
1

A register allocation problem solved by constraint logic
programming and interval arithmetic

Corresponding author: El Mostapha Aboulhamid
email: aboulham@iro.umontreal.ca
Telephone: (514) 343-6822
Fax: (514) 343-5834

Address: Département IRO, Universite de Montreal,
C.P. 6128 Succ "Centre ville", Montreal, PQ, H3C-3J7, CANADA

2

A register allocation problem solved by constraint logic
programming and interval arithmetic

I. E. Bennour and E. M. Aboulhamid

Département d’Informatique et Recherche Opérationnelle
Université de Montréal

CP 6128, Centre Ville, H3C-3J7, PQ, CANADA

Abstract: This paper addresses the memory allocation problem in data path synthesis.

It shows that constraint logic programming (CLP) extended by interval arithmetic is an

efficient paradigm to solve hard practical problems in the area of digital circuit design. Case

studies, much more complex than the existing high level synthesis benchmarks, have been

solved in less than 3 minutes.

I. INTRODUCTION

A common approach to high level synthesis involves data-flow graph scheduling,

functional unit allocation, interconnection and memory allocation. Memory allocation

maps constants and variables of a data-flow graph to storage elements (e.g., ROM,

registers, register files). Both storage elements and their control part occupy a significant

portion of the chip area. Therefore, it is important to minimize the number of storage

elements and to organize them in such a way that control, address generation and decoding

hardware are reduced.

Conventional memory allocation approaches [1-3] can be classified into two categories.

In the first category, variables are mapped to registers based on a lifetime analysis of

variables. The lifetime interval of a variable is the time interval between its first value

assignment and its last use. Multiple variables can share a same register if their lifetime

intervals do not overlap with one another. Lifetime analysis approaches aim to minimize

3

the number of registers but not the control hardware. These approaches are effective only

when the number of registers is small, otherwise the number of interconnections and

multiplexers become very large and the hardware architecture becomes very irregular. In

the second category, variables are mapped to registers which are then grouped into register

files (or multiport memories) based on disjoint access time. Registers can be grouped in the

same register file if they are not accessed simultaneously. Register file organization is

profitable only if the number and the size of register files are small: a large size of register

files not only adds more address generation and decoding hardware, but also leads to longer

access delay due to the decoding circuits and long data driving lines. In this paper, we

propose a new register organization, called circular FIFO, as an alternative to separated

register organization and register file organization. A circular FIFO is a row of shift

registers where the output of a register is connected to the input of the following one, and

the output of the rightmost register is optionally connected to the input of the leftmost

register. A circular FIFO is shown in Figure 1. The leftmost register (R0) and the rightmost

register (RM-1) are called the header and the tail of the FIFO, respectively. Data enter the

FIFO from the header and are visible only at the tail. When a data item is inserted in the

FIFO header all registers are shifted. The circularity in the FIFO adds more flexibility to

data access capability: it allows multi-access to a same data, and it removes the first-in first-

out constraint between data, since a data item can be reinjected in the header once it reaches

the tail. Separated register organization is a special case of the FIFO organization where

each FIFO contains only one register. By grouping registers into FIFOs, we reduce the

number of control signals. Moreover, the use of FIFO structures may reduce the number of

storage registers, since variables are not constrained to be kept in the same registers during

all their lifetime. Comparing with file registers, circular FIFOs do not need memory address

decoding hardware, and hence they do not suffer from decoding delays, which grow

proportionally with the size of a register file. Figure 2 shows the register file based

architecture and the FIFO based architecture. In the FIFO based architecture register files

may still be used, but in a reduced number.

To resolve the FIFO allocation problem, we used CLP-BNR [4], a constraint logic

programming (CLP) language, based on prolog augmented with relational interval

4

arithmetic. CLP-BNR provides a unified framework to express and solve dynamically a set

of constraints over reals, integers and booleans using interval narrowing techniques.

The organization of the paper is as follows. Section II defines the FIFO allocation

problem. Section III presents an overview of the interval constraint paradigm, and a

formulation of the FIFO allocation problem using interval constraints. Finally,

experimental results are presented in section IV.

 Figure 1. Circular FIFO

 Figure 2. (a) Register file based architecture (b) FIFO based architecture

OutputInput

R0 R1 RM-1

header tail

+ * < *

FIFOs

register file

+ * < *
register file

register file

register file

(a) (b)

5

II. PROBLEM DEFINITION

A circular FIFO is defined by a set of shift registers , where is

connected to , for , and is connected . Circular FIFOs are

controlled by three operations:

- Insert (vi): insertion of a variable labelled vi in the FIFO header. After an insertion all

registers of the FIFO are right shifted and the data item in the FIFO tail is lost.

- Shift: right shift all registers.

- Rotate: it is equivalent to Insert (content of the tail).

During a control-step, at most one control-operation can be performed on an FIFO.

A variable vi is defined by its write-time and its read-time(s), fixed by the scheduling task.

vi: ().

vi should be inserted in a FIFO at , and it should be available in the FIFO tail at

each , for . The lifetime interval of vi is equal

to .

The example in Figure 3 illustrates the functioning of the circular FIFO. We observe

that the circularity in the FIFO allows multi-access to a same variable (e.g., v2), and it

removes the first-in first-out constraint (e.g., v3 enters the FIFO before v4 and leaves after

v4). Notice that the FIFO size should always be greater than the maximal number of

variables alive at the same time, and smaller than ,

otherwise some variables will not have enough time to traverse the FIFO from the header

to the tail.

A control sequence of a circular FIFO is a sequence of control operations (insert, rotate,

shift, no operation). A control sequence is valid for a set of variables, if it guarantees that

each variable in the set is inserted in the FIFO at its writing time, and it is available in the

tail at its reading time(s). It may happen that, no valid control sequence exists for a set of

variables, i.e., variables in this set cannot be mapped into a same FIFO.

R0 R1 … RM 1–, , ,() Ri

Ri 1+ i 0 … M 2–, ,= RM 1– R0

Write-timei Read-timei
1 Read-timei

2 … Read-timei
ni, , , ,

Write-timei

Read-timei
j j 1 … ni, ,=

Write-timei Read-timei
ni,[]

Min
vi

Read-timei
1 Write-timei 1+–()

6

 Figure 3. Illustration of the functioning of the circular FIFO

Now we can define the two problems related to allocating variables to circular FIFOs.

• The single-FIFO allocation problem: Given a set of variables , defined

by their write-time and read-times, can these variables be mapped to a same circular

FIFO? If they can, what is the minimal size of such a FIFO?

• The multi-FIFO allocation problem: Given a set of variables , defined by

their write-time and read-time(s), find a mapping from to circular FIFOs that

optimizes the number of FIFOs and the total number of registers.

We suspect that the single-FIFO allocation problem is NP-complete. We solve it

exactly using CLP and interval constraint paradigms. The multi-FIFO allocation problem

is NP-hard. A heuristic approach is taken to resolve it. It is based on iterative resolutions of

the single-FIFO allocation problem. The following steps summarize this heuristic

(developed also using the same CLP environment):

v1 v1

v2

v3
v2

v3

v4
v4

Insert(v1)

Insert(v2)

Insert(v3)

Insert(v4)

Shift

No operation

Rotate

Shift

Shift

Shift

Control-sequenceControl-steps
0

1

2

3

4

5

6

7

8

9

10

11

12

No operation v1

v1

v2 v1

v3 v2 v1

v3 v2

v4 v3 v2

v4 v3v2

Rotate v4v3 v2

v4v3 v2

v3 v2

v3 v2No operation

v3

write-time
read-time
last read-time

:
:
:

FIFO of size 4

V vi{ }=

V vi{ }=

V

7

− The set of variables V is divided into disjoint clusters Cl (subsets) such that: (1)

variables in the same cluster do not have neither the same writing-times nor the

same reading-times, (2) if two variables vi and vj belong to a same cluster and the

writing-time of vj is greater than the writing-time of vi then the reading-time of vj is

be greater than the reading-time of vi, (3) in each cluster Cl, the maximal number of

variables in Cl alive at the same time is smaller than or equal to the minimal live-

time among all variables in Cl. These criteria increase the likelihood of mapping

successfully all variables in a cluster to a same circular FIFO.

− For each cluster, check if it can be mapped to a same circular FIFO using the exact

resolution of the single-FIFO problem. If not, the variables causing the failure are

removed from the current cluster and are redistributed on other clusters if possible.

New clusters are added if necessary. This process is repeated until all the clusters

are mapped to some feasible circular FIFOs.

− The last step is to reduce the number of clusters, i.e., the number of circular

FIFOs. Repetitively, we pick the cluster containing the minimal number of

variables, then we try to redistribute all its variables on the other clusters. We check

if a variable can be added into a cluster by solving the single-FIFO problem. This

process is repeated until all the clusters are considered.

III. FORMULATION OF THE SINGLE-FIFO ALLOCATION PROBLEM USING INTERVAL
CONSTRAINTS

A. A brief overview of the interval constraint paradigm [4] [5]

CLP-BNR is a constraint logic programming system based on relation interval

arithmetic. The use of interval arithmetic allows reasoning about domains of variables

rather than fixed values. An interval is a closed bounded set of numbers, it defines either a

continuous range of real numbers laying between a lower and an upper bound or a discrete

range of integer values laying between integer bounds. An interval is:

The two endpoints of an interval X are denoted by and . Thus, . The

interval is a degenerate interval which is not distinguish from x. Two intervals are

a b,[]

a b,[] x / a x b≤ ≤{ }=

X X X X X,[]=

x x,[]

8

equal if their corresponding endpoints are equal. If x is in the interval , we write .

Operations on intervals can be either the basic arithmetic operations defined on the reals (+,

-, *, /, min, max, sin, cos, etc.), or arithmetic relations (equality, inequality, inclusion, etc.).

In the following, we give a semantic of some of these operations.

• Arithmetic operations

Interval addition is defined as

The negation of an interval, from which the rules of interval subtraction can be

deduced, is defined as

The max of two intervals is defined as

• Arithmetic relations

The equality constraint between two intervals X and interval Y, denoted X == Y, is true

if the intervals X and Y can be constrained to be equal by narrowing (reducing) X and/

or Y.

Example.

If and , then X == Y is true because both X and Y can be

reduced to the same interval .

If and , then X == Y is false.

The less than or equal constraint between an interval X and an interval Y, denoted

, is true if the interval X can be constrained to an interval Z where each element

of Z is less than or equal to an element of Y.

Example.

If and , then is true because X can be reduced to

the interval which is less than or equal the interval Y.

If and , then is false.

X x X∈

X X,[] Y Y,[]+ X Y+ X Y+,[]=

X– X X,[]– X– X–,[] x– | x X∈{ }= = =

max X Y,() max X Y,() max X Y,(),[]=

X 2 5,[]= Y 4 8,[]=

4 5,[]

X 2 5,[]= Y 6 8,[]=

X Y≤

X 2 15,[]= Y 6 8,[]= X Y≤

2 8,[]

X 9 15,[]= Y 6 8,[]= X Y≤

9

B. Formulation of the single-FIFO allocation problem

The formulation of the single-FIFO allocation problem is based on the successive states

of the FIFO during the execution of a control sequence (sequence of shift, insert and rotate

operation). If we label the shift registers composing a circular FIFO from 0 to M-1, then a

FIFO state can be defined by the set of variables inside the FIFO and their position. The

distance from a variable to a variable , denote by , is defined as following:

where is the position inside the FIFO.

,

Based on the distance definition, we have:

, where M is the FIFO size

Notice that, due to the last equality, the distance is still defined even between variables

which are not into the FIFO at the same time (i.e., variables which are not alive at the same

time). Thus, the distance values between pairs of variables are sufficient to capture all the

successive states taken by FIFO during the execution of a control sequence. It can be

proved that finding a valid control sequence for a set of variables is equivalent to finding

feasible distance values among variables.

vi vj Dist vi vj,()

Dist vi vj,() pos vj() pos vi()–() mod M=

pos vi() vi

v2 v1v3
Example:

0 1 2 3 4

Dist v2 v1,() 3 1–() mod 5 2= = Dist v2 v3,() 0 1–() mod 5 4= =

Dist vi vj,() 0 M 1–,[] vi vj,∀,∈

Dist vi vi,() 0 vi∀,=

Dist vi vj,() M Dist vj vi,() vi vj≠∀,–=

Dist vi vj,() Dist vi vk,() Dist vk vj,()+()modulo M vi vj vk≠ ≠∀,=

10

 Figure 4. The four precedence orders between write and read operations

To state the constraints which a distance between two variables should satisfy, we

distinguish four cases depending on the precedence order between their write and read

operations. These cases are shown in Figure 4.

Case 1: two successive write operations

 should satisfy:

because between the insertion-time of and the insertion-time of into the FIFO the

maximal number of control operations (shift, insert, rotate) that can be done is equal to

.

Case 2: two successive read operations

should satisfy:

This constraint guarantees that, after the reading-time of there are still enough

control-steps to propagate until the FIFO tail.

Case 3: write operation followed by read operation

should satisfy:

vi

vj

vi

vj

vi

vj vj

vi

(1) (2) (3) (4)
write-time
read-time

:
:

Dist vj vi,()

Dist vj vi,() Write-timej Write-timei–≤

vi vj

Write-timei Write-timej– 1–()

Dist vj vi,()

Dist vj vi,() Read-timej
k Read-timei

l–≤

vi

vj

Dist vj vi,()

Dist vj vi,() Read-timej
k Write-timei– 1+≤

11

This constraint guarantees that, after the writing-time of there are still enough

control-steps to propagate until the FIFO tail.

Case 4: read operation followed by write operation

should satisfy:

, if

, otherwise

If , then the constraint states that, when is inserted in the

FIFO header, should be in the tail; otherwise it states that between the reading-time

of and the writing-time of in the FIFO the maximal number of shift and rotate

operations that can be done is equal to .

Figure 5 shows the set of distance constraints for the example used in Figure 3.

 Figure 5. The set of distance constraints for the example used in Figure 3

vi

vj

Dist vj vi,()

Dist vj vi,() M 1–= Write-timej Read-timei
l=

Dist vj vi,() Write-timej Read-timei
l– 1–≤

Write-timej Read-timei
l= vj

vi

vi vj

Write-timei Read-timei
l– 1–()

v1

v2

v3

v4

Control-steps
0

1

2

3

4

5

6

7

8

9

10

11

12

Dist(v2,v1) ≤ 2

Dist(v3,v2) ≤ 1

Dist(v1,v3) ≤ 2

Dist(v4,v1) == 0

Dist(v2,v4) ≤ 2

Dist(v3,v2) ≤ 1

Dist(v4,v3) ≤ 2

Dist(v2,v4) ≤ 1

Dist(v3,v2) ≤ 1

write-time
read-time
last read-time

:
:
:

12

Now we give the complete formulation of the single-FIFO allocation problem using

relational interval arithmetic:

where M_min is the maximal number of variables alive at the same time, and

Constraint (a) defines the possible values of the FIFO size. Constraint (b) states that

variables which are alive at the same time cannot share the same registers into the FIFO:

their distances should be greater than zero. Constraints (c), (d) and (e) are the distance’s

properties. (f) is the set of distance constraints between variables that should be satisfied,

as discussed previously in cases (1) to (2). It is important to mention that all these

constraints are directly expressible in CLP-BNR.

IV. IMPLEMENTATION AND EXPERIMENTAL RESULTS

We present in Tables 1 and 2 experimental results obtained using the proposed circular

FIFO allocation approach. Table 1 summarizes the results of four benchmarks frequently

used by the high level synthesis community. All benchmarks are scheduled using one adder

and one multiplier. The second column of Table 1 indicates the minimal number of

registers necessary to hold variables and constants. This number corresponds to the

maximal number of variables and constants alive at the same time. The third column

corresponds to the number of circular FIFOs obtained using our allocation approach. The

total number of registers used in the final design is indicated in the fourth column. We

observe that the number of registers used is always optimal, and that these registers are

Minimize the FIFO size M under:

a() M M_min M_max,[]∈

M_max Min
vi

Read-timei
1 Write-timei 1+–()=

b() Dist vi vj,() 1 M 1–,[]∈ vi vj and vi vj are alive at the same time,≠∀,

c() Dist vi vj,() 0 M 1–,[]∈ vi vj and vi vj are not alive at the same time,≠∀,

d() Dist vi vj,()== M Dist vj vi,()–() vi vj≠∀,

e() Dist vi vj,()== Dist vi vk,() Dist vk vj,()+()modulo M vi vj vk≠ ≠∀,

f() Dist vi vj,() cf≤

13

grouped in a small number of FIFOs, which reduces considerably the control signals.

Figure 6 shows the obtained design of the polynomial divider benchmark. To evaluate the

efficiency of our approach in general case, we have used random examples, which are more

complex than usual high level synthesis benchmarks. The results are given in Table 2. For

each example, we generate a set of variables with random lifetime intervals, then we

perform the FIFO allocation algorithm. The results are quite interesting. First, the number

of circular FIFO (third column) is very small comparatively to the minimal number of

registers (second column), in average each FIFO contains five to six registers. Second, the

total number of registers used (fourth column) exceeds the optimum by 3 registers at most.

The low CPU times taken to solve the relatively large random examples (up to 100

variables) reflect the solving power of the interval constraint paradigm. By expressing the

constraints of the problem over interval-valued variables rather then over integer variables,

we have noted that the interval narrowing resolution technique reduces considerably the

resolution time. The dichotomous fashion used by CLP-BNR to trim intervals (partial

enumerations using the solve prolog function) is very efficient in practice to identify and to

remove invalid solution spaces.

Table1 : Benchmark results

Benchmark Minimal #
of registers # of FIFOs

of
registers

used

CPU time
(sec.)

IIR filter 20 5 20 10

FIR filter 15 3 15 7

Polynomial
divider

15 3 15 7

Three order
filter

7 2 7 2

14

Table2 : Experimental results using random examples

of
variables

Minimal #
of registers

of FIFOs # of
registers

used

CPU time
(sec.)

20 14 3 15 10

20 15 4 17 16

20 12 4 12 7

20 11 3 12 18

20 11 3 13 9

30 18 3 19 171

30 16 3 18 44

30 18 4 18 32

30 17 3 17 494

30 20 4 21 63

50 26 4 27 85

50 23 5 26 86

50 22 4 25 76

50 28 4 30 66

50 22 3 22 177

70 37 5 39 155

70 30 5 32 82

70 31 6 32 32

70 33 6 36 109

70 34 6 36 52

100 50 7 53 158

100 42 6 45 221

100 43 6 45 239

100 39 5 42 198

15

 Figure 6. (a) DFG of the polynomial divider (b) its implementation

V. CONCLUSIONS

We have resolved efficiently a memory allocation problem using the interval constraint

paradigm. We showed that, for some problems, like the single-FIFO, expressing constraints

using interval arithmetic is straightforward. The experimental results obtained on relatively

large examples reflect the solving power of this paradigm. Constraint logic programming

extended by interval arithmetic is a very promising paradigm for solving other CAD

problems.

References

[1] G. De Micheli, Synthesis and Optimization of Digital Circuits, McGraw-Hill, New
York, 1994.

[2] D. Gajski, N. Dutt, A. Wu, and S. Lin, High-Level Synthesis, Kluwer Academic
Publishers, Boston, 1992.

[3] R. Walker and R. Camposano, A Survey of High-Level Synthesis Systems, Kluwer
Academic Publishers, Boston, 1991.

[4] BNR PROLOG, User Guide, Version 4, Ottawa, Canada, 1993.

[5] R.E. Moore, Methods and Applications of Interval Analysis, SIAM, 1979.

*

+

*

+

*

+

*

++

* r1 r2 r3 r4

v1 v2 v3 v4

rin
Ain

Yout

c1 c2 c3 c4

c5

+ *
r1

Yout

Ain

r2
r3

r4

rin

v2
v3
v4
v1
v0

(a) (b)

c5
c4
c3
c2
c1

