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Lower Bounds on the Iteration Time and the Initiation Interval of 
Functional Pipelining and Loop Folding

Abstract—The performance of pipelined datapath implementations is measured basically by
three parameters: the clock cycle length, the initiation interval between successive iterations
(inverse of the throughput) and the iteration time (turn-around time). In this paper we
present a new method for computing performance bounds of pipelined implementations:

• Given an iterative behavior, a set of resource constraints and a target initiation interval,
we derive a lower bound on the iteration time achievable by any pipelined
implementation.

• Given an iterative behavior and a set of resource constraints, we derive a lower bound
on the initiation interval achievable by any pipelined implementation.

The method has a low complexity and it handles behavioral specifications containing loop
statements with inter-iteration data dependency and timing constrains. 

1. Introduction

High level synthesis refers to the design process which transforms a behavioral specification of a

digital system into a register transfer level (RTL) structure. Two fundamental steps in high level

synthesis are scheduling and allocation. Scheduling assigns circuit operations to control steps

under resource constraints (e.g. functional units, registers and buses) and/or performance

constraint, while allocation assigns operations and data transfers to resources to realize the

datapath. Synthesis of efficient circuits for real-time digital signal processing (DSP) applications

is becoming a more challenging and crucial task, because most applications require higher sample

rates and higher sample processing speed. These applications are often recursive or iterative and

their behavioral descriptions consist of an infinite loop statement. In order to synthesize a high

throughput circuit, a scheduler should exploit all the potential concurrence between the loop body

operations. A way to exploit this parallelism is to pipeline (overlap) the execution of successive

iterations. This technique is called loop folding in the general case, and it is called functional
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pipelining (functional pipelined datapath) when there are no data dependencies between different

iterations of the algorithm. Figure 1 illustrates the pipelining approach where a loop instance

considered as a task is split into five subtasks STi. Each subtask STi corresponds to a set of

operations executed in parallel. 

The performance of a pipelined datapath is measured basically by three values [1]: the clock

cycle length, the initiation interval and the iteration time. The initiation interval corresponds to the

number of clock cycles separating the initiation of successive instances of the loop, it is the inverse

of the throughput. The iteration time corresponds to the number of clock cycles necessary to

execute one instance inside the pipeline (turn-around time), it measures the sample processing

speed which is usually critical. 

Figure 1.     Space-time diagram of the pipelined schedule
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resource constraints and inter-iteration data dependencies. The main objective of pipelined
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In this paper we address the two following lower-bound problems: 

Problem 1: Given a cyclic data flow graph representing a loop statement, a set of resource

constraints and a target initiation interval, we derive a lower bound on the iteration time
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Problem 2: Given a cyclic data flow graph and a set of resource constraints, we derive a lower
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2. Motivations and previous works

The motivations for developing performance estimators in high-level synthesis area have been

discussed extensively in [14,15,17,22]. Here we present three main motivations related to

pipelined designs:

• Speed-up the space solution exploration. To achieve high performance pipelined designs,

behavioral optimizations and dataflow-based transformations such as common subexpression

elimination, associativity-commutativity algebraic transformations [28, 32-35], loop unfolding

[29- 31] and retiming [13], are often necessary. To find the best set of transformations and the best

order requires the analysis of a large number of solutions. An efficient method to compute exact

lower-bound performance allows to speed-up this exploration by detecting and removing solutions

which theoretically cannot achieve the target performance under a given resource constraints. 

• Evaluation of the quality of a pipelined solution produced by a heuristic. By comparing the exact

lower-bound performance to the performance of the heuristic solution, we get the maximal

distance between the heuristic solution and the optimum solution. A small distance indicates the

good quality of the heuristic solution.

• Performance improvement of scheduling heuristics. The general framework used by resource-

constraint pipelined scheduling heuristics [1-10] is composed of the following steps:

1. Fix the initiation interval to its tight lower bound;

2. For the target initiation interval, fix the iteration time to its tight lower bound;

3. Find a pipelined schedule with the current initiation interval and iteration time;

4. If no feasible schedule found and no time out, then increment the iteration time, and go

to Step 3. Otherwise, increment the initiation interval, and go to Step 2.

Step3 is the most time consuming step since it is repeated many times and it is NP-complete. The

use of tight lower bounds in steps 1 and 2 reduces considerably this time.

The majority of previous studies related to lower-bound performance estimation are restricted

to non-pipelined designs [14-20], and only few works have dealt with pipelined designs [22, 23,

28]. Jain et al. [22] have addressed the problem of area-delay prediction in pipelined and non-

pipelined designs. For pipelined designs, they have presented a simple algorithm to compute a

lower bound on the product of functional unit requirements with the initiation interval for acyclic
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data flow graphs. Although a lower bound on the product of these two parameters (number of

functional units and initiation interval) permits to make design space exploration, this exploration

is still restricted compared to the case where a lower bound on each parameter is given separately.

Hu et al. [23] have presented a method to compute lower bounds on the iteration time under

resource constraints but it is also restricted to acyclic data flow graphs. In [28], Potkonjak and

Rabaey studied the relation between retiming and functional pipelining, and they gave a new

polynomial algorithm for determining an upper bound on the throughput. However, the algorithm

does not take into account the resource constraints. Other polynomial algorithms have been

proposed [24-27] for determining an upper bound on the throughput and computing optimum rate

schedules but they assume an unlimited number of resources.

Comparatively to the above mentioned works, the method presented here differs in both the

scope and the techniques used. It computes exact lower bounds on the iteration time and on the

initiation interval for an iterative behavior under resource constraints. The iterative behavior may

contain inter-iteration and intra-iteration precedence constraints, and user-specified min-max

timing constraints between pairs of operations. It may also contain bounded nested loops; in such

case all inner loops will be totally unfolded. The used technique is based on integer programming

constraint relaxations; the proof that this technique has a minimal complexity is established. The

method solves also the dual problem: lower bound on the resource requirement to achieve a target

iteration time and/or a target initiation interval. In this paper we restrict resource type to functional

units. Registers and buses can be handled similarly by adding to the data flow graph a set of fictive

operations representing data memorizations and data transfers. 

The rest of this paper is organized in the following way. Section 3 gives the necessary

background. Section 4 describes the constraint graph model. Section 5 gives the general

formulation for the minimum iteration time problem, then a relaxation of this problem, and the

proof that the relaxed problem can be solved optimally in polynomial time by the proposed

method. Lower-bound algorithms for the iteration time and for the initiation interval are given in

Section 6 and Section 7, respectively. Experimental results are presented in Section 8.



5

3. Background

Cyclic data flow graph (DFG) is a well known model used to capture loop behavior. A cyclic DFG

is a node-weighted and edge-weighted directed graph, where  is the

set of nodes representing atomic operations,  is the set of edges. An edge  corresponds

to data precedence relationship between operations  and . The integer edge weight

 means that the data produced by operation  in any iteration  of the loop will be

used by operation  in iteration . The value  is the duration of operation

 in clock cycles. Figure 2(a) shows a cyclic DFG example, where normal arcs correspond to

intra-iteration precedence constraints and they have the implicit weight zero, and dashed arcs

correspond to inter-iteration precedence constraints. This example will be used throughout the

paper.

Definition: Let be the starting execution time of operation  of the k-th iteration of

the loop. The schedule  is said to be a pipelined schedule with an initiation interval  if it

satisfies:

(1)

and (2)

Equation (1) expresses the schedule periodicity, and Equation (2) expresses intra-iteration and

inter-iteration precedence constraints between operations. The iteration time ( ) of the schedule

 is defined as:

(3)

As all iterations have the same schedule, they have the same iteration time. Figure 3 shows a

pipelined schedule of the cyclic DFG of Figure 2(a).
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Figure 2.     (a) A cyclic DFG example. (b) The constraint graph corresponding for , and 
the operation mobility-intervals.

Figure 3.     A pipelined schedule of the cyclic DFG of Figure 2(a).
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Initial lower bound on the initiation interval: The presence of loops in a cyclic DFG, called

loop carried dependencies (LCD), limits the minimal value of the initiation interval. The lower

bound value due to LCD, denoted , is defined as follows [21]:

 (4)

where  is a loop in the DFG,  and  are respectively the sum of operation durations and the

sum of arc weights in .

Resource constraints limit also the minimal value of the initiation interval. This minimal value due

to resource constraints, denoted , is given by [1]:

(5)

where  is a functional unit type,  is the available number of functional units of type ,  is

the set of operations in the cyclic DFG executed by functional units of type , and  is the

duration in clock cycles of type  functional unit. 

Theorem 1: The initiation interval  of a feasible pipelined schedule must satisfy:

4. The Constraint Graph 

Both intra-iteration and inter-iteration precedence constraints in a cyclic DFG will be transformed

into timing constraints between operations of the first loop iteration. Combining Equations (1) and

(2), we obtain:

, (6)

Equation (6) expresses timing constraint between operations of the same initial loop iteration. 

Definition: Let be  a cyclic DFG. The constraint graph CG associated to G

is an edge-weighted and directed graph defined by . Where

 and  are the same sets of nodes and edges as in G, and  is a source node connected to

all nodes in  by the set of edges . The weights of edges  are defined as follows:
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,

A positive (resp. negative) value of  means that operation  of the first iteration must

be scheduled no sooner than time-steps after (resp. before) operation  of the first

iteration. Figure 2(b) shows the constraint graph corresponding to the cyclic DFG of Figure 2(a)

for an initiation interval equal to 3. In the rest of the paper, we will use the constraint graph model

instead of the DFG, and we assume that all multi-cyclic operations are broken into multiple uni-

cycle operations related by timing constraints.

We denote by  the ¨as soon as possible¨ starting time of operation  in the first iteration.

The value of  corresponds to the longest-path weight in the constraint graph from the source

node  to node . The minimal number of time steps necessary to execute any iteration inside

the pipeline corresponds to the critical path length in the constraint graph, denoted , and it is

equal to:

(7)

We denote by  the ¨as late as possible¨ starting time of operation  of the first loop instance

such that the schedule length does not exceed . The interval is called mobility-interval

of .

5. ILP formulation of the minimum iteration time problem and its
relaxation

In this section, we give first an ILP formulation for the minimum iteration time problem: find the

minimum value of the iteration time, given a constraint graph, a fixed number of functional units

and a target initiation interval. Then we construct a relaxation of this problem and showing that the

relaxed problem can be solved optimally in polynomial time by a greedy algorithm. 

Notations:

•  is a constraint graph,

•  is the earliest starting time of operation  of the first iteration, without resource

constraints.

•  is the latest starting time of operation  of the first iteration, without resource

constraints.
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•  is the set of types of functional units,

•  is the number of functional units of type ,

•  is the set of operations to be executed by functional units of type ,

•  is the critical path length in the constraint graph,

•  is the initiation interval,

•  is the iteration time,

•  is the additional number of time steps necessary to execute any loop iteration inside the

pipeline. .

5.1. ILP formulation of the minimum iteration time problem (P)

The system P formulates this NP-complete problem. A similar formulation is given in [12].

 is a binary variable, equals 1 if operation  of the first iteration is scheduled in control step

t, zero otherwise. The objective function (8) states that we minimize the iteration time

 of the schedule. Constraint (9) states that each operation  should be scheduled.

Constraint (10) expresses the resource constraints: due to the pipelining, operations in control steps

, for , are executed simultaneously and cannot share the same functional

units (see Figure 4(a)). Constraint (11) expresses the timing constraints between operations.

Constraint (12) states that all operations must be scheduled before control-step .
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Figure 4.     Two equivalent views of a pipelined schedule: (a) single-iteration view, 
(b) execution-window view.

5.2. The minimum iteration time relaxed problem

5.2.1 The relaxation problem ( )
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5.2.2 Formulation of the relaxation problem based on execution-window’s properties (PR)

The execution-window of a pipelined schedule is the repetitive pattern of the same size as the

initiation interval that appears after a certain number of scheduling steps. In this section we give a

second formulation of the relaxation problem  based on the execution-window’ properties. 

The execution window starting at control step number is called the first

execution-window (see Figure 3). A feasible pipelined schedule should satisfy the three following

necessary conditions:

C1. Each operation  occurs one and only one time inside the first execution window.

C2. If an operation  of the first iteration is scheduled into control-step , then there is one

occurrence of  scheduled into control-step  relatively to the beginning of the

first execution window (see Figure 4). More generally, if  of the first iteration is

scheduled inside the control-step interval , for any positive integer z, then there

is one occurrence of  scheduled, relatively to the beginning of the first window, inside

the domain  defined by:

The values  for the illustrative example are given in Table 1 and represented in

Figure 5(a).

C3. Resource constraints must be satisfied for every control step in the first execution window.

The following system PR is equivalent to  and it formalizes the conditions C1, C2 and C3.
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where  equals to 1 if an occurrence of operation  is scheduled into control step , zero

otherwise. The objective function (15) states that we minimize the iteration time .

Constraints (16), (17) and (18) correspond to C1, C2 and C3, respectively.

The system PR can be solved optimally in  using the sub-interval method [23]. We

propose a new method which solves the same system optimally in . The next section

presents the theoretical framework of this method.

5.3. Transformation of PR to PRU(S)

In the system, PR the initial scheduling domains  of operations could be the union of two

disjoint intervals (Equation 14). The goal of the proposed transformation is to construct a new

scheduling problem PRU(S) equivalent to PR where the scheduling domains of operations are

single intervals. 

PRU(S) is obtained by generating for each operation  a number S of operations ,

, and associating to  an initial single interval domain  defined by: 

(19)

with (20)

Figure 5 illustrates this unfolding like-transformation.
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Figure 5.     (a) Representation of the initial operation domains .
 (b) Transformation of the scheduling problem represented in (a).

Let . The ILP formulation for the parametrized system

PRU(S) is:

 equals 1 if operation  is scheduled in control-step , zero otherwise. 

For a fixed value of S, the system PRU(S) formulates the following scheduling problem: given a

set of functional units { }, a set of operations  defined by their initial scheduling

domains { }, what is the minimal number of additional time-steps necessary to schedule

all operations without resource conflict? It was proven in [17] that this type of problems can be

solved optimally in polynomial time by a greedy algorithm. This algorithm is given in appendix A.
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Theorem 2: For a fixed value of S, the system  can be solved optimally in polynomial

time. 

Next theorem states that the systems  and   have the same optimum

value of their objective function, and thus it is sufficient to solve . 

Theorem 3: ,  

Proof: given in appendix B.

The following expression recapitulates the set of ILP transformations done in this section:

 

where  means that  is a relaxation of P, and  means that both systems are

equivalent.
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,  and which have as initial domains , ,  and , respectively.

Thus, a lower bound on the iteration time will be .

Algorithm: IT_LowerBound
input: constraint graph CG, target initiation interval II, set of resources ,
output: lower bound of the iteration time (ITLB)
begin
Step 1: Break multi-cycle operations into uni-cycle operations;

Compute the mobility  of each operation  in CG using Bellman-Ford algorithm;

;

Step 2: for each operation  do

 Create two operations  and 

 for  do 
;  

 

end for
end for

Step 3: Sort the set  by the increasing values of ;

Assign each operation  to the first control step  after  containing a free
resource;

;

; 
end

Figure 6.     Algorithm to find a lower bound of the iteration time.

Table 2: Intermediate results of the IT_LowerBound algorithm
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Algorithm complexity: Operation mobility-intervals are computed using Bellman-Ford

algorithm [36] in , where O and E are the set of nodes and the set of arcs in the constraint

graph respectively. As an operation has in average two input arcs, the complexity of Bellman-Ford

algorithm is in . The sorting and the greedy scheduling of  operations can be done

in . Thus, the algorithm complexity is . Notice that this complexity is minimal

since computing the earliest starting times in a cyclic graph is in .

6.2. Operation mobility-intervals under pipelining and resource constraints

An important property of the IT_LowerBound algorithm (Figure 6) is that: the more accurate are

the operation mobility-intervals , the tighter lower bound is returned. This section

presents a method to compute more accurate operation mobility-intervals. The method is based on

the technique introduced initially in [16] for computing lower-bound performance of non-pipelined

schedules in acyclic data flow graphs. 

To obtain tight operation mobility-intervals, three types of constraints are considered

simultaneously: timing constraints, resource constraints and pipelining. Let  denote

the mobility-interval of  under the three previous constraints. Let  be a subgraph of the

constraint graph  containing operation  and all operations  in CG such that there exists at

least one path in  from  to  having only positive edges (see Figure 7(a)). Tight value of

 is obtained by performing the IT_LowerBound algorithm on : as operation  is always

the latest operation executed among operations in , a lower bound on the iteration time of

 constitutes an earliest starting time of . The order of computing  is important,

because it influences their final values. An efficient order consists of computing  only after

computing all  such that  is an immediate predecessor of  and . 

By inverting the direction of edges in CG, the same technique allows to compute . Figure

7(b) shows the accuracy improvement of mobility-intervals for the illustrative example. Notice that

the lower bound on the iteration of the whole graph is also improved from 9 to 10. 

The use of tight operation mobility-intervals reduces automatically the running time of both exact

and heuristic schedulers.
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Figure 7.     (a) Subgraph . (b) Operation mobility-intervals under pipelining and 
 resource constraints (4 ✛ , 1 ❋ , 1 —).

Algorithm: II_LowerBound 
input: constraint graph CG, set of resources
output: lower bound on the initiation interval (IILB)
begin

; 

; 

while there are timing-constraint inconsistencies do
for each subgraph  of the set  do

IT = IT_LowerBound ( , , ); 

if  then /* timing constraint inconsistency*/

;
else

; 
end for

end while
end

Figure 8.     Algorithm to find a lower bound on the initiation interval
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7. Lower bound on the initiation interval algorithm

The description of the algorithm to find a lower bound on the initiation interval is given in Figure

8. Starting from the minimal value given by Theorem 1, the initiation interval will be increased

iteratively as long as the current value induces timing-constraint inconsistencies in the constraint

graph CG. For a target initiation interval, timing-constraint consistencies are checked as follows:

for each arc in CG having a negative weight , we compute a lower

bound on the number of control steps separating operation  from  in any feasible pipelined

schedule. This lower bound is obtained by performing the IT_LowerBound algorithm on a specific

subgraph  of . The subgraph contains operations ,  and all operations

 such that  belongs to at least one path from  to  in CG having only positive weights

assigned to edges. If the obtained lower bound is greater than , then the current

initiation interval is not feasible and it is increased, otherwise this lower bound will be the new

weight of the edge . 

Each pass of the algorithm has a complexity of , where m is the number of negative

arcs in the constraint graph.

8. Experimental results

We tested the estimation method on different high level synthesis benchmarks. For each

benchmark, lower bounds were computed and compared to realizable solutions obtained by the

pipelined scheduling systems Theda.Fold [6] and PLS [2]. These realizable solutions are

considered as upper bounds. Algorithms are implemented in the C language and run on a SPARC

10 station. Experimental results are shown in Tables 3 to 8, where the field RC indicates the number

of resources, IIUB and ITUB are respectively the upper bounds on the iteration time and the upper

bound on the initiation interval published in [2,6], IILB and ITLB are the computed lower bounds.

Unless it is specified, we assume that multipliers take two clock-cycles while adders and

subtracters take one clock-cycle. (❋ P) denotes multipliers with two stages pipelining.

The Fifth-order digital filter [37]: this benchmark contains 26 additions and 8 multiplications,

it has a large number of intra-iteration and inter-iteration precedence constraints and many loops

carried dependencies (LCDs). The minimal initiation interval due to LCDs is equal to 16. Table 3

oi oj→( ) ŵ oi oj→( ) 0<( )

oi oj

CGoi oj→ GC CGoi oj→ oi oj

ok ok oj oi

ŵ oi oj→( )

oj oi→( )
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shows the experimental results for this benchmark.

The second-order IIR filter (Table 4): its algorithmic description and the corresponding cyclic

DFG are shown in Figure 9. 

The third-order IIR filter [30] (Table 5): it contains 6 additions, 2 multiplications and 3 LCDs.

The minimal initiation interval due to LCDs is equal to 3.

The 16-point FIR filter [1] (Table 6): it contains 15 additions, 8 multiplications and only intra-

iteration data dependencies. We suppose that an addition has a duration of 40ns, a multiplication

has a duration of 80ns, the clock cycle length is equal to 100ns, and operation chaining are

permitted. 

The Fast Discrete Cosine Transformation (Table 7): This benchmark is relatively large, it

contains 13 additions, 13 subtractions and 16 multiplications. The algorithmic description of this

benchmark is a straight-line code, not a loop statement. But we can consider it as a loop statement

if we assume that the algorithm is to be performed on many sets of data.

The Fifth-order Digital Wave Filter with no LCDs (Table 8): It is the same benchmark as the

first one where all the inter-iteration precedence constraints are removed.

Figure 9.     (a) The behavioral description of the second-order IIR filter. 
 (b) The corresponding cyclic DFG.
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Table 3: Fifth order digital wave filter

RC IIUB ITUB IILB ITLB ITUB - ITLB

3 ✛ , 3 ❋ 16 18 16 17 1

3 ✛ , 2 ❋ 16 18 16 18 0

2 ✛ , 2 ❋ 17 19 16 18 1

2 ✛ , 1 ❋ 19 21 17 21 0

3 ✛ , 2 ❋ P 16 18 16 17 1

3 ✛ , 1 ❋ P 16 18 16 18 0

2 ✛ , 1 ❋ P 17 19 17 18 1

1 ✛ , 1 ❋ P 28 28 28 28 0

Table 4: Second-order IIR filter

RC IIUB ITUB IILB ITLB ITUB - ITLB

2 ✛ , 3 ❋ 3 6 3 5 1

2 ✛ , 2 ❋ 4 6 4 6 0

1 ✛ , 2 ❋ 4 7 4 6 1

1 ✛ , 1 ❋ 8 10 8 10 0

2 ✛ , 2 ❋ P 3 5 3 5 0

1 ✛ , 2 ❋ P 4 6 4 6 0

1 ✛ , 1 ❋ P 4 7 4 6 1

Table 5: Third-order IIR filter

RC IIUB ITUB IILB ITLB ITUB - ITLB

2 ✛ , 2 ❋ 3 5 3 5 0

2 ✛ , 1 ❋ 4 6 4 6 0

1 ✛ , 1 ❋ 6 6 6 6 0

2 ✛ , 1 ❋ P 3 5 3 5 0

1 ✛ , 1 ❋ P 6 6 6 6 0
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Table 6: 16-point FIR filter

RC IIUB ITUB IILB ITLB ITUB - ITLB

15 ✛ , 8 ❋ 1 6 1 6 0

8 ✛ , 4 ❋ 2 6 2 6 0

6 ✛ , 3 ❋ 3 6 3 6 0

5 ✛ , 3 ❋ 3 6 3 6 0

4 ✛ , 2 ❋ 4 6 4 6 0

3 ✛ , 2 ❋ 5 7 5 6 1

2 ✛ , 1 ❋ 8 10 8 10 0

1 ✛ , 1 ❋ 15 16 15 15 1

Table 7: Fast discrete cosine transformation

RC IIUB ITUB IILB ITLB ITUB - ITLB

5✛ , 5—, 6❋ P 3 9 3 9 0

4✛ , 4—, 4❋ P 4 10 4 9 1

3✛ , 3—, 4❋ P 5 10 5 9 1

3✛ , 3—, 3❋ P 6 11 6 9 2

2✛ , 2—, 2❋ P 8 12 8 11 1

1✛ , 1—, 2❋ P 13 16 13 15 1

Table 8: Fifth order digital wave filter with no LCD’s

RC IIUB ITUB IILB ITLB ITUB - ITLB

26 ✛ , 8 ❋ P 1 17 1 17 0

13 ✛ , 4 ❋ P 2 17 2 17 0

9 ✛ , 3 ❋ P 3 18 3 17 1

7 ✛ , 2 ❋ P 4 19 4 18 1

6 ✛ , 2 ❋ P 5 19 5 18 1

5 ✛ , 2 ❋ P 6 17 6 17 0
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The last column in Tables 3 to 8 shows that the lower bounds on the iteration time (ITLB)

obtained are close to the upper-bounds (ITUB): the worst results are within two times-steps from

the upper bounds. The running time of the algorithm is less than 0.08 seconds for all benchmarks.

These results illustrate that the relaxation done on the minimum iteration time problem which is

NP-complete is efficient: it does not induce a large accuracy lost, while using a polynomial

execution time.

For the initiation intervals, the obtained lower bounds (IILB) are equal to the upper bounds (IIUB)

except for two experimental cases shown in bold in table 3. We have observed that for these

benchmarks the initial lower bound given by Theorem 1 is often feasible, thus this initial bound

constitutes a good starting point for the II_LowerBound algorithm. 

During the scheduling of a data-flow graph, lower bounds constitute good measures to evaluate

the performance quality of a solution and to decide when to stop the research of new solutions. If

the difference between the performance of the current solution and the lower bound is equal to zero

then the solution is optimum. Otherwise, this difference indicates the maximal performance

improvement that could be achieved by continuing the research (or the maximal performance loss

by choosing such solution). For the above benchmarks, 58% of the scheduling solutions obtained

by the heuristics [2,6] are optimum, 37% are at maximum one control step from the optimum, and

5% are at maximum two control steps from the optimum.

9. Conclusions

Fast algorithms for performance estimation allow to make efficient design space exploration and

to improve the quality and the performance of pipelined scheduling heuristics. In this papers, we

have presented a new method for computing lower bounds on the iteration time and on the

4 ✛ , 2 ❋ P 7 18 7 18 0

4 ✛ , 1 ❋ P 8 20 8 20 0

3 ✛ , 1 ❋ P 9 22 9 20 2

Table 8: Fifth order digital wave filter with no LCD’s

RC IIUB ITUB IILB ITLB ITUB - ITLB
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initiation interval of pipelined datapath implementations under functional unit constraints. The

method handles behavioral description containing loop statements and timing constraints. And it

handles implementations with operation chaining, multicycle operations, and pipelined functional

units. Based on an efficient relaxation of the general pipelined scheduling problem, we have

developed lower-bound algorithms with complexities of (  and ). The dual

problem of computing lower bound on the resource requirement to achieve a target performance

can be solved using the same method. Applications of our approach are not limited to the area of

high level synthesis, it can be used in different areas of computer design where functional

pipelining and loop folding are used.

O ( O 2) O(m O 2)⋅
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Appendix A

Algorithm: Greedy-scheduling 

Input:  instance of the system  with a fixed value of S, set of resources

output: optimal value of the objective function z of  

begin

Sort operations  by the increasing values of ;

Assign each operation  to the first step  after  which contains a free resource;

 ;

end
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Minimize  z  subject to:
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Appendix B

The following proposition is used in the proof of Theorem 3.

Proposition 1

(a) For any value of z in PRU(S), the maximal number of operations  of a type  such that all

the values of  belong to a same integer interval of size , is less or equal to . Where 

is by definition the number of operations  of type  in PRU(S). 

(b) If there exist two operations  and  in the system PRU(S) such that the corresponding

values  and  belong to a same integer interval of size , then .

Proof:

(a) By Equations (27) and (31) we have:

 (32)

  

⇒ (33)

From (32) and (33) we deduce:

Thus, for any integer interval of size , it is not possible to have two operations  and 

such that both values  and  belong to this interval. As by definition the number of

operations  of the same type r and for a fixed index j is equal to , then the number of

operations  having  included in the same interval of size  is less or equal to .

(b) From Equation (30) we have:

⇒

⇒  (34)

From (34) we deduce that if there exist two operations  and  such that and

belong to a same interval of size II, then . ❑
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Theorem 3: ,  

Proof:

The proof is by contradiction. Suppose that the optimum value of the objective function of

is equal to , and that  is also an optimum solution of for  but not for

. This implies that if we fix z to  in the constraint (27) of the system

, and we use the greedy algorithm (given in appendix A) to schedule operations

 under resource constraints, then no feasible solution can be found. We will prove that such

case cannot happen.

Let be  the first operation which can not be scheduled before its latest starting time  due

to the lack of resources, and let r the type of . Depending on the number of resources already

used between the control steps ( ) and , we distinguish two cases.

Case 1 In every control step of the interval  all the  resources are used.

Since by Theorem 1, the value of II must satisfy , we deduce that there are at least

 operations already scheduled in this interval. Thus, there are at least operations ,

including the operation , such that their values  belong to the interval

. This is in contradiction with Proposition 1.(a)

Case 2 There is at least one control step  in  which contains free resources.

As we use the greedy scheduling technique, all operations scheduled after the control step  have

the values of  strictly greater than . Let  be the set of operations  already scheduled

inside the interval . Since it was not possible to schedule operation  before the

control step , it implies that the following system  does not admit a solution:
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where ,  and the set of constraints have the same meaning as in the system PRU(S).

As the size of the interval is less than , from Proposition 1.(b) we deduce that for

any pair of operations which belong to the set  we have . By

substituting in the system  the smaller index  by  and the index  by , we obtain an

equivalent system which is completely included in the system . This is in contradiction

with the hypothesis that has a solution. ❑
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