
REGISTER ALLOCATION USING CIRCULAR FIFOS

Imed Eddine Bennour El Mostapha Aboulhamid

Département d’Informatique et Recherche Opérationnelle
Université de Montréal

CP 6128 Centre Ville, Montréal, H3C-3J7, QC, CANADA
{aboulham,bennour}@iro.umontreal.ca

ABSTRACT

In this paper, we study the memory allocation problem in data
path synthesis. We propose a register organization called circular
FIFO as an alternative to register file organization. In comparison
with register file organization, FIFO organization eliminates the
overhead of address generation and decoding hardware. The
memory allocation problem, based on the circular FIFO
organization, has been solved efficiently using constraint logic and
interval constraint programming.

1. INTRODUCTION

A common approach to high level synthesis involves data-flow
graph scheduling, functional unit allocation, interconnection and
memory allocation. Memory allocation maps constants and
variables of a data-flow graph to storage elements (e.g., ROM,
registers, register files). Both storage elements and their control part
occupy a significant portion of the chip area. Therefore, it is
important to minimize the number of storage elements and to
organize them in such a way that control, address generation and
decoding hardware are reduced. Conventional memory allocation
approaches [1-3] can be classified into two categories. In the first
category, variables are mapped to registers based on a lifetime
analysis of variables. The lifetime interval of a variable is the time
interval between its first value assignment and its last use. Multiple
variables can share a same register if their lifetime intervals do not
overlap with one another. Lifetime analysis approaches aim to
minimize the number of registers but not the control hardware. In
the second category, variables are mapped to registers which are
then grouped into register files (or multiport memories) based on
disjoint access time. Register file organization is profitable only if
the number and the size of register files are small due to address
generation and decoding hardware overhead. Recently, Aloqeely et
al. [6] have proposed the use of sequencers as an alternative to
register files. Queues and stacks are examples of sequencers.
However, their approach has some limitations: first, except queues,
sequencers are costly in implementation and, therefore, they cannot
be used in a large number; second, the allocation method is suitable
only for regular iterative applications where the access patterns of
variables are highly regular and uniform, e.g., most variables have
the same lifetime duration.

In this paper, we propose: (1) a register organization, called
circular FIFO, as an alternative to separated register organization
and register file organization, and as an extension of queues [6], (2)
the use of the constraint logic programming and the relational
interval paradigms to resolve the circular FIFO allocation problem.
The circularity in the FIFO adds more flexibility to data access
capability: it allows multi-access to a same data, and it removes the

first-in first-out constraint between data, since a data item can be
reinjected in the header once it reaches the tail. Separated register
organization is a special case of the FIFO organization where each
FIFO contains only one register. By grouping registers into FIFOs,
we reduce the number of control signals. In the FIFO based
architecture register files may still be used, but in a reduced number.
To resolve the FIFO allocation problem, we used CLP-BNR [4], a
constraint logic programming (CLP) language, based on Prolog
augmented with relational interval arithmetic.

The organization of the paper is as follows. Section 2 defines
the FIFO allocation problem. Section 3 presents an overview of the
interval constraint paradigm, and a formulation of the FIFO
allocation problem using interval constraints. Finally, experimental
results are presented in section 4.

 Figure 1. Illustration of the functioning of the circular FIFO

2. PROBLEM DEFINITION

A circular FIFO is defined by a set of shift registers
, where  is connected to , for

, and  is connected to . The leftmost
register (R0) and the rightmost register (RM-1) are called the header
and the tail of the FIFO, respectively. Data enter the FIFO from the
header and are visible only at the tail. A circular FIFO is controlled
by three operations:

v1 v1

v2

v3
v2

v3

v4
v4

Insert(v1)

Insert(v2)

Insert(v3)

Insert(v4)

Shift

No operation

Rotate

Shift

Shift

Shift

Control-sequenceControl-steps
0

1

2

3

4

5

6

7

8

9

10

11

12

No operation v1

v1

v2 v1
v3 v2 v1

v3 v2
v4 v3 v2

v4 v3v2
Rotate v4v3 v2

v4v3 v2

v3 v2

v3 v2No operation

v3

write-time
read-time
last read-time

:
:
:

FIFO size 4

R0 R1 … RM 1–, , ,( ) Ri Ri 1+
i 0 … M 2–, ,= RM 1– R0



- Insert (vi): insertion of a variable labelled vi in the FIFO
header. After an insertion all registers of the FIFO are right
shifted and the data item in the FIFO tail is lost.
- Shift: right shift all registers.
- Rotate: it is equivalent to Insert (content of the tail).

During a control-step, at most one control-operation can be
performed on the FIFO. A variable vi is defined by its write-time
and its read-time(s), fixed by the scheduling task.

vi: ( )

vi should be inserted in a FIFO at , and it should be
available in the FIFO tail at each , for .
The lifetime interval of vi is equal to .

Figure 1 illustrates the functioning of the circular FIFO. The
circularity in the FIFO allows multi-access to a same variable (e.g.,
v2), and it removes the first-in first-out constraint (e.g., v3 enters the
FIFO before v4 and leaves after v4). A control sequence of a circular
FIFO is a sequence of control operations (insert, rotate, shift, no
operation). A control sequence is valid for a set of variables, if it
guarantees that each variable in the set is inserted in the FIFO at its
writing time, and it is available in the tail at its reading time(s). It
may happen that, no valid control sequence exists for a set of
variables, i.e., variables in this set cannot be mapped into a same
FIFO.
Now we can define the two following problems:

•  The single-FIFO allocation problem: Given a set of
variables , defined by their write-time and read-time(s),
can these variables be mapped to a same circular FIFO? If they can,
what is the minimum size of such a FIFO?

•  The multi-FIFO allocation problem: Given a set of
variables , defined by their write-time and read-time(s),
find a mapping from  to circular FIFOs that optimizes the number
of FIFOs and the total number of registers.

We suspect that the single-FIFO allocation problem is NP-
complete. We solve it exactly using CLP and interval constraint
paradigms. The multi-FIFO allocation problem is NP-hard. A
heuristic approach is taken to resolve it. It is based on iterative
resolutions of the single-FIFO allocation problem. The following
steps summarize this heuristic (developed also using the same CLP
environment):

− The set of variables V is divided into disjoint clusters
(subsets) Cl such that: (1) variables in the same cluster do not
have neither the same writing-times nor the same reading-
times, (2) if two variables vi and vj belong to a same cluster and
the writing-time of vj is greater than the writing-time of vi then
the reading-time of vj is greater than the reading-time of vi, (3)
in each cluster Cl, the maximum number of variables alive at
the same time is smaller than or equal to the minimum life-time
among all variables in Cl. These criteria increase the likelihood
of mapping successfully all variables in a cluster to a same
circular FIFO.
− For each cluster, check if it can be mapped to a same circular
FIFO using the exact resolution of the single-FIFO problem. If
not, the variables causing the failure are removed from the
current cluster and are redistributed on other clusters if
possible. New clusters are added if necessary. This process is

repeated until all the clusters are mapped to some feasible
circular FIFOs.
− The last step is to reduce the number of clusters, i.e., the
number of circular FIFOs. Repetitively, we pick the cluster
containing the minimum number of variables, then we try to
redistribute all its variables on the other clusters. We check if
a variable can be added into a cluster by solving the single-
FIFO problem. This process is repeated until all the clusters are
considered.

3. FORMULATION OF THE SINGLE-FIFO ALLOCATION
PROBLEM USING INTERVAL CONSTRAINTS

3.1 A brief overview of the interval constraint paradigm

The use of interval arithmetic [4] [5] allows reasoning about
domains of variables rather than fixed values. An interval is a closed
bounded set of numbers, it defines either a continuous range of real
numbers laying between a lower and an upper bound or a discrete
range of integer values laying between integer bounds. The two
endpoints of an interval X are denoted by  and . Thus,

. Two intervals are equal if their corresponding
endpoints are equal. If x is in the interval , we write .
Operations on intervals can be either the basic arithmetic operations
defined on the reals (+, -, *, /, min, max, sin, cos, etc.), or arithmetic
relations (equality, inequality, inclusion, etc.). In the following, we
give a semantic of some of these operations.

•  Arithmetic operations:

•  Arithmetic relations
The equality constraint between two intervals X and Y, denoted X
== Y, is true if X and Y can be constrained to be equal by narrowing
(reducing) X and/or Y. For example, if  and

, then X == Y is true, since both X and Y can be
reduced to the same interval . If  and

, then X == Y is false.

The less than or equal constraint between an interval X and an
interval Y, denoted , is true if the interval X can be constrained
to an interval Z where each element of Z is less than or equal to an
element of Y. For example, if  and , then

 is true since X can be reduced to the interval  which
is less than or equal to Y. If  and , then

 is false.

3.2 Formulation of the single-FIFO allocation problem

The formulation of the single-FIFO allocation problem is
based on the successive states of the FIFO during the execution of
a control sequence (sequence of shift, insert and rotate operation).
If we label the shift registers composing a circular FIFO from 0 to
M-1, then a FIFO state can be defined by the set of variables inside
the FIFO and their position. The distance from a variable  to a
variable , denote by , is defined as following:

where  is the  position inside the FIFO.

Write-timei Read-timei
1

Read-timei
2 … Read-timei

ni, , , ,

Write-timei
Read-timei

j
j 1 … ni, ,=

Write-timei Read-timei
ni,[ ]

V vi{ }=

V vi{ }=
V

X X
X X X,[ ]=

X x X∈

X X,[ ] Y Y,[ ]+ X Y+ X Y+,[ ]=
X– X X,[ ]– X– X–,[ ] x– | x X∈{ }= = =

max X Y,( ) max X Y,( ) max X Y,( ),[ ]=

X 2 5,[ ]=
Y 4 8,[ ]=

4 5,[ ] X 2 5,[ ]=
Y 6 8,[ ]=

X Y≤

X 2 15,[ ]= Y 6 8,[ ]=
X Y≤ 2 8,[ ]

X 9 15,[ ]= Y 6 8,[ ]=
X Y≤

vi
v j Dist vi v j,( )

Dist vi v j,( ) pos v j( ) pos vi( )–( ) mod M=
pos vi( ) vi



Example:

Based on the distance definition, we have:

, where M is the FIFO size

Notice that, due to the last equality, the distance is still defined
even between variables which are not into the FIFO at the same time
(i.e., variables which are not alive at the same time). Thus, the
distance values between pairs of variables are sufficient to capture
all the successive states taken by FIFO during the execution of a
control sequence. It can be proved that finding a valid control
sequence for a set of variables is equivalent to finding feasible
distance values among variables. To state the constraints which a
distance between two variables should satisfy, we distinguish four
cases depending on the precedence order between their write and
read operations.

Case 1: two successive write operations

because between the insertion-time of  and the insertion-
time of  into the FIFO the maximum number of control
operations (shift, insert, rotate) that can be done is equal to

.

Case 2: two successive read operations

This constraint guarantees that, after the reading-time of
there are still enough control-steps to propagate  until the
FIFO tail.

Case 3: write operation followed by read operation

This constraint guarantees that, after the writing-time of
there are still enough control-steps to propagate  until the
FIFO tail.

Case 4: read operation followed by write operation

,  if
, otherwise

If , then the constraint states that
when  is inserted in the FIFO header  should be in the tail;
otherwise it states that between the reading-time of  and the
writing-time of  in the FIFO the maximum number of shift

and rotate operations that can be done is equal to
( ).

Figure 2 shows the set of distance constraints for the example used
in Figure 1.

 Figure 2. Distance constraints for the example used in Figure 1

Now we give the complete formulation of the single-FIFO
allocation problem using relational interval arithmetic:

where M_min is the maximum
number of variables alive at the same time, and

Constraint (a) defines the possible values of the FIFO size.
Constraint (b) states that variables which are alive at the same time
cannot share the same registers into the FIFO: their distances should
be greater than zero. Constraints (c), (d) and (e) are the distance’s
properties. (f) is the set of distance constraints between variables
that should be satisfied, as discussed previously in cases (1) to (4).

4. IMPLEMENTATION AND EXPERIMENTAL RESULTS

We present in Tables 1 and 2 experimental results obtained
using the proposed circular FIFO allocation approach. Table 1
summarizes the results of four benchmarks frequently used by the
high level synthesis community. All benchmarks are scheduled
using one adder and one multiplier. The second column of Table 1
indicates the minimum number of registers necessary to hold

v2 v1v3

0 1 2 3 4

Dist v2 v1,( ) 3 1–( ) mod 5 2= =

Dist v2 v3,( ) 0 1–( ) mod 5 4= =

Dist vi v j,( ) 0 M 1–,[ ] vi v j,∀,∈

Dist vi vi,( ) 0 vi∀,=

Dist vi v j,( ) M Dist v j vi,( ) vi v j≠∀,–=

Dist vi v j,( ) Dist vi vk,( ) Dist vk v j,( )+( )modulo M

vi v j vk≠ ≠∀

,=

Dist v j vi,( ) Write-time j Write-timei–≤
vi

v j

Write-time j Write-timei– 1–( )

Dist v j vi,( ) Read-time j
k

Read-timei
l

–≤
vi

v j

Dist v j vi,( ) Read-time j
k

Write-timei– 1+≤
vi

v j

Dist v j vi,( ) M 1–= Write-time j Read-timei
l

=
Dist v j vi,( ) Write-time j Read-timei

l
– 1–≤

Write-time j Read-timei
l

=
v j vi

vi
v j

Write-time j Read-timei
l

– 1–

v1

v2
v3

v4

Control-steps

0
1
2
3
4
5
6
7
8
9
10
11
12

Dist(v2,v1) ≤ 2

Dist(v3,v2) ≤ 1

Dist(v1,v3) ≤ 2
Dist(v4,v1) == 0
Dist(v2,v4) ≤ 2

Dist(v3,v2) ≤ 1
Dist(v4,v3) ≤ 2

Dist(v2,v4) ≤ 1

Dist(v3,v2) ≤ 1

write-time
read-time
last read-time

:
:
:

Minimize the FIFO size M under:

a( ) M M_min M_max,[ ]∈

M_max Min
vi

Read-timei
1

Write-timei 1+–( )=

b( ) Dist vi v j,( ) 1 M 1–,[ ]∈ vi v j and vi v j
are alive at the same time

,≠∀,

c( ) Dist vi v j,( ) 0 M 1–,[ ]∈ vi v j and vi v j
are not alive at the same time

,≠∀,

d( ) Dist vi v j,( )== M Dist v j vi,( )–( ) vi v j≠∀,

e( ) Dist vi v j,( )== Dist vi vk,( ) Dist vk v j,( )+( )modulo M
vi v j vk≠ ≠∀

,

f( ) Dist vi v j,( ) c f≤



variables and constants. This number corresponds to the maximum
number of variables and constants alive at the same time. The third
column corresponds to the number of circular FIFOs obtained using
our allocation approach. The total number of registers used in the
final design is indicated in the fourth column. We observe that the
number of registers used is always optimum, and that these registers
are grouped in a small number of FIFOs, which reduces
considerably the control signals. To evaluate the efficiency of our
approach in general case, we have used random examples, which
are more complex than usual high level synthesis benchmarks. The
results are given in Table 2. For each example, we generate a set of
variables with random lifetime intervals, then we perform the FIFO
allocation algorithm. The results are quite interesting. First, the
number of circular FIFO (third column) is very small comparatively
to the minimum number of registers (second column), in average
each FIFO contains five to six registers. Second, the total number of
registers used (fourth column) exceeds the optimum by 3 registers
at most. We have performed the Aloqeely’s allocation method [6]
on the same random examples, the number of queues returned is on
average equal to the number of registers, i.e., most queues contain
only one register and hence there is no gain comparatively to the
separated register organization. This result is not surprising, since
Aloqeely’s approach assumes that most variables have the same
lifetime durations, which is not the case for the randomly generated
examples.

5. CONCLUSIONS

We presented a new regular register organization, circular
FIFO, as an alternative to separated register organization and to
register file organization. Grouping registers into circular FIFOs
reduces the control hardware without increasing the number of
storage elements. In comparison with register file organization,
FIFO organization eliminates the overhead of address generation,
decoding hardware and the extra access delay. The efficiency of the
approach was tested on benchmarks and on complex random
examples. Using a complex practical problem like the FIFO
allocation problem, we found that the constraint logic programming
based on relational interval constraint is a very promising paradigm
for solving other CAD problems.

REFERENCES

[1] G. De Micheli, Synthesis and Optimization of Digital
Circuits, McGraw-Hill, New York, 1994.

[2] D. Gajski, N. Dutt, A. Wu, and S. Lin, High-Level
Synthesis, Kluwer Academic Publishers, Boston, 1992.

[3] R. Walker and R. Camposano, A Survey of High-Level
Synthesis Systems, Kluwer Academic Publishers, Boston,
1991.

[4] BNR PROLOG, User Guide, Version 4, 1993.

[5] R.E. Moore, Methods and Applications of Interval Analysis,
SIAM, 1979.

[6] M. Aloqeely and C. Y. Roger Chen, “Sequencer-Based Data
Path Synthesis of Regular Iterative Algorithms”, In Proc. of
the 31 st Design Automation Conference, 1994.

Table1 : Benchmark results

Benchmarks
Min. # of

reg.
# of

FIFOs
# of reg.

used
CPU
(sec.)

IIR filter 20 5 20 10

FIR filter 15 3 15 7

Polynomial
divider

15 3 15 7

Three order
filter

7 2 7 2

Table2 : Experimental results using random examples

# of
variables

Min. #
of reg.

# of
FIFOs

# of reg.
used

CPU time
(sec.)

30 16 3 18 44

30 18 4 18 32

30 17 3 17 494

30 20 4 21 63

50 26 4 27 85

50 23 5 26 86

50 28 4 30 66

50 22 4 25 76

70 37 5 39 155

70 30 5 32 82

70 33 6 36 109

70 34 6 36 52

100 50 7 53 158

100 42 6 45 221

100 43 6 45 239

100 39 5 42 198

Table2 : Experimental results using random examples

# of
variables

Min. #
of reg.

# of
FIFOs

# of reg.
used

CPU time
(sec.)


