
AN EFFICIENT VERIFICATION METHOD
FOR A CLASS OF MULTI-PHASE SEQUENTIAL CIRCUITS

François-R. Boyer1, El Mostapha Aboulhamid1, and Yvon Savaria2

1 DIRO, Université de Montréal, 2920 Chemin de la Tour,
C.P. 6128, Succ. Centre-Ville, Montréal, Québec, Canada, H3C 3J7

{boyerf, aboulhamid}@IRO.Umontreal.CA
2 DGEGI, École Polytechnique de Montréal, Québec, Canada

savaria@VLSI.PolyMtl.CA

ABSTRACT: Currently, many optimizations of
sequential circuits, even as simple as retiming, are
avoided due to the lack of verification tools that support
them. Doing general sequential equivalence to compare
the circuits is impractical for circuits of a reasonable
size. On the other hand, combinational optimization is
part of the design process, because tools and methods
are available to ensure correctness and verify
combinational circuits. We present a practical method
to verify sequential circuits equivalence using
combinational equivalence on a transformed circuit of
the same size, for a class of circuits. The constraint
imposed is that for each loop in the circuit, there must
be a point in both circuits that are in correspondence.
The circuits can have a different number of clock
phases, and they can be transformed by other
scheduling algorithms than retiming and multi-phase
retiming.

1. INTRODUCTION

Synthesis and optimization of sequential circuits derive
an implementation by a transformation of the initial
specification, this transformation has to be verified to
assert the conformance of the implementation to the
specification. If no information is known about the
transformation, a general sequential equivalence
method must be used, and this can be impractical for
circuits of a reasonable size. This means that
transformations must have some known properties to be
able to verify them in a practical time. On the other
hand, to allow the best optimization we would like to
impose as few constraints as possible on these
transformations.
Currently, many optimizations of sequential circuits,
even as simple as retiming, are avoided due to the lack
of verification tools that support them. On the other
hand, combinational optimization is part of the design
process, because tools and methods are available to
ensure correctness and verify combinational circuits.
There are many proposed solutions to the sequential
equivalence problem. Some methods try to solve the
general problem [1][2], but their complexity limits the
size of circuits they can process. Some other methods
will perform verification with constraints on the
transformations, to have a smaller complexity, but they

do not permit to verify multi-phases circuits, as those
produced by the methods presented in [3] and [4].
The method presented by Ashar [5] exposes some flip-
flops in the original circuit, to make the FSM
representing the circuit complete-1-distinguishable,
before the optimizations are applied. Then, to compare
the two FSMs, instead of checking the reachable states
in the product machine (in O(2n+m)), it checks the
reachable states of individual machines (in O(2n+2m)),
where m and n are the number of flip-flops in both
FSMs. This is still impractical.
Huang [6] uses an approach based on ATPG, reducing
the search space to a practical size by finding
equivalence between internal signal pairs. Their goal
was to prove equivalence after retiming only, so the
signal pairs are easy to find, but it may not handle
circuits after resynthesis.
Bischoff [7] presents a method composed of three
conservative algorithms. First, the circuit is cut into
slices manually, then, on each slice, the algorithms are
used from the fastest to the slowest until a proof, or a
counter proof, is found. The simplest algorithm is
normal combinational equivalence checking, which
does not allow any sequential elements. The second
algorithm uses Timed Ternary BDD to represent
function of inputs delayed by some signal events. It
allows latches with any function as clock input, but
feedback loops are not supported. In addition, different
signals are considered independent, so it cannot be used
for multi-phases circuits, as most of these circuits are
incorrect under those assumptions. If the first two
methods fail, general FSM equivalence is used.
Stoffel [2] simplifies the general FSM equivalence
using a decomposition of the circuit to simplify the
reachable states function. As this decomposition can
take a long time, in practice, an approximation is used
which will give a superset of the reachable states.
Checking with this superset can lead to false negatives.
Aït Mohamed [1] applies model checking to compare
circuits. The idea is to use MDGs instead of ROBDDs,
which permits symbols and uninterpreted functions
instead of converting everything to binary
representation. This may help to avoid the state
explosion problem, but if the number of variables is
large, or if the design is at gate level and cannot be

extracted at a higher level of abstraction, the method
can still take an excessive processing time.

Ranjan et al. [8] presented a verification technique
which permits retiming combined with combinational
optimization sequential synthesis for a class of circuits.
In particular, they require certain constraints to be met
on the feedback paths of the latches involved in the
retiming process. For a general circuit, these constraints
can be satisfied by forcing some latches to be
immovable. Equivalence checking after performing
repeated retiming and resynthesis on this class of circuit
reduces to a combinational verification problem. This
paper shows that this class can be extended and that no
latches have to be immovable. The proposed method is
mainly an extension of [8], with the following
contributions:
− The class of circuits is extended to cover those

obtained by general scheduling methods, as those
used in software pipelining, instead of retiming. The
class of retimed circuits being a strict subset of the
class we cover.

− The method permits to verify multi-phase circuits, as
opposed to single phased sequential circuits.

− The new method does not require any constraints on
the position of registers, thus allowing more
optimization.

− Rational time can be handled instead of integer time.
Not handling it would require that schedules with
rational times be converted to integer time, which
may slow the circuit or demand to use loop
unrolling.

However, some point must be observable for each loop
in the circuit graph. That is, the correspondence
between a signal in the original circuit and in the circuit
to verify must be known at one point in each sequential
loop of the circuit. If the method is applied more than
once, we should keep a set of correspondence points
between successive iterations, otherwise we may be
unable to complete the verification. Nevertheless, there
may not be any known correspondence between the
original circuit and the final one.
Section 2 introduces the circuits and the class of
transformations we want to process. Section 3 presents
the method for single-phase circuits, proposed by
Ranjan et al. [8]. A similar method is then developed
for multi-phase circuits in section 4, and a method to
consider gate delays, which needs more attention when
there is more than one clock phase, is developed in
section 5. A complete example of our verification
method applied to a multi-phase circuit is presented in
section 6.

2. PRELIMINARIES

A circuit is modeled as a set of gates (any calculation
element without memory) interconnected by wires that
can have memory elements on them. The memory

elements are edge-triggered flip-flops and are often
called registers. All registers have clocks with the same
period, which is considered to be the time unit.

2.1 Combinational Optimization
Between registers, the combinational circuit can be
changed for an equivalent one. This transformation
does not change the state space, but changes the
topology of the circuit. In addition, the intermediate
results are not the same, and the signals may not be
equivalent anymore, except for those going in and out
of registers.

2.2 Retiming
For circuits with a single clock, the retiming technique,
presented by Leiserson and Saxe [9], permits to move
registers.
Retiming can be seen as a displacement assigned to
each gate, which removes registers from one side and
puts them on the other. As shown in Fig. 1, retiming of
+1 for some gate means "remove one register of each
output of the gate and add one to each of its inputs".
This transformation does not change the behavior of the
circuit, but it changes the time at which calculations are
made, moving them from one clock cycle to the other.
This also changes the state space, which makes some
verification methods unusable.

+1

-1

Fig. 1. Primitive retiming operations.

2.3 Fractional “Retiming” and Software Pipelining
It is not possible to move a fraction of register, but we
can have multiple clock phases and apply a retiming of
one phase instead of a whole cycle [4]. As an
alternative, we can place registers and then activate
them at the right time using different phases [3]. These
methods permit, in some cases, to have circuits with
higher throughput than with optimal retiming.
The method we presented in [3] uses modulo
scheduling, known in software pipelining, to find an
optimal schedule for the operations in the circuit. As
this schedule can have fractional time, multiple clock
phases are used to implement it. The method is
illustrated using the simple circuit of Fig. 2.
The maximal throughput (minimal period) is found
using a known algorithm to solve minimal cost-to-time
ratio cycle problem, the cost being the number of
registers and the time being the combinational delays.
That cycle is shown in gray on Fig. 2, and has a
throughput of 1/10 which gives a period of 10. Note that
the best possible period that can be obtained by
retiming for this example is 13, which is the optimal
period if a single-phase single clocked circuit
implementation is targeted.
Then, a valid schedule with that period (10 in our
example) is found using Bellman-Ford’s longest path
algorithm, where the weights on the edges are the delay

of the source vertex minus the number of registers times
the period (wl(eij) = d(vi) − P w(eij)), as shown on Fig.
3. The schedule of a vertex relative to the origin used
for the longest path is the length of the path. The As
Late As Possible and As Soon As Possible schedules
relative to v1 are in Table 1.
To place back registers, and find their clock phase, we
use a graph for which the weights on the edges are the
time between the start of an operation and the start of
the operation that needs its result. More formally, the
weight ws(eij) = s(vj) − s(vi), where s(vi) is the schedule
of vertex vi. To minimize the number of registers, they
are only placed to cut any path that is longer than the
period. We give a linear time method that provides
good register placement, although the number of
registers is not necessarily minimal.
The register placement is shown on Fig. 4. The phase is
the distance of the register from the reference point,
divided by the period. The phase relative to register ‘e’
is the fraction besides each register on Fig. 4.
An attractive feature of this method is that it permits to
place registers almost anywhere without changing the
speed of the circuit (if we neglect the propagation delay
through latches). In fact, in the context where clock
skews and registers delays are not yet considered,
registers can always be added, but, of course, they can’t
always be removed. The added registers will be used
only during the proof, so they can be considered
perfect. If real registers are to be added, more
precautions should be taken. To add a register, you
simply place it on the input of an operation. Then, to
find the phase, you add to the phase of some register the
length of the path from that register to this new one,
divided by the period, and take only the fractional part
of the result. For example, in Fig. 4, to place a register
between v3 and v5, you place it just before v5 and the
distance from ‘a’ being 3, the period being 10 and the
phase of ‘a’ being 6/10, the resulting phase will be 9/10.

7

3 3 3 3

77

0

a1 b1 c1 d1v1 v2 v3

v5v6v7

v8

v4

Fig. 2. A simple circuit. Delays of “gates” are shown
on them.

3
-3

0
0

-7
7

-14
14

-21
14

-11
11

-4
4

10
-10

-10 -7 -7 -7

3

77
7

3 3 3

v1 v2 v3

v5v6v7

v8

v4

Fig. 3. Longest paths from/to v1 which are the ASAP
and (minus) ALAP schedules.

Table 1. Schedules and mobility relative to v1.

Vertex 1 2 3 4 5 6 7 8
ASAP 0 -7 -14 -21 -11 -4 3 10
ALAP 0 -7 -14 -14 -11 -4 3 10

Mobility 0 0 0 7 0 0 0 0
Interval 0 -7 -14 [-21,-14] -11 -4 3 10

0 3 3 10

3

77
7

3 3 3

v1 v2 v3

v5v6v7

v8

v4

e a b

cd

f
0 6/10

6/10

6/10

3/10

6/10

Fig. 4. Register placement for the schedule, with their
clock phase.

3. SINGLE-PHASE CIRCUITS

For circuits where all registers are controlled by a single
clock, an efficient verification method has been
presented by Ranjan [8]. That method permits to verify
equivalence with the original circuit after optimization
by retiming and resynthesis (combinational
optimization). In this section, we summarize the
principal concepts presented in [8], which will then be
extended to multi-phase circuits in the next section.
The idea is to first transform the circuit to an acyclic
representation, then to apply the optimizations on that
representation. Finally, to verify the equivalence, both
the original and the optimized circuit, in acyclic
representation, are transformed to combinational
representations and are compared by a combinational
equivalence checker.

3.1 Acyclic Sequential to Combinational
In a circuit without loop, the outputs depend only on the
inputs. However, because the circuit can contain
registers, the output will depend on the inputs at
multiple, but finite, different moments. As there is only
one clock phase, the time is an integer (the number of
cycles).

Clocked Boolean Functions (CBF)
The CBF is a combinational representation of a
sequential circuit. It gives the expression for the output
in function of time.
For a signal s, the CBF s(t) at time t is :
− If s is the output of a gate G with inputs y1...yn :

s(t) = fG(y1(t), ..., yn(t))
− If s is the output of a register : s(t) = y(t − 1)
− If s is a primary input : s(t) is independent of s(t’)

for t ≠ t’
For example, to get the CBF of the circuit in Fig. 5, we
proceed as follows. The CBF of each part is:

o(t) = c(t) ⋅ d(t)
d(t) = c(t−1)
c(t) = b(t) ⊕ a(t)
b(t) = a(t−1)

Then we substitute everything in o(t) to have o(t) =
(a(t−1) ⊕ a(t)) ⋅ (a(t−2) ⊕ a(t−1)).
The CBF gives the behavior of the circuit at steady-
state, which is when all registers have correct values
(after the initialization phase).

THEOREM 1. Canonicity of CBF. [8]
If C1 and C2 are acyclic sequential circuits, where all
registers are activated at the same time, and F1 and F2

are their CBFs, then we have that F1 ≡ F2 ⇔ C1 ≡ C2.
The equivalence between F1 and F2 being
combinational while the equivalence between C1 and C2
is at steady-state.

a b
c d o

Fig. 5. An acyclic circuit.
Its CBF is o(t) = (a(t−1) ⊕ a(t)) ⋅ (a(t−2) ⊕ a(t−1)).

3.2 Circuits with loops
When a circuit contains feedback loops, they must be
broken to make the circuit acyclic before its CBF can be
computed. The method does not accept purely
combinational loops, so there is at least one register in
every loop. A certain number of these registers are
chosen as cut points, and made observable. The outputs
of the chosen registers are now considered as primary
inputs to the circuit. The cut points must be the same in
the original circuit and the optimized one, so the cut is
done before applying optimization transformations.
This will put constraints on the possible
transformations, as we cannot move a register used as a
cut point. Therefore, we may want to use a minimal
cut, to reduce the constraints. Once the acyclic version
of the circuit has been optimized and verified (with the
CBFs), it is “glued back” to have an optimized and
verified cyclic circuit.

4. MULTI-PHASE CIRCUITS

Our objective is to verify sequential circuits with
multiple clocks, but all having the same period. Some
reference time is arbitrarily fixed (often the activation
time of some register) and each register has an
activation time, in the clock period, relative to that
reference. Without loss of generality, the clock period
is considered to be the time unit, so the activation time,
which is the clock phase, will be a fraction in the
interval [0,1[. For example, a register can be activated
at time 0 and another at time 1/2. Because events are
periodic, and the period is 1, the register activated at
time 1/2 is also activated at time 1 1/2, and at time 2 1/2...
Registers are modeled as instantaneous, that is, if a
register is activated at time 4, it’s content will have the
old value until time 4, excluded, and the new value
from time 4, included. The new value being the value
of its input just before the activation time. Note that
using the period as the time unit will make it easier to

compare different implementations with different
period lengths.

4.1 Acyclic Sequential to Combinational
Using the same idea as for single-phase circuits, output
signals can be defined as functions of time, but here the
time will be a rational number instead of an integer.

Fractional CBF
From the register model described above, a register that
has y as input, and that is activated by the clock phase
φ , will have as output:

s(t) = y(t − φ + φ − ε)
This means that s(t) = y(t − ε) if the fractional part of t
is φ, and it will keep that value for a whole cycle, until
t + 1, where it will take the new input value. The value
ε can be seen as a positive rational smaller than the time
resolution in the system under consideration. In other
words for every possible time t in the system
t−ε = t − 1.
For the combinational elements, it is exactly as in the
single-phase CBFs described in section 3.1. For inputs,
it is slightly different, because the phase at which the
input changes must be known. Like for the registers,
the inputs are changing only once per cycle, at a
specified phase. The following can be said of an input s
which changes on phase φ :

s(t) = s(t − φ + φ)
and s(t) is independent of s(t’) for t − φ ≠ t’ − φ

Simplification of Floor Operators
If the construction just described is applied blindly,
there will be many floor operators everywhere in the
expression.
Here are formally defined rules sufficient to simplify
the generated expressions. The Simp function does the
simplification using the following rules:

Simp(x + y) = Simp(x) + Simp(y)
Simp(−ε) = −1
Simp(x−ε) = x − 1 When x is a constant.
Simp(f) = Map(Simp, f) For each argument of a

function.

These simple rules will be used to simplify the
description of a circuit. At the end of the description of
both circuits (original and transformed one) the
expressions at the cut points will be single-phased. The
problem is then completely reduced to comparison
using integer time, which is the work presented in [8].

4.2 Circuits with Loops
As with single-phase circuits, loops are broken to have
an acyclic circuit before its CBF is computed.
However, with multi-phase circuits, it is possible to cut
anywhere, if verification in multiple steps is permitted.
Having multi-phase circuits, as those presented in [3],
makes it possible to add registers anywhere, as
explained in section 2.3. This permits to add a register
where a cut is requested, and then prove locally that this

does not change the behavior of the circuit. The cut
points can then be chosen anywhere, but we may want
to minimize the number of cuts, to minimize constraints
on the transformations, or choose some place that seems
to be optimized as much as we can.

Local CBF and Local Proofs
To do local proofs, instead of making the CBFs going
from outputs to the primary inputs of the circuit, a CBF
is made from a register to its predecessors. A register a
is considered the predecessor of b if there exists a path
from a to b without going through a register. The local
CBF of each register can be found even if there are
loops in the circuit, as there are no combinational loops.
To prove that adding, or removing, a register does not
change the behavior of the circuit, the local CBFs can
be used. The local CBF for the concerned register and
the local CBFs of all registers of which it is the
predecessor are found, when the register is there and
when it is removed. Then we prove that the CBFs are
equivalent.

Multiple Steps Proof
Performing proofs in multiple steps, instead of a single
global proof, gives a better choice for cut points. The
circuit can be cut anywhere and then optimized without
necessarily having a register on the cut point, neither in
the original circuit nor in the optimized one. In that
case, no register has a fixed position. This gives a
greater freedom for optimization, and may result in
better circuits. In addition, single-phase circuits can
also be considered as multi-phase circuits, to be able to
do local proofs at the beginning and at the end of the
whole proof, even if the final circuit has to be single-
phased. Local proofs at the beginning show that adding
registers at the cut points does not change the behavior
of the circuit, while the proofs at the end are there to
show that removing those registers is also correct. In
certain cases, depending on the optimizations done, the
added registers cannot be removed and must be kept in
the final circuit.

5. CONSIDERING GATE DELAYS

All the discussions so far assume that the clock period
gives enough time for combinational circuits to
compute the next values of registers. Of course, a
complete proof should also check the delays and we
present the simple delay model we are using.
For a combinational circuit that computes s = F(y1,
y2,...). If the short path takes at least min units of time,
and the long path takes less than max units of time, s
can be given in function of time as follows:

s(t) = F(y1(t−min), y2(t−min),...) If y1... are steady
on]t−max, t−min].

Undefined Otherwise.
With a delay model where min = 0, we can say that s(t)
= F(y1(t), y2(t),...) if inputs are steady from time t−max.
That is exactly the s(t) which we used in the CBFs, so it
is only required to prove, for each local CBF, that the

inputs are steady for at least max units of time before
the clock phase. This also shows that our CBFs are not
always correct in a delay model where min > 0. That is,
it may not be able to prove equivalence of wave-
pipelined circuits. The general case s(t), shown above,
must be used in the CBFs if those circuits are to be
verified.

6. EXAMPLE OF PROOF

We will verify that the optimized circuit of Fig. 4 is
equivalent to the original circuit of Fig. 2. In the
original circuit, the four registers (a1, b1, c1 and d1) are
all activated by the same clock, and after optimization,
the circuit has six registers and three phases (0, 3/10 and
6/10). For this proof, we will consider that each function
is different and unknown. The functions will be named
by the vertex name, possibly followed by a letter, to
indicate outgoing edge to which it is associated, and
then an ‘f’. The output of a vertex is noted as its
function but without the ‘f’ and different caps are used
to distinguish circuits. The output of a register is
simply noted by the name of the register. Using this
notation, and simplifications rules from section 4.1, we
used Mathematica to find the CBF for each circuit,
using register a1/e as cut point. Then we asked
Mathematica to prove that they are equivalent.
The Mathematica session is presented on Fig. 6. First,
the rules are entered as is. Note that the rules are not
added to the “Simplify” of Mathematica, so that only
the entered rules, and constants evaluation, will be used
to simplify the expressions. Instead of redefining the
equality, to be able to compare primary inputs
according to the rule, we add a simplification rule, for
each primary inputs, that maps equal inputs to the same
expression. Therefore, simplification applied to a
primary input will give the expression at the time it last
changed. The rules for combinational elements,
registers and primary inputs used for the description of
the multi-phase circuit are from Section 4.1, and those
for the single-phase circuit are from Section 3.1.
Now we want to prove that if ‘a1’ and ‘e’ have the same
value then the next value of ‘a1’ will also be the same
as the next value of ‘e’. To do that, the expressions are
compared, but we must ensure to compare using the
right times. As the time unit is the period of the circuit,
the time is already scaled for the comparison, but there
may be a phase offset. After simplification, the
expression for ‘e’ has only one phase, as it is the output
of a single register, but for the expression to be equal to
that of ‘a1’ we must ensure that they are compared at
their according phases. Once they are in phase, any
combinational equivalence tools, as those used by [8],
can be used to compare the expressions. Here we use
Mathematica to compare the next values assuming that
they are currently equal.

7. CONCLUSION

We have shown that it is possible to verify the
equivalence between multi-phase circuits in a
reasonable amount of time, if some points are kept
observable. These points, on the other hand, do not
have to be on registers if we accept to have proofs in
multiple steps. All the proofs that are done are
equivalence between two combinational expressions,
which is much faster, in general, than equivalence
proofs on sequential circuits. Since the final expressions
contain only integer time, we have reduced our problem
to the verification problem resolved in [8]. From that,
we deduce that the experimental results will give the
same execution time as in [8].
Therefore, the presented method permits more
optimizations, with multi-phase circuits, and these
circuits are still verifiable.
To have better optimizations, a resynthesis method
specially designed for the multi-phases circuits should
be developed. In addition, some work could be done on
how the circuit should be cut to have the desired
freedom for optimization.

8. REFERENCES

[1] O. Aït Mohamed, E. Cerny, and X. Song, “MDG-
based Verification by Retiming and Combinational
Transformations”, IEEE Great Lakes Symposium on
VLSI, Lafayette, Louisiana, Feb. 19-21, 1998.

[2] D. Stoffel, and W. Kunz, “Record & Play: A
Structural Fixed Point Iteration for Sequential
Circuit Verification”, IEEE/ACM Int. Conf.
Computer-Aided Design, San Jose, CA, Nov. 9-13,
1997.

[3] F. R. Boyer, E. M. Aboulhamid, Y. Savaria, and I.
E. Bennour, “Optimal design of synchronous
circuits using software pipelining techniques”, IEEE
Int. Conf. Computer Design, Austin, TX, Oct. 5-7,
1998, pp. 62-67.

[4] A. T. Ishii, C. E. Leiserson, and M. C.
Papaefthymiou, “Optimizing two-phase, level-
clocked circuitry”, Journal of the ACM, vol. 44, no.
1, Jan. 1997, pp. 148-199.

[5] P. Ashar, A. Gupta, and S. Malik, “Using Complete-
1-Distinguishability for FSM Equivalence
Checking”, IEEE/ACM Int. Conf. Computer-Aided
Design, San Jose, CA, Nov. 10-14, 1996.

[6] S. Y. Huang, K. T. Cheng, and K. C. Chen, “On
Verifying the Correctness of Retimed Circuits”,
IEEE Great Lakes Symposium on VLSI, Ames,
Iowa, Mar. 22-23, 1996, pp. 277-280.

[7] G. P. Bischoff, K. S. Brace, S. Jain, and R. Razdan,
“Formal Implementation Verification of the Bus
Interface Unit for the Alpha 21264 Microprocessor”,
IEEE/ACM Int. Conf. Computer Design, Austin,
TX, Oct. 12-15, 1997.

[8] R. K. Ranjan, V. Singhal, F. Somenzi, and R. K.
Brayton, “Using Combinational Verification for

Sequential Circuits”, Design Automation and Test in
Europe, Munich, Germany, Mar. 9-12, 1999.

[9] C. E. Leiserson, and J. B. Saxe, “Retiming
synchronous circuitry”, Algorithmica, vol. 6, no.1,
1991, pp. 3-35.

Fig. 6. Mathematica session of the proof: returns True.

