
– 1 –

Multiple Stuck-at Fault Diagnosis in Logic Circuits

Younès KARKOURI, El Mostapha ABOULHAMID

Dép. d'informatique et de recherche opérationnelle

Université de Montréal, C.P. 6128, Succ. "A"
Montréal, (Québec), H3C-3J7, Canada.

ABSTRACT
 A new method to fault diagnosis in combinational circuits is
presented. We consider multiple stuck-at-(0/1) faults at the gate
level. We introduce the concept of frontier faults which reduce
the number of faults to consider and are equivalent to the set of all
multiple faults; however, we do not enumerate all the possible
multiple faults. The diagnosis is performed in two consecutive
steps. Forward propagation that determines, for each line in the
circuit, its fault free value and the potential effect(s) from other
faulty lines that can propagate to it. Backward implication is
performed from the primary outputs toward the primary inputs
and determines, given the circuit response, the value(s) carried by
each line. Some of the deduced values imply that either the line is
not faulty, the subnetwork driving the line contains fault(s), or the
line itself is faulty. The method uses the concept of Parallel-
Pattern-Multiple-Fault-Propagation which allows to analyze
simultaneously bit strings of responses. It was applied to
benchmark circuits from ISCAS‘85 and '89 sets, to locate faulty
and fault-free lines in a reasonable cost.

1. INTRODUCTION

 A digital circuit fails when its observed behavior is
different from its expected one. If the circuit is to be
repaired or the used designing process is to be corrected,
we have to locate (diagnosis) the cause of the errors [2, 10].
First, we transform the circuit into a model that facilitates
its analysis and simulation while preserving its logical
nature. Second, to counteract the large magnitude of
considering all physical failures affecting the circuit
components, we model many of them as a set of logic lines
permanently stuck-at the value 0 or 1 at the gate level [4].
Therefore, a circuit consisting of n lines may have up to 3n-
1 possible multiple stuck-at faults, making it impractical to
deal with all the possible ones. Some of the works assume
that, after manufacture, the circuits are frequently tested so

 The work is supported by NSERC MEF Grants No. MEF0040113 and
OGP0000861. The experimental work is carried on workstations from the Canadian
Microelectronics Corporation.

they don't contain more that one fault at a time (single fault
model). However, this frequent test strategy was shown to
be inefficient in the presence of redundant faults [9], when
a defect appears as a multiple fault, or when test sets are
incomplete [11].

 Since, there has been a great interest in multiple faults
diagnosis in combinational circuits represented at the gate
level, and the methods presented in the literature tackle the
problem using classes of equivalent faults rather then the
set of all multiples faults [3, 7]. In our case, we consider
that a fault is easier to observe when it is closer to a
primary output, so we delay the effect of equivalent faults
as far as possible to be nearest the primary outputs [15]. In
this way, we reduce considerably the number of multiple
faults which have to be dealt with.

 We present in this paper a method for multiple fault
diagnosis based on the conservative approach to fault
analysis [15]. The fault analysis method determines, for a
given test set, the lines that are not faulty in order to
observe the fault free response only, while this diagnosis
method determines in addition the lines that are faulty
when the observed response is erroneous.

 Our approach to diagnosis uses an early detection of
faults which makes it different from the previous ones [1,
3, 7, 8]. Given an input vector and the corresponding
response, our method identifies faults that are either
detected, or that may be detected if there sites are not
hidden by still undetected faults. A fault is said detected if
we determine its presence or absence in the circuit under
test (CUT) in order to produce the corresponding erroneous
response. This early detection of faults makes our
algorithm much simpler than methods requiring fault
enumeration [7], backtracking [1], or pairs of vectors [8].
Also, since all equations used in our system are Boolean,
they are implemented on bit strings. This allows us to

– 2 –

perform diagnosis with up to 32 bits simultaneously [16]
(typically the length of a machine word) while considering
all multiple faults, resulting in a parallel-pattern-multiple-
fault-propagation, and thus a very efficient
implementation. The method was applied to benchmark
circuits from [5, 6] and gives an order of magnitude speed
improvement over existing methods. None of the methods
presented in [1, 3, 7] have reported benchmark results on
these circuits.

 The rest of this paper is organized as follows: in
Section 2, the fault model is described, Section 3 presents
the diagnosis method and a complete example, and finally,
experimental results are presented in Section 4.

2. THE FAULT MODEL

 Based on the circuit topology, we perform fault
collapsing to reduce the number of faults to deal with.
Therefore, restricted combinations of the remaining faults
in the CUT constitute the set of frontier faults that are
equivalent to all multiple faults.

2.1. Fault Collapsing

 We assume that faults occur on circuit lines only; the
gates are assumed to perform fault free functions. We
consider one fault to be the representative of an equivalent
class of faults. The effect of this fault is delayed to be
closer to the primary outputs. For example, if there is a s-a-
0 on an input of an AND gate, we remove it and place it on
the output. We do not have to consider, for example, that
all the inputs of an AND gate are simultaneously s-a-1,
because we assume an equivalent s-a-1 fault at the output
of the gate. The following faults are considered after
collapsing [15]:

• s-a-1 (s-a-0) on all inputs of any AND/NAND (OR/NOR)
gate (not present simultaneously).

• No fault on the input of an inverter or on a fanout stem.
• s-a-0 and s-a-1 on inputs of XOR and XNOR gates (not

present simultaneously).
• Both s-a-0 and s-a-1 on primary outputs.

2.2. Frontier Fault Model

 We consider all multiple faults consisting of all
combinations of the above faults (excluding simultaneous

faults on gate inputs). We then characterize frontier faults
which are equivalent to all multiple faults.

 In a circuit consisting of n lines, a multiple fault is
represented by a tuple with at most n components and
denoted by f = (fi

α, fj
ß, …), i ≠ j, where fi

α represents the

fault on line i : α = 0 for s-a-0, α = 1 for s-a-1. A line k
missing in the tuple is not faulty in that specific multiple
fault.

 A path from line i to a primary output is said normal if
all lines along this path are normal, i.e., faultless, but the
other inputs to gates along this path may be faulty. Let f =
(fi
α, fj

ß, …) be a multiple fault; then f is a frontier fault iff

for each fault fi
α, there is a normal path from line i to a

primary output. It is shown in [15] that every multiple fault
is equivalent to a frontier fault, thus a test set that detects all
frontier faults will detect all multiple faults.

 According to the previous definition, a frontier fault f
in the circuit under test partitions the lines into three
categories, Stuck Lines, Normal Lines and Hidden Lines,
defined as follows:
- Line i is stuck if fi

α � f.

- Line j is normal if fj
α � f and there is a normal path from

line j to a primary output.
- Line k is hidden if there is no normal path from k to a

primary output.

 The effective values (real values) on hidden lines are
unknown since they are unobservable due to the frontier
fault, and there is no algorithmic way to determine these
values (Normal Path Theorem in [1]). In our case, we
assume that these lines carry fault free values. As it will be
seen in Section 3.2, this assumption does not invalidate the
deductions made during the diagnosis.

3. FAULT DIAGNOSIS

 Given an input vector and its corresponding circuit
response (good or erroneous), the diagnosis is performed in
two consecutive phases: Forward Phase and Backward
Phase. During the forward phase, we evaluate the fault free
circuit, and the CUT line values taking into account any
possibility of propagating faulty values due to the
remaining faults still to be considered. Starting from
primary outputs, the backward phase attempts to deduce
values on lines that produce the corresponding response. A
fault on a line is detected if its deduced value imply that

– 3 –

either the line is not faulty, the network driving it contains
fault(s), or the line itself is faulty. According to our fault
model, the deductions can be made on lines that may be
hidden. However, if we detect the absence of a fault, it is
dropped and cannot be a component of any frontier fault.
In this way, an entire class of frontier faults is dropped at
once (implicit enumeration [1, 8] by proving that a line is
not faulty in order to observe the specific circuit response).

3.1. Forward Phase

 A line i propagates a fault effect if its actual value is
different from its fault free value ni. We model the effect of
a fault on a line i using a propagation bit pi. pi = 1 if line i

may be normal and may propagate a fault effect due to the
fault(s) in the driving network. pi = 0 if under the current

input vector, line i carries the fault free value only or it is
stuck or hidden. We represent the fault free value and the
propagation bit on a line i by ni / pi. We also associate with

each line a state variable si
1 (si

0). si
α = 1 indicates that the

fault s-a-α on line i (i.e., fi
α) can be component of a

frontier fault still to be considered.

 First, all faults remaining after collapsing are
considered simultaneously present in the CUT. The
forward phase starts from the primary inputs (PIs),
computes the fault free values, and propagates fault effects
on the output of the encountered gates. The propagation of
fault effects is based on a conservative evaluation [15]. PIs
are directly controlled from the circuit environment, so we
assume that they carry the fault free values only (their
propagation bits are set to 0). The output of a gate that may
propagate a fault effect is assumed normal, thus we take
into account all possibilities of faulty values on its inputs
and propagate them to its output according to the gate
functionality. The propagation bit on the output of an AND
gate is set to 1 in the following two cases:

(i) All its inputs have a fault free value of 1 and at least
one of them may propagate a fault effect (the gate
output is sensible to any change on its inputs which will
change it to 0), or

(ii) All its inputs that have a fault free value of 0 may carry
a fault effect or may be stuck at 1. Combining all
possibilities of having 1 on the inputs, will change its
output value to 1.

 For all gate types, except inverters, buffers and fanout
stems where the propagation bit is transmitted forward as
is, the equations to compute the propagation bits are
Boolean and all variables (i.e., ni, pi, si

1, si
0) may be

vectors of up to 32 bits. The following equation determines
the propagation bit pout on the output out of a m-input

AND gate (equations for all gate types are presented in the
Appendix):

pout := (ni�
i

).(pi�
i

) + (ni�
i

).((ni+pi+si
1�

i
)).((ni+pi�

i
))

 Fig. 1 shows an example of the propagation bit
computation for an AND gate. The applied input vector is a
= 0 and b = 1. (For clarity purpose, we consider in the
following a single vector; the equation uses patterns of up
to 32 bits). The possibility of a s-a-1 fault on line a,
combined with the fault free value 1 on line b will produce
a faulty value of 1 rather then 0 on the gate output. This
output is assumed to be normal in this case (consistency
with the fault model) and then pout is equal to 1 to indicate

the presence of a possibly faulty value on line out.

Fig. 1. Propagation bit computation for an AND gate.

0/0
0/1

1/0

a

b
out

s1

s1 s1, s0

3.2. Backward Phase

 The forward phase propagates all fault effects to the
primary outputs (POs). The backward phase then starts
from the POs toward the PIs and attempts to deduce values
on the CUT lines that are consistent with the observed
response R on all the POs. The propagation bit po on each

PO o is adjusted by setting it to either 0 or 1 according to
its observed value ro of R. To distinguish between a

propagation bit that is set to 1 during the forward phase and
deduced in the backward phase, we associate with each line
i a bit variable fi called forced bit. That is, pi = 1 in the

forward phase reflects the possibility of propagating a fault
effect, while in the backward phase, fi = 1 means that we
determined the presence of a fault effect (i.e., pi is deduced

equal to 1) on line i. For example, assume that we obtained
during the forward phase no = 1 and po = 1 on a PO o and
the observed response is ro = 0. Hence, the only situation

to observe this value is the presence of the fault effect
which changes the value of o to 0. In this case, the

– 4 –

propagation po is said to be forced and fo is set to 1. The

output is really s-a-v if no fault effect is propagated to it
under the current input vector and the observed response ro
is different from its fault free value. This is computed using
a Boolean state variable faultyo.

 There are cases where the observed response cannot be
modeled in terms of a propagation bit and a line status (si

v),

thus the observed response R could not be generated under
the stuck-at fault model. In such a case, the fault in the
CUT is not equivalent to any permanent multiple stuck-at
fault and the diagnosis is aborted signaling the error.

 When the propagation and/or the forced bit of a PO are
reset to 0 or 1, the corresponding bits of the input lines to
the gate feeding this PO are adjusted in consequence.
These deductions are performed assuming that the gate
output is normal because it may be hidden by a yet
undetected fault. The consistency of this deductions is
proven by considering all the possible status of the gate
output according to the frontier fault model. For example,
if we have reset to 0 the propagation bit on the output of an
AND gate, we try to identify the input responsible of such
fault effect. If such an input exists, say i, we reset its pi to 0

and also drop its fault fi
1 (i.e., by resetting si

1 to 0). On the

other hand, if we determined the presence of a fault effect
on the output of the gate, we try to identify the unique
cause that propagates the faulty value to the output. This
may result in either setting as faulty one of the gate inputs
or in forcing to 1 its propagation bit. All this processing is
Boolean equation based, thus it is performed on 32 input
vectors simultaneously. The resulting equations for all gate
types are presented in the Appendix.
 In the example of Fig. 2, the fault free value on out is 0
and there is a possibility of a faulty value since pout = 1.
We assume that we observe the response rout = 1. The s-a-

0 on out is dropped, and we have the following cases:

(i) Line out is really s-a-1, then lines a and b are hidden,
thus fault free (but any deduction on these lines will
never be contradicted).

(ii) Line out is normal, then we force its propagation bit to
be 1 (i.e., fout = 1) in order to observe the current

response. Therefore, the only way to observe such value
on out is the presence of a fault effect or a fault on line
a, thus its forced bit fa is set to 1. Since line a is a
primary input and pa = 0, then faultyi is true and it is

declared stuck at 1.

The deduction made on line a will never be invalidated,
since a s-a-1 and out s-a-1 could not be components of the
same frontier fault. In subsequent vectors, line out is still
considered as possibly s-a-1, and if we observe a response
rout = 0, then line a s-a-1 is confirmed in order to observe a

1 on out when the test vector a = 0 and b = 1 were applied
to the circuit. On the other hand, if we have determined,
latter on, that out is really stuck at 1, lines a and b are
hidden thus assumed fault free and the consistency of the
deductions (according to the fault model) are still valid.
Note also, that in order to preserve this consistency, the s-
a-1 on line b is dropped when a is declared stuck line,
because both faults cannot be components of the same
frontier fault (we assume an equivalent s-a-1 fault on out).

s1

s1, s0

Fig. 2. Diagnosis deduction example.

0/0
0/1

1/0

a

b
rout=1 => fout=1

Forced

Faulty line

s1x x

 According to our fault model, a deduction can be made
on a line that may be hidden by others faults. However, this
deduction will never be contradicted in subsequent test
vectors, since the line is either declared no more hidden
and then the deduction is valid, or determined hidden thus
cannot influence the analyzed circuit behavior and the
deduction has no effect. Hence, when a line i is declared as
s-a-v (i.e., faultyi is true), the algorithm drops all faults in
the fanout free region driving it because all the lines belong
to such an area are hidden and thus fault free. For
subsequent vectors, the detected stuck lines keep their
stuck value to be consistent with the observed response.
The overall diagnosis method can be summarized in the
following procedure, assuming that we know the response
to each of the vectors in the test set:

procedure Circuit_Diagnosis();
{ Pattern_Length := Read(); /* 1 ≤ Pattern_Length ≤ 32 */
 Pattern_Number := 0;
 while Input_Vectors do
 { Current_Pattern := Read_Pattern(Pattern_Length);
 Pattern_Number := Pattern_Number + 1;
 Observed_Response := Read_Response(Pattern_Number);
 while Faults_Detected do
 { Forward_Phase(Current_Pattern);

– 5 –

 Deduce_PO_Status(Observed_Response);
 if Inconsistency_of_the_Fault_Model then HALT;
 Backward_Phase(Observed_Response);
 /* Drop faults on hidden lines */
 for each i of the new detected stuck lines do
 Drop_FFR_Faults(i);
 }}};

 The input vectors are divided into patterns of
"Pattern_Length" bits each. Each pattern is reapplied to the
CUT as many times as it permits detecting faults.
Benchmark experiments show that a pattern is reapplied at
most 10 times. The forward and backward phases are
performed at each iteration, and are linear time algorithms
in the circuit size. At the end of the diagnosis, the results
obtained are not invalidated in the presence of undetected
or undetectable faults. A fault is detected only if it is not
masked by another fault and its effect produces the
observed response (when its site is not hidden). Some of
the faults may remain undetected because either the
inherent pessimism in the method (due to its conservatism)
reduces the deduction power of the backward phase, the
analyzed test set is not sufficient to detect all faults, or they
are masked by the faults located in the CUT. In order to
remedy the pessimism, we perform event analysis between
adjacent vectors within the same pattern in order to retrace
paths that have propagated an event, thus fault free [15].
This is similar to the event and stem region analysis of [8,
12], however, our method does not make explicit analysis
using sets of pairs of vectors [8] which is impractical when
considering patterns of 32 bits.

3.3. A Complete Diagnosis Example

 In this section, we present a complete example of the
diagnosis that makes the emphasis on the contribution of
our method compared to the existing ones. First, fault
collapsing were performed on the circuit in Fig. 3, and only
restricted combinations of these faults (according to the
definitions in Section 2) constitute the set of frontier faults.
For example, the faults fb

1, ff
1 and fg

1 cannot belong to the

same frontier fault because there is no normal path from b
to the output j.

 In Fig. 3, the circuit is evaluated for the test vector a =
1, b = 0, c = 1 and d = 1. Line e carries a fault effect (pe =

1) propagated from the combination of fb
1 and nc = 1. Line

h also propagates a fault effect emanating from the

combination of na = 1 and either pf = 1 or ff
1. Fault effects

propagate also to i and finally to the primary output j.

s1, s0

a

d

b

c

f

g

h

e

i

j

1/01

0

1

1 1/0

1/0

0/0
0/1

0/1

0/1

1/1

1/1

1/1

Fig. 3. Forward Propagation.

s1

s1

s1

s1

s1

s1

s0

s0

 In the backward phase (Fig. 4), we first assume that we
have observed the value 0 on the output j, i.e., rj = 0. Thus,

we have the following situations:

1: fj
0 � All the other lines are hidden, then any deduction will

never be contradicted.

2: j normal � h = 0 and i = 0:

 2.1: fh
0 and i normal:

 � a and f hidden.
 � g = 1: • fg

1 � b, c and e hidden.

 • g normal � e = 1 � b is stuck at 1.

 2.2 h normal and fi
0:

 � d and g hidden.
 � f = 1: • ff

1 � b, c and e are hidden.

 • f normal � e = 1 � b is stuck at 1.

 2.3 h and i normal:
 � f = 1 and g = 1:

 • ff
1 and fg

1 � b, c and e are hidden.
 • ff

1 and g normal � e = 1 � b is stuck at 1.

 • f normal and fg
1 � e = 1 � b is stuck at 1.

 • f and g normal � e = 1 � b is stuck at 1.

 Since the CUT may contain at most one frontier fault,
each time we reach a line in the deductions, it is assumed
normal in order to deduce on possibly hidden lines. In this
example, we reach line b while considering the path j-h-f-e
or j-i-g-e as normal. When combining the deductions made
in every case, we conclude that line b is either stuck at 1 or
hidden. The equivalent deductions made by our diagnosis
method are based one such cases without, however,
considering each one of them. As illustrated in Fig. 4, these
deductions are performed in 6 steps. For clarity in the

– 6 –

figure, the forced bit of each line is illustrated as an arrow
when it is equal to 1, with circled numbers representing the
step. For example, ni = 1, pi = 1 and if fi is deduced to be

equal to 1, then line i = 0 as done is step 2.

s1, s0

a

d

b

c

f

g

h

e

i

j

1/01

0

1

1 1/0

1/0

0/0
0/1

0/1

0/1

1/1

1/1

1/1

Fig. 4. Backward Deduction.

s1

s1

s1

s1

s1

s1

s0

s0

1

3

4
5

6

rj=0

2

x

2

x

 Table 1 shows the complete diagnosis of the circuit
example in Fig. 3, for the test set T = {t1 = 1011, t2 = 0111,
t3 = 1110} and the response R = 011. The table shows the
current test vector, the corresponding observed response rj,

and the located and dropped fault(s). In fact, we analyzed a
pattern of 3 bits simultaneously, which is a = 101, b = 011,
c = 111 and d = 110 (to show the deduction made on each
single vector, we separate them in Table 1).

Table 1. Diagnosis Example.

T a b c d rj Located Dropped

t1 1 0 1 1 0 fb
1 fj

1, fc
1

t2 0 1 1 1 1 - fj
0, fh

0, fa
1

t3 1 1 1 0 1 - fi
0, fd

1

 After the analysis of this test set, the faults ff
1 and fg

1
are not detected. No algorithmic method can claim the
absence or presence of these faults because they are
redundant. In our case, we were able to declare line b stuck
at 1. In fact, b can be hidden by the frontier fault (ff

1, fg
1)

and this deduction has no effect on the circuit behavior, or
in the absence of ff

1 and/or fg
1, our diagnosis is valid

because line b must be s-a-1 in order to observe the
response R = 011. This early detection of faults is allowed
using the frontier fault model and makes our method to
diagnosis efficient compared to the existing ones [1, 3, 7, 8]
which cannot get such deductions.

4. EXPERIMENTAL RESULTS

 We have define the fault coverage according to our
fault model and fault detection strategy. For a circuit of n
lines, there are 2n possible faults. Therefore, the coverage
is defined as the ratio of faults detected to 2n possible
faults. For example, in the circuit of Fig. 4, the total
number of faults is 18. After the analysis of the responses,
one fault was located and 15 faults were dropped, i.e., 16
faults were detected among the 18, leading to 88.9% fault
coverage.

 The diagnosis experiment is performed as follows:
First, given a test set, a separate tool simulates the circuit
with a randomly injected frontier fault consisting of several
faults, and we collect the circuit response. The diagnosis is
then started, assuming the possible presence of all faults,
and for each input pattern of 32 bits and its response, we
perform forward and backward sweeps. The goal is to
locate correctly the faults of the injected frontier fault, and
to drop all the other ones that are not present in order to
produce the analyzed response. The faults remaining after
diagnosis are either masked, dominated or equivalent to the
located ones, if any.

 Table 2 summarizes the results obtained from several
experiments on some benchmark circuits from [5, 6].
Circuits in [5] are assumed to be fully scannable and are
transformed into combinational ones. The table gives the
circuit name, the number of faults remaining after
collapsing, the number of randomly injected faults
("inject."), the test size corresponding to the total number
of single vectors, the coverage as defined earlier and the
total CPU time in seconds (on a SPARC-Station 2) to
analyze the responses of the whole test set. For example,
for the c880 we collected the responses of 160 input
vectors when a frontier fault consisting of 5 faults was
injected in the circuit. Then diagnosis analyzed these
responses assuming the possibility of all faults. At the end,
the faults of the injected frontier fault were correctly
located, and all the other ones were dropped. This was
performed with 5 patterns of 32 bits each (160�32), and it
took only 2.51 seconds to get this diagnosis result.

Table 2. Diagnosis Experiments.

Circuit Faults Inject. Test
Size

Coverage CPU
Time

ALU 175 0 16 100% 0.10s

– 7 –

ALU 175 1 16 99.4% 0.15s
c432 246 1 166 98.1% 1.21s
c880 692 5 160 100% 2.51s
c1908 1109 2 1569 96.3% 37.0s
s838 589 4 118 99.5% 1.34s
s953 717 6 183 99.0% 2.89s
s1196 930 10 705 98.8% 11.42s
s1488 1334 0 282 100% 8.56s
s1488 1334 8 282 94.1% 10.21s
s38584 28407 9 495 95.0% 6mn 8.2s

 For the ALU (74LS181), it is well known that 16
vectors detect all multiple faults [14]. When the observed
response R is equal to the fault free one, the pattern of 16
vectors was repeated 5 times to cover all multiple faults in
only 0.1 seconds. When a frontier fault consisting of a
single fault is injected, the 16-bit pattern was repeated 9
times to locate the fault, and drop all the other ones except
2 which were masked by the located fault. For the other
circuits, the test sets consist of compacted tests for single
faults from [13]. Some vectors are repeated in the test set in
order to increase the coverage. All the faults of the injected
frontier fault were correctly located by our diagnosis
method, except for the s1488 where 2 among the 8 faults
were not located and they remain as possible in the circuit.
Circuits of large sizes (e.g. s38584 which contains 38584
lines) can also be handled, and the diagnosis is performed
in a very reasonable cost and is an order of magnitude
faster then the existing methods such as the analysis using
pairs of vectors reported in [8].

5. CONCLUSION

 We have presented a fast method to perform diagnosis
in large circuits. It uses concepts from the previously
developed multiple fault analysis [15]. Fault collapsing
reduces the number of faults to deal with and the frontier
fault model allows to detect a fault even if its site may be
hidden by yet undetected faults. This makes the method
efficient enough to determine, nearly all the time, the faulty
sites or equivalent ones in the network. It is also able to
recognize responses not generated under the stuck-at fault
model. The use of Boolean equations and patterns of
vectors speeds up significantly the deductions and is less
time consuming than method requiring clusters of vectors,
backtracking, or fault enumeration.

 If the CUT is to be repaired, it is probed using an
electron beam tester [10], thus our method contributes in
reducing considerably the target area of the IC where the

behavior of interconnections have to be tested. When the
analyzed responses of a test set are equal to the fault free
ones, the method identifies the faults not covered by the
given test set and the lines that are not faulty. In this case, it
performs multiple fault analysis and it is about 10 times
faster than the analysis method reported in [15], since it
analyzes sequences of up to 32 vectors simultaneously.

REFERENCES
[1] M. Abramovici, M.A. Breuer, “Multiple Fault Diagnosis in

Combinational Circuits Based on an Effect-Cause
Analysis.”, IEEE Trans. on Computers, vol. C-29, 1980, pp.
451-460.

[2] M. Abramovici, M.A. Breuer, A.D. Freidman, Digital
Systems Testing and Testable Design, Computer Science
Press, 1990.

[3] D.C. Bossen, S.J. Hong, “Cause-Effect Analysis for
Multiple Fault Detection in Combinational Networks.”,
IEEE Trans. on Computers, vol. C-20, 1971, pp. 1252-1275.

[4] M.A. Breuer, A.D. Friedman, Diagnosis & Reliable Design
of Digital Systems, Computer Science Press, 1976.

[5] F. Brglez, D. Bryan, K. Kozminski, “Combinational Profiles
of Sequential Benchmark Circuits”, Proc. of the Intl. Symp.
Circuits and Systems, 1989, pp. 1929-1934.

[6] F. Brglez, H. Fujiwara, “A Neutral Netlist of 10
Combinational Benchmark Circuits and a Target Translator
in Fortran”, Proc. of the Intl. Symp. Circuits and Systems,
1985,

[7] C.W. Cha, “Multiple Fault Diagnosis in Combinational
Networks”, Proc. of the 16th Design Automation Conf.,
1979, pp. 149-155.

[8] H. Cox, J. Rajski, “A Method of Fault Analysis for Test
Generation and Fault Diagnosis.”, IEEE Trans. on
Computer-Aided Design, vol. 7, no. 7, 1988, pp. 813-833.

[9] A.D. Friedman, “Fault Detection in Redundant Circuits.”,
IEEE Trans. Electron. Comput., vol. EC-16, 1967, pp. 99-
100.

[10] S. Gorlich, H. Harveck, P. Kebler, E. Wolfgang, K. Zibert,
“Integration of CAD, CAT, and Electron Beam Testing for
IC Internal Logic Verification”, Proc. of the Intl. Test Conf.,
1987, pp. 566-574.

[11] J.L.A. Hughes, “Multiple Fault Detection Using Single Fault
Test Sets.”, IEEE Trans. on Computer-Aided Design, vol. 7,
no. 1, 1988, pp. 100-108.

[12] F. Maamari, J. Rajski, “A Reconvergent Fanout Analysis for
Efficient Exact-Fault Simulation of Combinational
Circuits”, Proc. of the 18th Fault-Tolerant Computing
Symp., 1988, pp. 122-127.

– 8 –

[13] I. Pomeranz, L.N. Reddy, S.M. Reddy, “COMPACTEST: A
Method to Generate Compact Test Sets for Combinational
Circuits”, Proc. of the IEEE Intl. Test Conf., 1991, pp. 194-
203.

[14] J. Rajski, “GEMINI - A Logic System for Fault Diagnosis
Based on Set Functions”, Technical Report TR-87-5R,
McGill University, 1987.

[15] A. Verreault, E.M. Aboulhamid, Y. Karkouri, “Multiple
Fault Analysis using a Fault Dropping Technique”, Proc. of
the 21th Fault-Tolerant Computing Symp., 1991, pp. 162-
169.

[16] J.A. Waicukauski, E.B. Eichelberger, D.O. Forlenza, E.
Lindbloom, T. McCarthy, “Fault Simulation for Structured
VLSI.”, VLSI Systems Design, vol. 6, no. 12, 1985, pp. 20-
32.

APPENDIX

DIAGNOSIS EQUATIONS

A. Propagation Bit Computation

• AND/NAND: pout := (ni�

i
) . (pi�

i
) + (ni�

i
) . ((ni + pi + si

1�
i

)) . ((ni + pi�
i

))

• OR/NOR: pout := (ni�

i
) . (pi�

i
) + (ni�

i
) . ((ni + pi + si

0�
i

)) . ((ni + pi�
i

))

• XOR/XNOR: pout := (pi�

i
) + ((ni . si

0 + ni . si
1)�

i
)

B. Deduction Equations

 • AND: (for NAND gates, substitute nout × nout)

fi := 1 ⇔ fout . pout . (ni + nout . pi . (pj�

j≠i
))

pi := 0 ⇔ pout . [(ni . (nj . pj�

j≠i
)) + (nj�

j
)] + (fout . pout . nout . ni)

si

1 := 0 ⇔ (pout . ni . (nj . pj�
j≠i

)) + (faultyj�
j≠i

) + (fout . pout . nout . fi . pi)

 Faultyi := fi . ni . pi . si
1

 • OR: (for NOR gates, substitute nout × nout)

fi := 1 ⇔ fout . pout . (ni + nout . pi . (pj�

j≠i
))

pi := 0 ⇔ pout . [(ni . (nj . pj�

j≠i
)) + (nj�

j
)] + (fout . pout . nout . ni)

si

0 := 0 ⇔ (pout . ni . (nj . pj�
j≠i

)) + (faultyj�
j≠i

) + (fout . pout . nout . fi . pi)

 Faultyi := fi . ni . pi . si
0

 • XOR: with two inputs i and j: (for XNOR gates, substitute nout × nout)

 fi := 1 ⇔ fout.pout.pj . [nout.(ninjsj
1 + ninjsj

0) + nout.(ninjsj
0 + ninjsj

1)]

 pi := 0 ⇔ pout . pj . (nj . sj
0 + nj . sj

1)

 si
1 := 0 ⇔ pout . pj . ni + fout . pout . ni . fi . pi

 si
0 := 0 ⇔ pout . pj . ni + fout . pout . ni . fi . pi

– 9 –

 Faultyi := fi . pi . (ni . si
0 + ni . si

1)

 • Fanout Stem s with n branches i = 1, ..., n :

fs := 1 ⇔ (fi�

i
) + ((fi�

i
 . ∃ normal path from i to a po))

ps := 0 ⇔ (pi�

i
) + ((pi�

i
 . ∃ normal path from i to a po))

