraries  (like a parts 
reference list).  

Commonality can also be expressed by generate 
statements and generic constants for regular structures, 
like a ripple carry adder or an interconnection network. 

 Variation is obtained by configuration, which allows 
the designer to choose architecture among many others 
during design space exploration. Variation can also be 
obtained by giving a specific value to a generic 
parameter, or by overloading functions and subprograms 
in coordination with packages. Overloading allows the 
reuse of models even if the basic data types are changed, 
like going from a bit type to a 9-valued standard logic. 
Commonality between processes is very limited, except 
if we choose very complex ways like concurrent 
procedure calls rendering models quite cryptic.  

 

3. Design Reuse and Hardware Libraries 
using SystemC 

As seen before, the main mechanism for design reuse in 
VHDL is libraries of design units.  Structural hierarchy is 
the way to reuse components declared in a library. 
SystemC has the same capability as VHDL and also 

other mechanisms, based especially on inheritance, 
templates and overloading. 

3.1. Module Inheritance in SystemC 

In designing a library of gates, latches... we can specify 
all the properties related to gates in a module Gate from 
which, And, Or, Xor... will be derived later. The purpose 
of the Gate module is to act as an interface. All the 
properties and methods for Flip-Flops will be captured in 
a similar module (Setup and hold time, delays, etc.). This 
is an example of simple inheritance of a module: 
class Gate : public sc_module  
{ 
 public : 
 Gate(const sc_module_name& name) 
   :sc_module(name) 
 { (...) } 
}; 
 
class And : public Gate { 
public : 
  SC_HAS_PROCESS(And); 
   
  And(const sc_module_name& name) : Gate(name)  
  { (...) } 
}; 

3.2. Using Inheritance to Insert Tags or 
Attributes 

In VHDL, we can reuse a component with a variation 
of behavior or semantics based on attributes. For 
example, we can use attributes to specify that a process is 
at the RTL or behavioral level. However, it is impossible 
to derive processes from previous ones, or specialize 
their methods. In modern software-oriented 
methodology, recommendations are made supporting a 
common root for all objects in the software design; 
sc_object constitutes such a root in the core of the 
SystemC library. For the purpose of modeling a library 
of components and IPs, sc_module can be the 
building block for the models. From this, we may derive 
other specialized modules, as described in the Figure 1. 

sc_module

sc_hierarchical_modulesc_software_module sc_hardware_module

 
 

Figure 1: Module specialization 

Then these basic building blocks can be used to 
construct our libraries. With this kind of construct, we 
can specify how the module should be instantiated. 
Because all three modules inherit from the same 
sc_module, they have the same behavior (unless we 
choose otherwise). A designer could decide that a 



particular software module should be implemented in 
hardware, by simply changing the ancestor of his design. 
The kind of construction could be recognized by 
synthesis analyzers without having to alter the SystemC 
model. However, as it is part of the static configuration, 
the drawback of this approach is the necessity of 
recompiling the code, when a configuration modification 
is required.  

3.3. Hierarchical Module Construction for 
SystemC Hardware Libraries 

Class hierarchies can be a great help when designing 
hardware libraries. Here are some proven advantages:  

• Modularity of structure: construction of 
hardware properties are reused in derived 
classes.  

• Locality of code: modifications may be limited 
to a class or its ancestor(s) without spreading all 
over the model.  

• Reusability of code: software implementation 
in base classes may be reused in derived class. 
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Figure 2: Behavioral hierarchy 
 

There is no need in the “child” class to declare again 
the port information (this is not possible in VHDL). All 
we need to do is to implement a sensitive method to these 
ports and have these methods be set sensitive in each of 
the constructors. 
And::And(...) : public Gate(...)  
{ 
  SC_METHOD(main_process); 
  sensitive << input_port_1 << input_port_2; 
} 

This duplication of definition of the sensitivity list, 
illustrated also in Figure 3, can be avoided; if the virtual 
init() method defined in the Processor class is sensitive to 
some signals, then the derived init methods in classes 
such as  DLX_Processor will inherit this sensitivity. 
Therefore, adding and refining the hardware components 
could result in the construction of a library from ground 
up. 

4. Communality, Variation and 
Configurations 

4.1. Multiple Architectures 

Using VHDL, we can have multiple architectures 
related to the same entity. We can consider the entity as 
the abstract class and different architecture as the derived 
classes from the basic abstract class. Note that in VHDL, 
this derivation process is limited to two levels of 
abstractions. In SystemC, this refinement process can 
continue indefinitely as illustrated in Figure 3. 

+sc_hardware_module()

sc_hardware_module

+Processor()
+init()

Processor

+DLX_Processor()
+init()

DLX_Processor

+Intel_Processor()
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Intel_Processor
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+init()

Arm_Processor

+Pipelined_DLX_Processor()

Pipelined_DLX_Processor

+Tomasulo_DLX_Processor()

Tomasulo_DLX_Processor

 

Figure 3: Behavioral refinement 

4.2. Generation and Configuration of Regular 
Structures 

In VHDL, generate statements are used to model 
regular structures composed of processes or components. 
In SystemC, a simple declaration of an array of 
components is sufficient, as illustrated below. 
Configuration is obtained in a very natural way by 
instantiation.  
Processor *processor_array[10]; 
Processor_array[0]= new Arm_Processor(); 
processor_array[1]= new DLX_Processor(); 
processor_array[2]= new Intel_Processor(); 

The configuration could be put in a file and then read 
at execution time during elaboration. A switch statement 
could then be used to instantiate the different processors. 
This has no correspondence in VHDL:  
int i = 0; 
FILE input = fopen("cpu.cnf", "rt");  
while (!eof(input)) { 
char buffer[500]; 
buffer = fgets(input); 
switch(atoi(buffer))  {  
  case ARM : 
   Processor_array[i++]=new Arm_Processor(); 
  break; 
  case INTEL : 
   Processor_array[i++]=new Intel_Processor(); 
  break; 
  (…) 
  } 
} 



4.3. C++ Polymorphism in SystemC Library 

If we reexamine the UML behavioral refinement of 
Figure 3, we note that the abstract class Processor has a 
pure virtual method init(). This method is defined in 
the next level of abstraction in the derived classes 
DLX_Processor, Intel_processor and 
Arm_processor. If general enough, these methods are 
reused in the third level of refinement without having to 
redefine them.  Modularity of code is very important to 
achieve reusability. A module, which uses these 
processors, can be written using only the abstract class 
processor. Depending on the true instance of the 
processor the right init method will be invoked by 
polymorphism:  
for (int i = 0; i < 10; i++) 
  //initialize all processors 
  processor[i]->init();   

If the same effect is desired in VHDL, we would need 
a special signal Reset_Processor, which should 
feed only processor components, is required. This is less 
elegant and less readable. It is also more time consuming 
during simulation because events on signals put a very 
heavy burden on the VHDL simulator. 

4.4. Using Overloading Mechanism to Change 
the Behavior 

In VHDL, overloading is limited to functions and 
procedures. In SystemC, not only methods but also 
constructors of classes can be overloaded, allowing more 
dynamic configuration of threads and modules. To 
determine the correct method to call, the compiler only 
looks at the type of the parameter(s) when the method 
call is issued. Here is an example of overloaded 
constructor for a Processor object:  
Processor::Processor(const sc_module_name &name, 
                     int bus_format) 
  : sc_hardware_module(name)  
{ 
  bus = new sc_in<int>(); 
  (...) 
} 
Processor::Processor(const sc_module_name &name,  
                     char bus_format) 
  : sc_hardware_module(name) 
{ 
  bus = new sc_in<char>(); 
  (...) 
} 

4.5. Using Overloading to Speedup Simulation 
or Specify a Particular Behaviour 

In VHDL, specification of a generic entity with n 
ports can be achieved by defining a generic and then 
declaring an array of n ports. However, if for a specific 
number of ports we have a particular behavior or any 

optimization, the only way is to test the parameter inside 
the architecture related to the generic entity.  

In SystemC, by using overloading we can perform 
this in a more efficient way as illustrated below: 

 
void And::compute(void); { 
  output_port = input_port_1 &&    
                input_port_2; 
} 
void And::compute(int n_ports); { 
  if (n_ports != 0) 
    for (int i = 0; i < n_ports; i++) 
      (...) 
} 

4.6. Using Templates to Describe Regular 
Behavior and its Elaboration at 
Compilation Time 

Interconnection networks or other behaviors can be 
easily described recursively. Using templates, we can 
have very abstract descriptions translated in an iterative 
behavior at compile time, hiding these abstractions from 
the simulator, and potentially the synthesis tool. 
template<int n_ports> 
class Gate : public sc_module  
{ 
  public : 
  sc_in<bool> input_ports[n_ports]; 
  sc_out<bool> output_port; 
  (...) 
}; 

//this is the recursive generic part 
template<int N> 
class Compute  
{ 
  public : 
  static inline void compute(bool &result, 

    sc_in<bool> *input_ports) 
  { 
  Compute<N-1>::compute(result, input_ports); 
  result = result & input_ports[N-1]; 
  } 
}; 

  //this is to end the recursive construction, 
  //”overload” the generic part 
class Compute<2> { 
  public: 
  static inline void compute(bool &result, 

    sc_in<bool> *input_ports) 
  { 
    result = input_ports[0] & input_ports[1]; 
  } 
};     
template<int n_ports> 
class And : public Gate<n_ports> { 
  public : 
  SC_HAS_PROCESS(And);   
  void compute_process(void)  { 
    bool result; 
    while(1) { 

    //this is the call that will be 
    //statically resolved by the compiler 
      Compute<n_ports>::compute(result,  
                            input_ports); 
      output_port = result; 
      wait(); 
    } 
  } 
 



  And(const sc_module_name& name) 
    : Gate<n_ports>(name)   
  { 
    SC_THREAD(compute_process); 
    for (int i = 0; i != nb_ports; i ++)  
      sensitive << input_ports[i];       
  } 
}; 

Templates are resolved at compilation time. The 
instantiation of a specific And gate can be done either 
by: 
#define FOO 10 
new And<FOO>("simple_And");     

or by: 
const int foo = 10; 

new And<foo>("simple_And");    

The compilation of the following code: 
while(1) 
{ 
 Compute<n_ports>::compute(result, input_ports); 
 output_port = result; 
 wait(); 
} 

would result in the following iterative hardware 
structure: 
while(1) 
{ 
  result = input_ports[0] & input_ports[1]; 
  result = result & input_ports[2]; 
  result = result & input_ports[3]; 
  (...) 
  result = result & input_ports[9]; 
  output_port = result; 
  wait(); 
} 

This is because the compiler unrolls the template inlined 
method calls. This allows the compiler to perform very 
useful optimizations. As mentioned in section 2.2.2, due 
to the use of a static configuration (like in VHDL), the 
drawback of this approach is the necessity of recompiling 
the code, when a configuration modification is required. 

5. Combining Mechanisms 

The highest configuration flexibility is achieved by 
combining many paradigm mechanisms together. In 
Figure 4, we used the multiplexor as a “container” of 
other modules (gates). In the following we describe two 
modeling alternatives. 

A first way would be to have base class to describe a 
hardware_module. Child classes are then all 
hardware_modules by definition. The problem using 
this approach is that the multiplexor ability to contain 
other module is not well highlighted and isolated from a 
standard basic hardware. One might like to create a new 
type of module and to be able, with the help of this new 
class, to distinguish a hardware module from a software 
module and from a hierarchical module. Figure 1 
illustrates partly this solution.   

Using overloading and polymorphism, the behavior of 
the component can be changed.  In the hierarchy 
represented by Figure 4, the Gate may be derived from 
hardware_module  but have the multiplexor derived from 
hierarchical_module. The process in the Gate base 
class is the process() method which is abstracted but 
redefined by the children (similar to the init() method 
of Figure 3). Each gate is then responsible of their 
implementation of the process.   

 
If we want to push further this methodology, we can 

have a behavioral_process()in the base class that 
would suggest that the derived module could have such a 
behavioral process that would simulate the module from 
a behavioral perspective, while 
structural_process() would be the one that should 
represent the module by composition from other 
modules. Because the initialization phase might be 
different, init_behavioral() and 
init_structural() methods would be provided, and 
the general init() method would be responsible for 
calling the appropriate initialization method. The 
constructor of the hierarchical_module is the one 
that builds the module and chooses whether the 
behavioral or the structural definition of the derived class 
would be used.  

When the hierarchical module is composed of only 
one module (might even be decided or changed at run 
time during initialization phase), we could supply a 
method has_subcomponent() to determine the real 
nature of the module. This might hide the Boolean value 
that would be adjusted by the constructor at compile 
time. The list of sub-modules would be adjusted to allow 
an easy traversal of the hierarchy. 

Another approach which would be appropriate uses a 
design patterns approach [7]. 
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Figure 4: A multi-paradigm module description 
 



 

6. Applying the SystemC multi-paradigm 
modeling methodology 

6.1. Pipelined DLX multiprocessor 

In the following, the use of the SystemC multi-
paradigm modeling methodology is shown in terms of an 
example of pipelined DLX multiprocessor model. In this 
model we have used only some of the SystemC 
paradigms described above.  

The pipelined DLX processors are connected through 
a unidirectional ring, where every pair of adjacent nodes 
can send and receive messages concurrently. As it can 
see in Figure 5, the sc_module class serves as a building 
block for the model from which the others modules have 
been derived. In the pipelined DLX multiprocessor 
model we have used the following C++ families of 
abstractions: 

- Data, group related values 
- Inheritance, groups classes with similar behavior  
- Preprocessor constructs, such as #ifdef, used for 

fine-grain variations in code and data 
All the modules in our example are the structs or 

classes to unify a common family. This paradigm is 
directly supported by SystemC core standard. The next 
paradigm, used in the pipelined DLX multiprocessor 
model is inheritance, that groups modules with the same 
basic behavior. We have constructed  two class 
hierarchies  with the Addressable_Device as a base 
class : a hierarchy defined different types of memory and 
one defined communication devices. This paradigm helps 
sufficiently decrease the development time of   
specialized modules with similar behaviors. With the 
help of this base module, we defined a way, for modules, 
to communicate together.  

Preprocessor directives as it mentioned in [4] are most 
useful to express exceptions to the rule.  We use this 
paradigm to ease the debugging process with our model. 
We can, at will, enable or disable debugging of modules 
independently.  

This multiprocessor is used as a general benchmark to 
obtain some figures of merit concerning the performance 
of SystemC in modeling and simulating a multiprocessor 
at a cycle accurate level.  
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stage_WB

sc_module
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Figure 5: Class diagram of the multiprocessor model 

7. Simulation Performance Evaluation 

A detailed experimentation of SystemC environment 
is described in [8]. This section summarizes some of the 
findings. We run different models for the DLX 
multiprocessor on two SystemC versions. The pipeline 
stages were modeled using SC_METHODs and 
SC_THREADs: We first built the DLX using 
SC_METHODSs, which ends up being quite faster than 
SC_THREADs, then for the purpose of simplicity, we just 
changed the pipeline for SC_THREADs while keeping the 
rest of the model as being SC_METHODs. The usage of 
SC_THREADs results in a 30% increase in the execution 
time for the DLX pipeline only. We think that converting 
other methods to threads will result in more dramatic loss 
of performance. A positive point for SC_THREADs is that 
it could bring other benefits we could have used (such as 
the possibility to use wait statements) which would have 
helped us lower the total number of methods. 

Usage of SystemC 2.0 instead of SystemC 1.2.1 
resulted in up to 60% deterioration of performance. 
Again for the purpose of simplicity, we converted 
directly version 1.2.1 code to version 2.0 code, by 
inserting dont_initialize() clauses in the original 
code. This quick conversion is recommended by the 
specification manual, and we do not think that the 
dont_initialize() is responsible for the slow down. 
The metric used in our evaluation is as follows: In a 
DLX multiprocessor the figure of merit is computed as 
the number of cycles divided by the execution time, the 
result being multiplied by the number of processors.  

The model can run as fast as 76 KHz (76,000 
simulated DLX cycles per second) for a monoprocessor 
model running on a 450-MHz Linux machine, and as 
slow as 14KHz for a 128-processor model where nodes 
exchange messages between them. 



8. Conclusion 

This paper gives an overview of the multi-paradigm 
design methodology and demonstrates its application in 
hardware modeling in order to minimize the impact of 
the increasing complexity and the shrinking of the time 
to market of consumer products. 

Multiple paradigms of C++ were explored to show the 
possible solutions to the typical modeling problems, 

some of them have been used with success in the 
modeling of a DLX multiprocessor. 

    SystemC offers a very interesting simulation 
performance and allows also the adoption of other 
Software Engineering Methodologies, such as design 
patterns, which were not addressed specifically in this 
work.  
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Figure 6: Multiprocessor DLX performance on a 450 MHz Linux intel pentium machine  
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