
Performance Analysis for Hardware/Software Co-synthesis
1Imed E. Bennour✝ , Michel Langevin✝✝ and El M. Aboulhamid✝

✝ Dép. d’I.R.O, Université de Montréal, CP 6128, Centre Ville, H3C-3J7 Montréal, PQ, CANADA
✝✝ GMD-SET, Schloβ Birlinghoven, D-53757 Sankt Augustin, GERMANY

Abstract— This paper presents a method for estimating
the extreme case bounds (upper-bound and lower-bound)
on the running time of a source program on a target
hardware architecture. The source program may be any
block of code containing data processing and control
statements. The target architecture is specified by a set of
functional units, a set of storage units and an
interconnection network.

I. INTRODUCTION

Hardware/Software (HW/SW) co-synthesis [7] refers to the
design approach which mixes hardware and software
implementations of complex numerical systems in order to
reduce the design cost while satisfying the performance
requirements. A hardware implementation has better
performance, whereas a software implementation has lower
cost and allows later modifications. Figure 1 shows the
general process of HW/SW co-synthesis. One of the key task
in this process is the partitioning of the original system
description into hardware and software modules. Hardware
modules will be implemented as a dedicated hardware, while
software modules will be implemented as programs running
on predesigned general-purpose processor. The decision to
map functionalities into software or hardware parts is based
on estimates of achievable performance and the
implementation cost of the respective parts. An automatic
tool to estimate the performances of hardware and software
implementations (tasks A and B in Figure 1) enables the
designer to quickly evaluate different design alternatives.
This paper presents a method for estimating the upper-bound
and the lower-bound on the performance of a control-data
flow graph (CDFG) on a target hardware architecture. The
target architecture is defined by a set of functional units (e.g.,
ALUs, multipliers), a set of storage units (RAMs, register-
files), and an interconnection network. tLB and tUB are
extreme case bounds on the performance of a CDFG, if for
any input data the running time of the program belongs to
[tLB, tUB]. Tight values of tLB and tUB not only give a good
estimation of the achievable performance but they also
permit to check if performance requirements can be satisfied
by a target architecture. Let tmax denotes the maximal
allowed performance of a CDFG. If , it means that
for any input data the performance constraint will be
satisfied. If , it means that the performance
constraint cannot be met by the target architecture.

1This work has been partially sponsored by the “Fonds pour la Formation de
Chercheurs et l’Aide à la Recherche (FCAR)”.

tmax tUB≥

tmax tLB<

 Figure 1. General framework of HW/SW co-synthesis.

The rest of this paper is organized as follows. Section 2
describes the estimation model used, and Section 3 presents
the estimation method. Experimental results are given in
Section 4.

II. MODEL OF ESTIMATION

There are two possible ways to estimate the extreme case
bounds on the performance of a program on a target
architecture: dynamic simulation and static estimation.
Dynamic simulations consist of simulating the program
execution with different input data, whereas static
estimations are based on the analysis of the program
structure. Static estimations are faster than dynamic
simulations and insensitive to input data. The estimation

Behavioural specification:
VHDL, Verilog, C++,
GNU-assembler

Compiler front-end

Internal Representation: CDFG

HW/SW Partitioning

Harware Software
Dedicated

Modules Modules

RTL Software

Yes
No

Architecture
Architecture
Processor

compilation synthesis

No
Yes

Performance Estimation

Constraints met ?
No

Performance Estimation

Yes

Harware Sotware
Communication

Target

A B

Simulation

Target

Constraints met ?

Constraints met ?

Implementation

approach presented in this work is static.

A. The hardware architecture model

Development of an estimation technique requires the
definition of the target architecture model. In this work, we
use a parametrized bus-based architecture as target model.
Figure 2 shows an instance of the parametrized bus
architecture. The parameters defines:

− the number of functional units of each type, their speed
and their pipeline-stage number;

- the number of memory ports;
- the number of register-file ports;
- the number of buses;
- and the connections between components.

The choice of the parametrized bus architecture was
influenced by the following reasons:
1) It enables the specification of a wide variety of target
architectures, ranging from completely sequential to
massively parallel architecture;
2) The bus architecture is frequently used in microprocessor
systems;
3) Most high level synthesis systems use bus-based
architectures.

B. The CDFG model

A CDFG [3] is a graphical representation of source
programs. A CDFG is a composed of two type of graphs: the
control flow graph (CFG) and the data flow graph (DFG). A
CFG is defined by a couple , where is the set of
nodes representing basic blocks, and is the set of edges
representing precedence execution order between basic
blocks. To each basic block is associated a DFG ,
where is the set of nodes representing atomic operations
such additions and multiplications, and is the set of arcs
representing precedences between atomic operations. An
execution of the CDFG consists of a sequential execution of
basic blocks. A CDFG example is shown in Figure 3. Feed
back edges in the CFG represent loop statements. We assume
that each loop statement has a bounded number of iterations,
otherwise the worst running time cannot be computed in
general; it is well known that if a program contains
unbounded loop statements then it is not possible to decide if
its execution terminate. The maximal numbers of loop
iterations are annotated in the source code by the user. The
user can also specify the minimal numbers of loop iterations;
default values are equal to zero. A false-path is a path in the
CFG which is never executed due to incompatibility of two
or more conditional branching. For example, if the conditions
c2 and c3, in Figure 3, cannot be true at the same time, then
the sequence of basic blocs bbdbbfbbg is never executed.

III. EXTREME CASE PERFORMANCE BOUNDS

A. Upper-bound estimation

The proposed technique for determining an upper bound on
the performance of a CDFG is composed of two steps: (1)
determining an upper bound on the performance of each
basic block, and (2) deducing an upper-bound for the whole
CDFG.

BB E,() BB
E

bbi Oi Ai,()
Oi

Ai

 Figure 2. An instance of the parametrized bus-based
architecture.

 Figure 3. A CDFG example: (a) DFG, (b) CFG.

A.1 Upper-bound on the performance of a basic bloc

The running time of a basic block is equal to the time
necessary to execute the operations in the corresponding sub-
DFG. An Upper-bound on the performance of a basic block
can be obtained by scheduling the corresponding DFG on the
target hardware architecture. As we use a parametrized bus-
based architecture as a target model, we developed a greedy
scheduling algorithm similar to the one in [2].

A.2 Upper-bound on the performance of a CDFG

We define the length of a path in a CFG as the sum of the
running times of basic blocks forming this path. An upper-
bound on the performance of a CFG will be the length of the
longest path when considering that (1) the running times of

RO RO
RO

RAM

R
eg

is
te

r

Fi
le

mux mux

FU1 FU2
FU3

mux

P1 P2 P1 P2 s1

s2

FUi: functional unit
si : pipeline-stage
RO: temporary output register

c1

beginbba

bbh

bbd bbe

bbg

bbi

endbbl

bbb

bbc

bbf

x 5

+

*

+

y

z

3

*

y

2

bbk

bbj

(b)(a)

if

loop1

if

loop2

c1

c2

c3

c4

c2

c3

c4

basic blocks are equal to their upper-bound values, and (2)
each loop is executed a maximal number of times.

One way of determining the length of the longest path in a
CFG consists of first completely unfolding all loops and then
computing the length of the longest one in the unfolded
graph. The disadvantage of this method is that size of the
unfolded graph will be very large if the loop-iteration
numbers are high. The method that we use does not require
loop unfolding. This method is described by the algorithm
given in Figure 4.

Following is an illustration of this algorithm with the
CFG of Figure 5(a). The number beside a node is the
performance upper-bound of the corresponding basic block,
while the number beside a feed-back edge is the maximal
iteration number of the corresponding loop. loop2 is the most
inner loop, which is executed at most 20 times and each
iteration takes (7+15+2) cycles. Thus, the running time of
this loop will take at most 480 clock-cycles. In Figure 5(b)
loop2 is replaced by a single node with a weight equal to 480.
After repeating the same process with loop1 we obtain the

graph of figure 5(c). We deduce that 5002 clock-cycles is an
upper bound on the performance.

Notice that tighter upper-bound on the performance of a
CDFG can be obtained if optimal DFG schedules are
computed and/or if only CFG feasible-paths are considered.
Unfortunately, each of these problems is NP-complete. An
integer linear programming formulation was presented in [1],
where some false-paths of the CFG could be avoided during
the estimation.

Input: a CDFG, an upper-bound on the performance of each
basic block, a maximal number of iterations of each loop;
Output: upper-bound on the performance of the CDFG;

Begin
-Associate to each basic block in the CFG a weight equal
to its performance upper bound;
Repeat:

For all inner-most loops Do:
- Compute the length (l) of the longest path in the

current loop body;
- Replace in the CFG the loop by a single node;
- Associate to this node a weight equal to (l * the

maximal number of iterations of the loop);
End Do

Until no more loops in the CFG
- Compute the length of the longest path in the resultant

graph. Return this length as an upper bound on the
performance of the CDFG;

End

 Figure 4. An algorithm for determining an upper-bound on
the performance of a CDFG.

 Figure 5. Illustration of the performance upper-bound
algorithm.

B. Lower-bound estimation

A lower-bound on the running time of a CDFG can be
derived from a lower-bound on the performance of each
basic block and from a minimal number of iterations for each
loop. The lower-bound will be the length of the shortest path
in the CFG when considering (1) that the running times of
basic blocks are equal to their lower-bound values, and (2)
that each loop is executed a minimal number of times. The
algorithm for computing the length of the shortest path is
similar to the one used for computing the length of the
longest path (Figure 4), except that for each loop we consider
its shortest running time instead of longest running time.

A lower-bound on the performance of a basic block can be
the length of the longest path in its DFG where the weights of
nodes are set to operation-durations. Tighter lower-bounds
can be obtained by taking into account resource constraints.
Several algorithms have been proposed in the literature [4-6]
for determining a lower-bound on the performance of a basic
block under resource constraints. Currently we have
implemented the algorithm presented in [5].

IV. EXPERIMENTAL RESULTS AND CONCLUSIONS

 In Tables 1 and 2, we report part of the experimental
results done with two benchmarks: square matrixes
multiplication and matrix convolution. The first and the
second benchmark contain three and two nested loops,
respectively. In both benchmarks, nested loops have the same
iteration number which is equal to matrix dimension. The
source codes of these benchmarks were translated in GNU-
assembler before analysis. The running time of the tool was

loop1

loop2

2

5

2

10 23

3

4
7

5
15

2

20

10
loop1

2

5

2
10

23

3

4

5

10

480

(a)
(b)

(c)

2

4990 10

in order of seconds. The first column in Tables 1 and 2
indicates the iteration bounds of loops, and the last two
column indicate the extreme case bounds on the performance
under the resource constraints. From Table 1, we deduce that
the performance of the first benchmark decreases by using
more ALUs and/or register file ports. However, more than 3
ALU and/or 3 register file ports does not reduce the worst
performance any more. We can deduce also that RAM ports
are not critical resources. Results in Table 2 shows that all
resource type are critical, and more than 4 ALU and/or 3
memory ports and/or 2 register file ports does not reduce the
worst performance any more.

The estimation tool was developed in C++ using the co-
synthesis SIR/CASTLE (Codesign and Architecture-driven
Synthesis TooL Environment) database [7].

Table 1: Matrixes multiplication

of
Iterations
of each

loop

of
ALU

of
RAM
ports

of
regis.
file

ports

Perform.
lower
bound
(clock
cycles)

Perform.
upper
bound
(clock
cycles)

50

1 1 1 1.015 106 1.283 106

1 1 2 - 1.150 106

1 1 3 - 1.147 106

1 2 1 - 1.283 106

1 2 1 - 1.283 106

2 1 1 0.510 106 1.280 106

2 1 2 - 0.770 106

2 1 3 - 0.767 106

2 2 1 - 1.280 106

3 1 3 0.385 106 0.642 106

3 1 4 - -

4 1 3 - -

500

1 1 1 1.001 109 1.250 109

1 1 2 - 1.121 109

2 1 1 5.011 108 1.253 109

2 1 2 - 7.521 108

3 1 1 3.760 108 1.253 109

3 1 2 - 7.520 108

References

[1] Y.-T. S. Li, S. Malik, “Performance Analysis of
Embedded Software Using Implicit Path Enumeration”,
32nd Design Automation Conference, 1995.

[2] J. Gong, D. D. Gajski, A. Nicolau, “A Performance
Evaluator for Parameterized ASIC Architectures”,
European Design Automation Conference, 1994.

[3] D. D. Gajski, N. Dutt, A. Wu, S. Lin, “HIGH-LEVEL-
SYNTHESIS- Introduction to Chip and System Design”,
Kluwer Academic Publishers, Boston, 1992.

[4] A. Sharma, R. Jain, “Estimation architectural resources
and performance for high-level synthesis applications”,
IEEE Trans. on VLSI, Vol. 1, No. 2, pp. 175-190, 1993.

[5] M. Rim, R. Jain, “Lower-bound performance estimation
for the high-level synthesis scheduling problem” IEEE
Trans. on CAD, Vol. 13, pp. 81-88, 1994.

[6] M. Langevin, E. Cerny, “A recursive technique for
computing lower-bound performance of schedules”
International Conference on Computer Design, 1993.

[7] R. Camposano, J. Wilberg, “Embedded System Design”,
Design Automation for Embedded Systems, Vol. 1, pp. 5-
50, 1996.

Table 2: Matrix convolution

of
Iterations
 of each

loop

of
ALUs

of
RAM
Ports

of
RF

Ports

Lower-
bound
(clock
cycles)

Upper
Bound
(clock
cycles)

50

1 1 1 7.941 104 8.211 104

1 1 2 - 8.206 104

2 1 1 4.111 104 5.141 104

2 1 2 - 4.381 104

2 2 1 4.100 104 5.136 104

2 2 2 - 4.371 104

3 2 1 3.080 104 5.126 104

3 3 1 2.820 104 5.126 104

3 3 2 - 3.095 104

3 3 3 - -

4 3 2 - 2.835 104

5 3 2 - -

500

1 1 1 7.769 106 8.021 106

2 1 1 4.011 106 5.014 106

1 2 1 - 8.211 104

2 1 1 4.111 104 5.141 104

