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ABSTRACT   
 A new method to fault diagnosis in combinational circuits is 
presented. We consider multiple stuck-at-(0/1) faults at the gate 
level. We introduce the concept of frontier faults which reduce 
the number of faults to consider and are equivalent to the set of all 
multiple faults; however, we do not enumerate all the possible 
multiple faults. The diagnosis is performed in two consecutive 
steps. Forward propagation that determines, for each line in the 
circuit, its fault free value and the potential effect(s) from other 
faulty lines that can propagate to it. Backward implication is 
performed from the primary outputs toward the primary inputs 
and determines, given the circuit response, the value(s) carried by 
each line. Some of the deduced values imply that either the line is 
not faulty, the subnetwork driving the line contains fault(s), or the 
line itself is faulty. The method uses the concept of Parallel-
Pattern-Multiple-Fault-Propagation which allows to analyze 
simultaneously bit strings of responses. It was applied to 
benchmark circuits from ISCAS‘85 and '89 sets, to locate faulty 
and fault-free lines in a reasonable cost. 

1. INTRODUCTION 

 A digital circuit fails when its observed behavior is 
different from its expected one. If the circuit is to be 
repaired or the used designing process is to be corrected, 
we have to locate (diagnosis) the cause of the errors [2, 10]. 
First, we transform the circuit into a model that facilitates 
its analysis and simulation while preserving its logical 
nature. Second, to counteract the large magnitude of 
considering all physical failures affecting the circuit 
components, we model many of them as a set of logic lines 
permanently stuck-at the value 0 or 1 at the gate level [4]. 
Therefore, a circuit consisting of n lines may have up to 3n-
1 possible multiple stuck-at faults, making it impractical to 
deal with all the possible ones. Some of the works assume 
that, after manufacture, the circuits are frequently tested so 
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they don't contain more that one fault at a time (single fault 
model). However, this frequent test strategy was shown to 
be inefficient in the presence of redundant faults [9], when 
a defect appears as a multiple fault, or when test sets are 
incomplete [11].  

 Since, there has been a great interest in multiple faults 
diagnosis in combinational circuits represented at the gate 
level, and the methods presented in the literature tackle the 
problem using classes of equivalent faults rather then the 
set of all multiples faults [3, 7]. In our case, we consider 
that a fault is easier to observe when it is closer to a 
primary output, so we delay the effect of equivalent faults 
as far as possible to be nearest the primary outputs [15]. In 
this way, we reduce considerably the number of multiple 
faults which have to be dealt with. 

 We present in this paper a method for multiple fault 
diagnosis based on the conservative approach to fault 
analysis [15]. The fault analysis method determines, for a 
given test set, the lines that are not faulty in order to 
observe the fault free response only, while this diagnosis 
method determines in addition the lines that are faulty 
when the observed response is erroneous.  

 Our approach to diagnosis uses an early detection of 
faults which makes it different from the previous ones [1, 
3, 7, 8]. Given an input vector and the corresponding 
response, our method identifies faults that are either 
detected, or that may be detected if there sites are not 
hidden by still undetected faults. A fault is said detected if 
we determine its presence or absence in the circuit under 
test (CUT) in order to produce the corresponding erroneous 
response. This early detection of faults makes our 
algorithm much simpler than methods requiring fault 
enumeration [7], backtracking [1], or pairs of vectors [8]. 
Also, since all equations used in our system are Boolean, 
they are implemented on bit strings. This allows us to 
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perform diagnosis with up to 32 bits simultaneously [16] 
(typically the length of a machine word) while considering 
all multiple faults, resulting in a parallel-pattern-multiple-
fault-propagation, and thus a very efficient 
implementation. The method was applied to benchmark 
circuits from [5, 6] and gives an order of magnitude speed 
improvement over existing methods. None of the methods 
presented in [1, 3, 7] have reported benchmark results on 
these circuits. 

 The rest of this paper is organized as follows: in 
Section 2, the fault model is described, Section 3 presents 
the diagnosis method and a complete example, and finally, 
experimental results are presented in Section 4. 

2. THE FAULT MODEL 

 Based on the circuit topology, we perform fault 
collapsing to reduce the number of faults to deal with. 
Therefore, restricted combinations of the remaining faults 
in the CUT constitute the set of frontier faults that are 
equivalent to all multiple faults. 

2.1. Fault Collapsing 

 We assume that faults occur on circuit lines only; the 
gates are assumed to perform fault free functions. We 
consider one fault to be the representative of an equivalent 
class of faults. The effect of this fault is delayed to be 
closer to the primary outputs. For example, if there is a s-a-
0 on an input of an AND gate, we remove it and place it on 
the output. We do not have to consider, for example, that 
all the inputs of an AND gate are simultaneously s-a-1, 
because we assume an equivalent s-a-1 fault at the output 
of the gate. The following faults are considered after 
collapsing [15]: 

• s-a-1 (s-a-0) on all inputs of any AND/NAND (OR/NOR) 
gate (not present simultaneously). 

• No fault on the input of an inverter or on a fanout stem. 
• s-a-0 and s-a-1 on inputs of XOR and XNOR gates (not 

present simultaneously). 
• Both s-a-0 and s-a-1 on primary outputs. 

2.2. Frontier Fault Model 

 We consider all multiple faults consisting of all 
combinations of the above faults (excluding simultaneous 

faults on gate inputs). We then characterize frontier faults 
which are equivalent to all multiple faults.  

 In a circuit consisting of n lines, a multiple fault is 
represented by a tuple with at most n components and 
denoted by f = (fi

α, fj
ß, … ), i ≠ j, where fi

α represents the 

fault on line i : α = 0 for s-a-0, α = 1 for s-a-1. A line k 
missing in the tuple is not faulty in that specific multiple 
fault. 

  A path from line i to a primary output is said normal if 
all lines along this path are normal, i.e., faultless, but the 
other inputs to gates along this path may be faulty. Let f = 
(fi
α, fj

ß, … ) be a multiple fault; then f is a frontier fault iff 

for each fault fi
α, there is a normal path from line i to a 

primary output. It is shown in [15] that every multiple fault 
is equivalent to a frontier fault, thus a test set that detects all 
frontier faults will detect all multiple faults. 

 According to the previous definition, a frontier fault f 
in the circuit under test partitions the lines into three 
categories, Stuck Lines, Normal Lines and Hidden Lines, 
defined as follows: 
- Line i is stuck if fi

α � f. 

- Line j is normal if fj
α � f and there is a normal path from 

line j to a primary output. 
- Line k is hidden if there is no normal path from k to a 

primary output. 

 The effective values (real values) on hidden lines are 
unknown since they are unobservable due to the frontier 
fault, and there is no algorithmic way to determine these 
values (Normal Path Theorem in [1]). In our case, we 
assume that these lines carry fault free values. As it will be 
seen in Section 3.2, this assumption does not invalidate the 
deductions made during the diagnosis. 

3. FAULT DIAGNOSIS 

 Given an input vector and its corresponding circuit 
response (good or erroneous), the diagnosis is performed in 
two consecutive phases: Forward Phase and Backward 
Phase. During the forward phase, we evaluate the fault free 
circuit, and the CUT line values taking into account any 
possibility of propagating faulty values due to the 
remaining faults still to be considered. Starting from 
primary outputs, the backward phase attempts to deduce 
values on lines that produce the corresponding response. A 
fault on a line is detected if its deduced value imply that 
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either the line is not faulty, the network driving it contains 
fault(s), or the line itself is faulty. According to our fault 
model, the deductions can be made on lines that may be 
hidden. However, if we detect the absence of a fault, it is 
dropped and cannot be a component of any frontier fault. 
In this way, an entire class of frontier faults is dropped at 
once (implicit enumeration [1, 8] by proving that a line is 
not faulty in order to observe the specific circuit response). 

3.1. Forward Phase 

 A line i propagates a fault effect if its actual value is 
different from its fault free value ni. We model the effect of 
a fault on a line i using a propagation bit pi. pi = 1 if line i 

may be normal and may propagate a fault effect due to the 
fault(s) in the driving network. pi = 0 if under the current 

input vector, line i carries the fault free value only or it is 
stuck or hidden. We represent the fault free value and the 
propagation bit on a line i by ni / pi. We also associate with 

each line a state variable si
1 (si

0). si
α = 1 indicates that the 

fault s-a-α on line i (i.e., fi
α) can be component of a 

frontier fault still to be considered. 

 First, all faults remaining after collapsing are 
considered simultaneously present in the CUT. The 
forward phase starts from the primary inputs (PIs), 
computes the fault free values, and propagates fault effects 
on the output of the encountered gates. The propagation of 
fault effects is based on a conservative evaluation [15]. PIs 
are directly controlled from the circuit environment, so we 
assume that they carry the fault free values only (their 
propagation bits are set to 0). The output of a gate that may 
propagate a fault effect is assumed normal, thus we take 
into account all possibilities of faulty values on its inputs 
and propagate them to its output according to the gate 
functionality. The propagation bit on the output of an AND 
gate is set to 1 in the following two cases:  

(i) All its inputs have a fault free value of 1 and at least 
one of them may propagate a fault effect (the gate 
output is sensible to any change on its inputs which will 
change it to 0), or 

(ii) All its inputs that have a fault free value of 0 may carry 
a fault effect or may be stuck at 1. Combining all 
possibilities of having 1 on the inputs, will change its 
output value to 1. 

 For all gate types, except inverters, buffers and fanout 
stems where the propagation bit is transmitted forward as 
is, the equations to compute the propagation bits are 
Boolean and all variables (i.e., ni, pi, si

1, si
0) may be 

vectors of up to 32 bits. The following equation determines 
the propagation bit pout on the output out of a m-input 

AND gate (equations for all gate types are presented in the 
Appendix): 

pout := ( ni�
i

).( pi�
i

) + ( ni�
i

).( (ni+pi+si
1�

i
)).( (ni+pi�

i
)) 

 Fig. 1 shows an example of the propagation bit 
computation for an AND gate. The applied input vector is a 
= 0 and b = 1. (For clarity purpose, we consider in the 
following a single vector; the equation uses patterns of up 
to 32 bits). The possibility of a s-a-1 fault on line a, 
combined with the fault free value 1 on line b will produce 
a faulty value of 1 rather then 0 on the gate output. This 
output is assumed to be normal in this case (consistency 
with the fault model) and then pout is equal to 1 to indicate 

the presence of a possibly faulty value on line out. 

  
Fig. 1. Propagation bit computation for an AND gate.
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3.2. Backward Phase 

 The forward phase propagates all fault effects to the 
primary outputs (POs). The backward phase then starts 
from the POs toward the PIs and attempts to deduce values 
on the CUT lines that are consistent with the observed 
response R on all the POs. The propagation bit po on each 

PO o is adjusted by setting it to either 0 or 1 according to 
its observed value ro of R. To distinguish between a 

propagation bit that is set to 1 during the forward phase and 
deduced in the backward phase, we associate with each line 
i a bit variable fi called forced bit. That is, pi = 1 in the 

forward phase reflects the possibility of propagating a fault 
effect, while in the backward phase, fi = 1 means that we 
determined the presence of a fault effect (i.e., pi is deduced 

equal to 1) on line i. For example, assume that we obtained 
during the forward phase no = 1 and po = 1 on a PO o and 
the observed response is ro = 0. Hence, the only situation 

to observe this value is the presence of the fault effect 
which changes the value of o to 0. In this case, the 
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propagation po is said to be forced and fo is set to 1. The 

output is really s-a-v if no fault effect is propagated to it 
under the current input vector and the observed response ro 
is different from its fault free value. This is computed using 
a Boolean state variable faultyo.  

 There are cases where the observed response cannot be 
modeled in terms of a propagation bit and a line status (si

v), 

thus the observed response R could not be generated under 
the stuck-at fault model. In such a case, the fault in the 
CUT is not equivalent to any permanent multiple stuck-at 
fault and the diagnosis is aborted signaling the error. 

 When the propagation and/or the forced bit of a PO are 
reset to 0 or 1, the corresponding bits of the input lines to 
the gate feeding this PO are adjusted in consequence. 
These deductions are performed assuming that the gate 
output is normal because it may be hidden by a yet 
undetected fault. The consistency of this deductions is 
proven by considering all the possible status of the gate 
output according to the frontier fault model. For example, 
if we have reset to 0 the propagation bit on the output of an 
AND gate, we try to identify the input responsible of such 
fault effect. If such an input exists, say i, we reset its pi to 0 

and also drop its fault fi
1 (i.e., by resetting si

1 to 0). On the 

other hand, if we determined the presence of a fault effect 
on the output of the gate, we try to identify the unique 
cause that propagates the faulty value to the output. This 
may result in either setting as faulty one of the gate inputs 
or in forcing to 1 its propagation bit. All this processing is 
Boolean equation based, thus it is performed on 32 input 
vectors simultaneously. The resulting equations for all gate 
types are presented in the Appendix. 
 In the example of Fig. 2, the fault free value on out is 0 
and there is a possibility of a faulty value since pout = 1. 
We assume that we observe the response rout = 1. The s-a-

0 on out is dropped, and we have the following cases:  

(i) Line out is really s-a-1, then lines a and b are hidden, 
thus fault free (but any deduction on these lines will 
never be contradicted). 

(ii) Line out is normal, then we force its propagation bit to 
be 1 (i.e., fout = 1) in order to observe the current 

response. Therefore, the only way to observe such value 
on out is the presence of a fault effect or a fault on line 
a, thus its forced bit fa is set to 1. Since line a is a 
primary input and pa = 0, then faultyi is true and it is 

declared stuck at 1. 

The deduction made on line a will never be invalidated, 
since a s-a-1 and out s-a-1 could not be components of the 
same frontier fault. In subsequent vectors, line out is still 
considered as possibly s-a-1, and if we observe a response 
rout = 0, then line a s-a-1 is confirmed in order to observe a 

1 on out when the test vector a = 0 and b  = 1 were applied 
to the circuit. On the other hand, if we have determined, 
latter on, that out is really stuck at 1, lines a and b are 
hidden thus assumed fault free and the consistency of the 
deductions (according to the fault model) are still valid. 
Note also, that in order to preserve this consistency, the s-
a-1 on line b is dropped when a is declared stuck line, 
because both faults cannot be components of the same 
frontier fault (we assume an equivalent s-a-1 fault on out). 

s1

s1, s0

  
Fig. 2. Diagnosis deduction example.
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 According to our fault model, a deduction can be made 
on a line that may be hidden by others faults. However, this 
deduction will never be contradicted in subsequent test 
vectors, since the line is either declared no more hidden 
and then the deduction is valid, or determined hidden thus 
cannot influence the analyzed circuit behavior and the 
deduction has no effect. Hence, when a line i is declared as 
s-a-v (i.e., faultyi is true), the algorithm drops all faults in 
the fanout free region driving it because all the lines belong 
to such an area are hidden and thus fault free. For 
subsequent vectors, the detected stuck lines keep their 
stuck value to be consistent with the observed response. 
The overall diagnosis method can be summarized in the 
following procedure, assuming that we know the response 
to each of the vectors in the test set: 

procedure Circuit_Diagnosis(); 
{ Pattern_Length := Read();   /* 1 ≤ Pattern_Length ≤ 32 */ 
 Pattern_Number := 0; 
 while Input_Vectors do 
 { Current_Pattern := Read_Pattern( Pattern_Length ); 
  Pattern_Number := Pattern_Number + 1;     
  Observed_Response := Read_Response(Pattern_Number); 
  while Faults_Detected do 
  { Forward_Phase( Current_Pattern ); 
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   Deduce_PO_Status( Observed_Response ); 
   if Inconsistency_of_the_Fault_Model then HALT; 
   Backward_Phase( Observed_Response ); 
   /* Drop faults on hidden lines */ 
   for each i of the new detected stuck lines do 
    Drop_FFR_Faults( i ); 
  }}}; 

 The input vectors are divided into patterns of 
"Pattern_Length" bits each. Each pattern is reapplied to the 
CUT as many times as it permits detecting faults. 
Benchmark experiments show that a pattern is reapplied at 
most 10 times. The forward and backward phases are 
performed at each iteration, and are linear time algorithms 
in the circuit size. At the end of the diagnosis, the results 
obtained are not invalidated in the presence of undetected 
or undetectable faults. A fault is detected only if it is not 
masked by another fault and its effect produces the 
observed response (when its site is not hidden). Some of 
the faults may remain undetected because either the 
inherent pessimism in the method (due to its conservatism) 
reduces the deduction power of the backward phase, the 
analyzed test set is not sufficient to detect all faults, or they 
are masked by the faults located in the CUT. In order to 
remedy the pessimism, we perform event analysis between 
adjacent vectors within the same pattern in order to retrace 
paths that have propagated an event, thus fault free [15]. 
This is similar to the event and stem region analysis of [8, 
12], however, our method does not make explicit analysis 
using sets of pairs of vectors [8] which is impractical when 
considering patterns of 32 bits. 

3.3. A Complete Diagnosis Example 

 In this section, we present a complete example of the 
diagnosis that makes the emphasis on the contribution of 
our method compared to the existing ones. First, fault 
collapsing were performed on the circuit in Fig. 3, and only 
restricted combinations of these faults (according to the 
definitions in Section 2) constitute the set of frontier faults. 
For example, the faults fb

1, ff
1 and fg

1 cannot belong to the 

same frontier fault because there is no normal path from b 
to the output j. 

 In Fig. 3, the circuit is evaluated for the test vector a = 
1, b = 0, c = 1 and d = 1. Line e carries a fault effect (pe = 

1) propagated from the combination of fb
1 and nc = 1. Line 

h also propagates a fault effect emanating from the 

combination of na = 1 and either pf = 1 or ff
1. Fault effects 

propagate also to i and finally to the primary output j. 
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Fig. 3. Forward Propagation.
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 In the backward phase (Fig. 4), we first assume that we 
have observed the value 0 on the output j, i.e., rj = 0. Thus, 

we have the following situations: 

1: fj
0 � All the other lines are hidden, then any deduction will 

never be contradicted. 

2: j normal � h = 0 and i = 0: 

 2.1: fh
0 and i normal: 

  � a and f hidden. 
  � g = 1: • fg

1 � b, c and e hidden. 

     • g normal � e = 1 � b is stuck at 1. 

 2.2 h normal and fi
0: 

  � d and g hidden. 
  � f = 1: • ff

1 � b, c and e are hidden. 

     • f normal � e = 1 � b is stuck at 1. 

 2.3 h and i normal: 
  � f = 1 and g = 1:  

    • ff
1 and fg

1 � b, c and e are hidden. 
    • ff

1 and g normal � e = 1 � b is stuck at 1. 

    • f normal and fg
1 � e = 1 � b is stuck at 1. 

    • f and g normal  � e = 1 � b is stuck at 1. 

 Since the CUT may contain at most one frontier fault, 
each time we reach a line in the deductions, it is assumed 
normal in order to deduce on possibly hidden lines. In this 
example, we reach line b while considering the path j-h-f-e 
or j-i-g-e as normal. When combining the deductions made 
in every case, we conclude that line b is either stuck at 1 or 
hidden. The equivalent deductions made by our diagnosis 
method are based one such cases without, however, 
considering each one of them. As illustrated in Fig. 4, these 
deductions are performed in 6 steps. For clarity in the 
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figure, the forced bit of each line is illustrated as an arrow 
when it is equal to 1, with circled numbers representing the 
step. For example, ni = 1, pi = 1 and if fi is deduced to be 

equal to 1, then line i = 0 as done is step 2. 
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Fig.  4.  Backward Deduction.
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 Table 1 shows the complete diagnosis of the circuit 
example in Fig. 3, for the test set T = {t1 = 1011, t2 = 0111, 
t3 = 1110} and the response R = 011. The table shows the 
current test vector, the corresponding observed response rj, 

and the located and dropped fault(s). In fact, we analyzed a 
pattern of 3 bits simultaneously, which is a = 101, b = 011, 
c = 111 and d = 110 (to show the deduction made on each 
single vector, we separate them in Table 1). 

Table 1. Diagnosis Example. 

T a b c d rj Located Dropped 

t1 1 0 1 1 0 fb
1 fj

1, fc
1 

t2 0 1 1 1 1 - fj
0, fh

0, fa
1 

t3 1 1 1 0 1 - fi
0, fd

1 

 After the analysis of this test set, the faults ff
1 and fg

1 
are not detected. No algorithmic method can claim the 
absence or presence of these faults because they are 
redundant. In our case, we were able to declare line b stuck 
at 1. In fact, b can be hidden by the frontier fault (ff

1, fg
1) 

and this deduction has no effect on the circuit behavior, or 
in the absence of ff

1 and/or fg
1, our diagnosis is valid 

because line b must be s-a-1 in order to observe the 
response R = 011. This early detection of faults is allowed 
using the frontier fault model and makes our method to 
diagnosis efficient compared to the existing ones [1, 3, 7, 8] 
which cannot get such deductions. 

4. EXPERIMENTAL RESULTS 

 We have define the fault coverage according to our 
fault model and fault detection strategy. For a circuit of n 
lines, there are 2n possible faults. Therefore, the coverage 
is defined as the ratio of faults detected to 2n possible 
faults. For example, in the circuit of Fig. 4, the total 
number of faults is 18. After the analysis of the responses, 
one fault was located and 15 faults were dropped, i.e., 16 
faults were detected among the 18, leading to 88.9% fault 
coverage. 

 The diagnosis experiment is performed as follows: 
First, given a test set, a separate tool simulates the circuit 
with a randomly injected frontier fault consisting of several 
faults, and we collect the circuit response. The diagnosis is 
then started, assuming the possible presence of all faults, 
and for each input pattern of 32 bits and its response, we 
perform forward and backward sweeps. The goal is to 
locate correctly the faults of the injected frontier fault, and 
to drop all the other ones that are not present in order to 
produce the analyzed response. The faults remaining after 
diagnosis are either masked, dominated or equivalent to the 
located ones, if any. 

 Table 2 summarizes the results obtained from several 
experiments on some benchmark circuits from [5, 6]. 
Circuits in [5] are assumed to be fully scannable and are 
transformed into combinational ones. The table gives the 
circuit name, the number of faults remaining after 
collapsing, the number of randomly injected faults 
("inject."), the test size corresponding to the total number 
of single vectors, the coverage as defined earlier and the 
total CPU time in seconds (on a SPARC-Station 2) to 
analyze the responses of the whole test set. For example, 
for the c880 we collected the responses of 160 input 
vectors when a frontier fault consisting of 5 faults was 
injected in the circuit. Then diagnosis analyzed these 
responses assuming the possibility of all faults. At the end, 
the faults of the injected frontier fault were correctly 
located, and all the other ones were dropped. This was 
performed with 5 patterns of 32 bits each (160�32), and it 
took only 2.51 seconds to get this diagnosis result. 

Table 2. Diagnosis Experiments. 

Circuit Faults Inject. Test  
Size 

Coverage CPU  
Time 

ALU 175 0 16 100% 0.10s 
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ALU 175 1 16 99.4% 0.15s 
c432 246 1 166 98.1% 1.21s 
c880 692 5 160 100% 2.51s 
c1908 1109 2 1569 96.3% 37.0s 
s838 589 4 118 99.5% 1.34s 
s953 717 6 183 99.0% 2.89s 
s1196 930 10 705 98.8% 11.42s 
s1488 1334 0 282 100% 8.56s 
s1488 1334 8 282 94.1% 10.21s 
s38584 28407 9 495 95.0% 6mn 8.2s 

 For the ALU (74LS181), it is well known that 16 
vectors detect all multiple faults [14]. When the observed 
response R is equal to the fault free one, the pattern of 16 
vectors was repeated 5 times to cover all multiple faults in 
only 0.1 seconds. When a frontier fault consisting of a 
single fault is injected, the 16-bit pattern was repeated 9 
times to locate the fault, and drop all the other ones except 
2 which were masked by the located fault. For the other 
circuits, the test sets consist of compacted tests for single 
faults from [13]. Some vectors are repeated in the test set in 
order to increase the coverage. All the faults of the injected 
frontier fault were correctly located by our diagnosis 
method, except for the s1488 where 2 among the 8 faults 
were not located and they remain as possible in the circuit. 
Circuits of large sizes (e.g. s38584 which contains 38584 
lines) can also be handled, and the diagnosis is performed 
in a very reasonable cost and is an order of magnitude 
faster then the existing methods such as the analysis using 
pairs of vectors reported in [8]. 

5. CONCLUSION 

 We have presented a fast method to perform diagnosis 
in large circuits. It uses concepts from the previously 
developed multiple fault analysis [15]. Fault collapsing 
reduces the number of faults to deal with and the frontier 
fault model allows to detect a fault even if its site may be 
hidden by yet undetected faults. This makes the method 
efficient enough to determine, nearly all the time, the faulty 
sites or equivalent ones in the network. It is also able to 
recognize responses not generated under the stuck-at fault 
model. The use of Boolean equations and patterns of 
vectors speeds up significantly the deductions and is less 
time consuming than method requiring clusters of vectors, 
backtracking, or fault enumeration.  

 If the CUT is to be repaired, it is probed using an 
electron beam tester [10], thus our method contributes in 
reducing considerably the target area of the IC where the 

behavior of interconnections have to be tested. When the 
analyzed responses of a test set are equal to the fault free 
ones, the method identifies the faults not covered by the 
given test set and the lines that are not faulty. In this case, it 
performs multiple fault analysis and it is about 10 times 
faster than the analysis method reported in [15], since it 
analyzes sequences of up to 32 vectors simultaneously.  
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APPENDIX 

DIAGNOSIS EQUATIONS 

 
A. Propagation Bit Computation 

  
• AND/NAND: pout := ( ni�

i
) . ( pi�

i
) + ( ni�

i
) . ( (ni + pi + si

1�
i

)) . ( (ni + pi�
i

))
 

  
• OR/NOR: pout := ( ni�

i
) . ( pi�

i
) + ( ni�

i
) . ( (ni + pi + si

0�
i

)) . ( (ni + pi�
i

))
 

  
• XOR/XNOR: pout := ( pi�

i
) + ( (ni . si

0 + ni . si
1)�

i
)
 

B. Deduction Equations 

 • AND: (for NAND gates, substitute nout × nout) 

   
fi := 1 ⇔  fout . pout .  (ni + nout . pi . ( pj�

j≠i
))
 

   
pi := 0 ⇔ pout . [(ni . ( nj . pj�

j≠i
)) + ( nj�

j
)] + (fout . pout . nout . ni)

 

   
si

1 := 0 ⇔ (pout . ni . ( nj . pj�
j≠i

)) + ( faultyj�
j≠i

) + (fout . pout . nout . fi . pi)
 

   Faultyi := fi . ni . pi . si
1 

 • OR: (for NOR gates, substitute nout × nout) 

   
fi := 1 ⇔  fout . pout .  (ni + nout . pi . ( pj�

j≠i
))
 

   
pi := 0 ⇔ pout . [(ni . ( nj . pj�

j≠i
)) + ( nj�

j
)] + (fout . pout . nout . ni)

 

   
si

0 := 0 ⇔ (pout . ni . ( nj . pj�
j≠i

)) + ( faultyj�
j≠i

) + (fout . pout . nout . fi . pi)
 

   Faultyi := fi . ni . pi . si
0 

 • XOR: with two inputs i and j: (for XNOR gates, substitute nout × nout) 

   fi := 1 ⇔  fout.pout.pj . [nout.(ninjsj
1 + ninjsj

0) + nout.(ninjsj
0 + ninjsj

1)] 

   pi := 0 ⇔ pout . pj . (nj . sj
0 + nj . sj

1) 

   si
1 := 0 ⇔ pout . pj . ni  + fout . pout . ni . fi . pi 

   si
0 := 0 ⇔ pout . pj . ni  + fout . pout . ni . fi . pi 
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   Faultyi := fi . pi . (ni . si
0 + ni . si

1) 

 • Fanout Stem s with n branches i = 1, ..., n : 

   
fs := 1 ⇔ ( fi�

i
) + ( (fi�

i
 . ∃ normal path from i to a po))

 

   
ps := 0 ⇔ ( pi�

i
) + ( (pi�

i
 . ∃ normal path from i to a po))

 


