REGISTER ALLOCATION USING CIRCULAR FIFOs

Imed Eddine Bennour

El Mostapha Aboulhamid

Département d’ Informatique et Recherche Opérationnelle
Université de Montréal
CP 6128 Centre Ville, Montréal, H3C-3J7, QC, CANADA
{'@aboulham,bennour} @iro.umontreal .ca

ABSTRACT

In this paper, we study the memory allocation problem in data
path synthesis. We propose a register organization called circular
FIFO as an alternative to register file organization. In comparison
with register file organization, FIFO organization eliminates the
overhead of address generation and decoding hardware. The
memory allocation problem, based on the circular FIFO
organization, has been solved efficiently using constraint logic and
interval constraint programming.

1. INTRODUCTION

A common approach to high level synthesisinvolves date-flow
graph scheduling, functional unit allocation, interconnection and
memory alocation. Memory alocation maps constants and
variables of a data-flow graph to storage elements (e.g., ROM,
registers, register files). Both storage elementsand their control part
occupy a significant portion of the chip area. Therefore, it is
important to minimize the number of storage elements and to
organize them in such a way that control, address generation and
decoding hardware are reduced. Conventional memory allocation
approaches [1-3] can be classified into two categories. In the first
category, variables are mapped to registers based on a lifetime
analysis of variables. The lifetime interval of avariableisthetime
interval between itsfirst value assignment and itslast use. Multiple
variables can share a same register if their lifetime intervals do not
overlap with one another. Lifetime analysis approaches aim to
minimize the number of registers but not the control hardware. In
the second category, variables are mapped to registers which are
then grouped into register files (or multiport memories) based on
digoint access time. Register file organization is profitable only if
the number and the size of register files are small due to address
generation and decoding hardware overhead. Recently, Alogeely et
al. [6] have proposed the use of sequencers as an aternative to
register files. Queues and stacks are examples of sequencers.
However, their approach has some limitations: first, except queues,
sequencers are costly in implementation and, therefore, they cannot
be used in alarge number; second, the allocation method is suitable
only for regular iterative applications where the access patterns of
variables are highly regular and uniform, e.g., most variables have
the same lifetime duration.

In this paper, we propose: (1) a register organization, called
circular FIFO, as an dlternative to separated register organization
and register file organization, and as an extension of queues[6], (2)
the use of the constraint logic programming and the relational
interval paradigmsto resolve the circular FIFO allocation problem.
The circularity in the FIFO adds more flexibility to data access
capability: it allows multi-access to a same data, and it removesthe

first-in first-out constraint between data, since a data item can be
reinjected in the header once it reaches the tail. Separated register
organization is a special case of the FIFO organization where each
FIFO contains only one register. By grouping registers into FIFOs,
we reduce the number of control signals. In the FIFO based
architecture register filesmay still be used, but in areduced number.
To resolve the FIFO allocation problem, we used CLP-BNR [4], a
congtraint logic programming (CLP) language, based on Prolog
augmented with relational interval arithmetic.

The organization of the paper is as follows. Section 2 defines
the FIFO allocation problem. Section 3 presents an overview of the
interval constraint paradigm, and a formulation of the FIFO
allocation problem using interval constraints. Finally, experimental
results are presented in section 4.

Control-steps Control-sequence FIFO size 4
0 Insert(vl) =
1 L—r No operation
) |2 Insert(v2) =
3 | ég Insert(v3) » V3VZVI]
s 4 st 3wz
5 va Insert(v4) S EE
6 . No operation
7 = Rotate V2IVA V3
8 Rotate VIVIVA |
9 Shift [[V3V2V4]
10— = Shift [T [vavZ
11 I No operation
12) Shift (T T 1v3

= ; write-time
= read-time.
O ! last read-time
Figure 1. Illustration of the functioning of the circular FIFO

2. PROBLEM DEFINITION

A circular FIFO is defined by a set of shift registers
(Ry Ry, ---sRy_1) » where R, is connected to R;,,, for
i=0,..,M=-2,and Ry, _; is connected to R,. The leftmost
register (Rg) and the rightmost register (Ry.1) are called the header
and thetail of the FIFO, respectively. Data enter the FIFO from the
header and are visible only at thetail. A circular FIFO is controlled

by three operations:

- Insert (vj): insertion of a variable labelled v; in the FIFO
header. After an insertion all registers of the FIFO are right
shifted and the dataitem in the FIFO tail islost.

- Shift: right shift all registers.

- Rotate: it is equivalent to Insert (content of the tail).

During a control-step, a most one control-operation can be
performed on the FIFO. A variable v, is defined by its write-time
and its read-time(s), fixed by the scheduling task.

vi: (Write-time,, Read-time,", Read-time,2,, Read-time, ")

v; should be inserted in a FIFO at Write-time, , and it should be
available in the FIFO tail at each Read-timeiJ Jfor j =1,....n;.
The lifetimeinterval of v; isequal to [Write-time;, Read-time;] .

Figure 1 illustrates the functioning of the circular FIFO. The
circularity in the FIFO allows multi-access to a same variable (e.g.,
Vy), and it removesthe first-in first-out constraint (e.g., v3 entersthe
FIFO before v, and |eaves after v,). A control sequence of acircular
FIFO is a sequence of control operations (insert, rotate, shift, no
operation). A control sequence is valid for a set of variables, if it
guarantees that each variable in the set isinserted in the FIFO at its
writing time, and it is available in the tail at its reading time(s). It
may happen that, no valid control sequence exists for a set of
variables, i.e., variables in this set cannot be mapped into a same
FIFO.

Now we can define the two following problems:

e The single-FIFO allocation problem: Given a set of
variables V = {v;} , defined by their write-time and read-time(s),
can these variables be mapped to asame circular FIFO? If they can,
what is the minimum size of such a FIFO?

e The multi-FIFO allocation problem: Given a set of
variables V = {v;} , defined by their write-time and read-time(s),
find amapping from V to circular FIFOsthat optimizesthe number
of FIFOs and the total number of registers.

We suspect that the single-FIFO allocation problem is NP-
complete. We solve it exactly using CLP and interval constraint
paradigms. The multi-FIFO allocation problem is NP-hard. A
heuristic approach is taken to resolve it. It is based on iterative
resolutions of the single-FIFO allocation problem. The following
steps summarize this heuristic (developed also using the same CLP
environment):

— The set of variables V is divided into digoint clusters
(subsets) C; such that: (1) variablesin the same cluster do not
have neither the same writing-times nor the same reading-
times, (2) if two variablesv; and v; belong to asame cluster and
the writing-time of v; is greater than the writing-time of v; then
the reading-time of v; is greater than the reading-time of v;, (3)
in each cluster C;, the maximum number of variables alive at
thesametimeissmaller than or equal to the minimum life-time
among all variablesin C,. These criteriaincreasethelikelihood
of mapping successfully al variables in a cluster to a same
circular FIFO.

— For each cluster, check if it can be mapped to asame circular
FIFO using the exact resolution of the single-FIFO problem. If
not, the variables causing the failure are removed from the
current cluster and are redistributed on other clusters if
possible. New clusters are added if necessary. This processis

repeated until all the clusters are mapped to some feasible
circular FIFOs.

- The last step is to reduce the number of clusters, i.e, the
number of circular FIFOs. Repetitively, we pick the cluster
containing the minimum number of variables, then we try to
redistribute al its variables on the other clusters. We check if
a variable can be added into a cluster by solving the single-
FIFO problem. Thisprocessisrepeated until all theclustersare
considered.

3. FORMULATION OF THE SINGLE-FIFO ALLOCATION
PROBLEM USING INTERVAL CONSTRAINTS

3.1 A brief overview of theinterval constraint paradigm

The use of interval arithmetic [4] [5] alows reasoning about
domainsof variablesrather than fixed values. Aninterval isaclosed
bounded set of numbers, it defines either a continuous range of real
numbers laying between a lower and an upper bound or a discrete
range of integer values laying between integer bounds. The two
endpoints of an interval X are denoted by X and X. Thus,
X = [X,X] . Two intervals are equal if their corresponding
endpoints are equal. If x isin the interval X, we write x 0 X.
Operations on intervals can be either the basic arithmetic operations
defined onthereals(+, -, *, /, min, max, sin, cos, etc.), or arithmetic
relations (equality, inequality, inclusion, etc.). In the following, we
give a semantic of some of these operations.

 Arithmetic operations:
[X, X]+[Y, Y] = [X+Y,X+V]
X = X X] = [-X,-X] = {~x | xOX
max(X,Y) = [max(X,Y), max(X, Y)]

 Arithmetic relations
The equality constraint between two intervals X and Y, denoted X
==Y, istrueif X and Y can be constrained to be equal by narrowing
(reducing) X and/or Y. For example, if X =[2,5 and
Y = [4,8], then X == Y is true, since both X and Y can be
reducedto the same interva [4,5] . If X =[2,5] and
Y = [6, 8] ,then X==Yisfadse

The less than or equal constraint between an interval X and an
interval Y, denoted X < Y, istrueif theinterval X can be constrained
to an interval Z where each element of Z is less than or equal to an
element of Y. For example, if X = [2,15] and Y = [6, 8] , then
X <Y istruesince X can bereduced to theinterval [2, 8] which
islessthanor equal to Y. If X =1[9,15] and Y = [6, 8] , then
X<Y isfase

3.2 Formulation of the single-FIFO allocation problem

The formulation of the single-FIFO alocation problem is
based on the successive states of the FIFO during the execution of
a control sequence (seguence of shift, insert and rotate operation).
If we label the shift registers composing a circular FIFO from O to
M-1, then aFIFO state can be defined by the set of variablesinside
the FIFO and their position. The distance from a variable v; to a
variable Vi, denoteby Dist(v;, v]-) , isdefined as following:

Dist(v;, v]-) = (pos(vj)— pos(v;)) mod M
where pos(v;) isthe v; position insidethe FIFO.

Example:

A

\

y

V3 Vo Vi

1
N

Dist(V,, v;) = (3—1) mod 5

I
N

Dist(v,,vg) = (0—1) mod 5

Based on the distance definition, we have:
Dist(v;, vj) 0[o,M-1], Ov, v; ,whereM isthe FIFO size

Vi
Dist(v;,v;) = 0,0y,

Dist(v;, v;)

iV M —Dist(v;, v.),

i Vi) Ovi2y,

Dist(vi,vj) = (Dist(v;, v,) + Dist(v,, vj))modulo M,
Ov, :tv]- £V

Noticethat, dueto the last equality, the distanceis still defined
even between variableswhich are not into the FIFO at the sametime
(i.e., variables which are not alive at the same time). Thus, the
distance values between pairs of variables are sufficient to capture
all the successive states taken by FIFO during the execution of a
control sequence. It can be proved that finding a valid control
sequence for a set of variables is equivalent to finding feasible
distance values among variables. To state the constraints which a
distance between two variables should satisfy, we distinguish four
cases depending on the precedence order between their write and
read operations.

Case 1: two successive write operations
Dist(vi, Vi) < V\Iritetime]- —Write-time,
because between the insertion-time of v; and the insertion-
time of v; into the FIFO the maximum number of control
operations (shift, insert, rotate) that can be done is equal to
(\Nritetimei —Write-time; — 1) .

Case 2: two successive read operations
Dist(vj, v;) < Read-ti mejk - Read-timeiI
This constraint guarantees that, after the reading-time of v;
there are still enough control-steps to propagate Vi until the
FIFO tail.

Case 3: write operation followed by read operation
Dist(v;, v;) < Read-time, ~ Write-time, + 1
This constraint guarantees that, after the writing-time of v;
there are still enough control-steps to propagate Vi until the
FIFO tail.

Case 4: read operation followed by write operation

Dist(v;,v}) = M—1, if Writetime; = Read-time,

Dist(vj, V) < \/\/ritetimej - Read-timeiI —1, otherwise

If Write-time;, = Read-timeiI , then the constraint states that
when v, isinsertedinthe FIFO header v; should beinthetail,
otherwiseit states that between the reading-time of v; andthe
writing-time of v in the FIFO the maximum number of shift

and rotate operations tlhat can be done is equal to
(Write-time; — Read-time; —1).
Figure 2 shows the set of distance constraints for the example used
inFigure 1.

Control-steps

0 1

1 — — - Dist(v2v1) <2

2 v2 .

3 v3 — — — Dist(v3v2)=1
4 — — — - Dist(viv3)<2
5 T —v4— — - Dist(v4,vl)==0
6 i — — — - Dist(v2,v4) <2
Z —|— — - Dist(vav2)s1

8 — — - Dist(v4,v3) <2
fo F— — - Dist(v2zv4) <1

11

1o WL~ — - Dist(v3v2)<1

O : write-time
= read-time.
O : last read-time

Figure 2. Distance constraints for the example used in Figure 1

Now we give the complete formulation of the single-FIFO
allocation problem using relational interval arithmetic:

Minimizethe FIFO size M under:
(a) M O[M_min, M_max] where M_min is the maximum
number of variables dive a the same time, and

M_max = Min (Read-timeil—\l\/ritetimei+l)

Vi

(b) Dist(v;, vj) O[L,M-1], Ov; # v and v;, v,
are dive at the sametime

(c) Dist(v;, vj) ar[o, M —1], Oy, 2V, and v;, Vi
are not alive at the sametime

(d) Dist(v;, vj)==(M —Dist(v]-, v)))

(e) Dist(v;, vj)==(Dist(vi, vy) + Dist(v,, vj))modulo M,
Ov, ¢v]- # Vg

(f) Dist(vi,vj)SCf

,I]viiv]-

Constraint () defines the possible values of the FIFO size.
Constraint (b) states that variables which are alive at the same time
cannot sharethe same registersinto the FIFO: their distances should
be greater than zero. Constraints (c), (d) and (e) are the distance's
properties. (f) is the set of distance constraints between variables
that should be satisfied, as discussed previoudly in cases (1) to (4).

4. IMPLEMENTATION AND EXPERIMENTAL RESULTS

We present in Tables 1 and 2 experimental results obtained
using the proposed circular FIFO alocation approach. Table 1
summarizes the results of four benchmarks frequently used by the
high level synthesis community. All benchmarks are scheduled
using one adder and one multiplier. The second column of Table 1
indicates the minimum number of registers necessary to hold

variables and constants. This number corresponds to the maximum
number of variables and constants alive at the same time. The third
column corresponds to the number of circular FIFOs obtained using
our alocation approach. The total number of registers used in the
final design isindicated in the fourth column. We observe that the
number of registersused isalways optimum, and that these registers
are grouped in a smal number of FIFOs, which reduces
considerably the control signals. To evaluate the efficiency of our
approach in general case, we have used random examples, which
are more complex than usual high level synthesis benchmarks. The
results are given in Table 2. For each example, we generate a set of
variables with random lifetime intervals, then we perform the FIFO
allocation algorithm. The results are quite interesting. First, the
number of circular FIFO (third column) isvery small comparatively
to the minimum number of registers (second column), in average
each FIFO containsfiveto six registers. Second, the total number of
registers used (fourth column) exceeds the optimum by 3 registers
at most. We have performed the Alogeely’s allocation method [6]
on the same random exampl es, the number of queues returned is on
average egual to the number of registers, i.e., most queues contain
only one register and hence there is no gain comparatively to the
separated register organization. This result is not surprising, since
Alogeely’s approach assumes that most variables have the same
lifetime durations, which is not the case for the randomly generated
examples.

Tablel : Benchmark results

Min. # of # of #of reg. CPU
Benchmarks reg. FIFOs used | (sec)
IR filter 20 5 20 10
FIR filter 15 3 15 7
Polynomial 15 3 15 7
divider
Three order 7 2 7 2
filter

Table2 : Experimental results using random examples

of Min. # # of #of reg. CPU time
variables of reg. FIFOs used (sec.)
30 16 3 18 44
30 18 4 18 32
30 17 3 17 494
30 20 4 21 63
50 26 4 27 85
50 23 5 26 86
50 28 4 30 66
50 22 4 25 76

Table2 : Experimental results using random examples

of Min. # # of # of reg. CPU time
variables of reg. FIFOs used (sec.)
70 37 5 39 155
70 30 5 32 82
70 33 6 36 109
70 34 6 36 52
100 50 7 53 158
100 42 6 45 221
100 43 6 45 239
100 39 5 42 198

5. CONCLUSIONS

We presented a new regular register organization, circular
FIFO, as an alternative to separated register organization and to
register file organization. Grouping registers into circular FIFOs
reduces the control hardware without increasing the number of
storage elements. In comparison with register file organization,
FIFO organization eliminates the overhead of address generation,
decoding hardware and the extraaccess delay. The efficiency of the
approach was tested on benchmarks and on complex random
examples. Using a complex practica problem like the FIFO
allocation problem, we found that the constraint logic programming
based on relationa interval constraint isavery promising paradigm
for solving other CAD problems.

REFERENCES

[1] G. DeMicheli, Synthesis and Optimization of Digital
Circuits, McGraw-Hill, New York, 1994.

[2] D.Gajski, N. Dutt, A. Wu, and S. Lin, High-Level
Synthesis, Kluwer Academic Publishers, Boston, 1992.

[3] R.Wakerand R. Camposano, A Survey of High-Level
Synthesis Systems, Kluwer Academic Publishers, Boston,
1991.

[4] BNRPROLOG, User Guide, Version 4, 1993.

[5] R.E.Moore, Methods and Applications of Interval Analysis,
SIAM, 1979.

[6) M.Alogeely and C. Y. Roger Chen, “ Sequencer-Based Data
Path Synthesis of Regular Iterative Algorithms’, In Proc. of
the 31 st Design Automation Conference, 1994.

