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ABSTRACT 

  A new approach to fault analysis is presented. We consider multiple stuck-at-0/1 faults at the gate 
level. First, a fault collapsing phase is applied to the network, so that equivalent faults are eliminated. 
During the analysis we consider frontier faults where there is at least a normal path from each faulty line to 
a primary output. It is shown that the set of frontier faults is equivalent to the set of multiple faults. Given 
an input vector, we evaluate the fault free circuit and then propagate fault effects. Assuming that fault free 
response is observed, a fault dropping procedure is then applied to eliminate faulty conditions on lines, that 
are either absent or may be hidden by other faulty conditions. This method is applied to some benchmark 
circuits and achieves high degree of efficiency. 

Keywords: logic circuits, stuck-at faults, fault collapsing, fault dropping, multiple fault analysis. 
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I. INTRODUCTION 

 This paper presents a new approach to multiple fault analysis. Given a set of input vectors, our 
objective is to determine the set of multiple stuck-at-0/1 (s-a-0/1) faults that are not present in the 
circuit under test (CUT). Multiple faults have been considered as very difficult since a m-line circuit 
may have 3m - 1 faulty situations compared to 2m faulty situations under the single fault model. 
Usually, research has been directed to fault simulation and ATPG for single stuck-at faults, assuming 
that a circuit is frequently tested so that it does not contain more than one fault at a time. This 
frequent test strategy was shown to be inefficient in the presence of redundant faults [8], when a 
defect appears as a multiple fault or when test sets are incomplete [9]. Other works showed that test 
sets generated for single faults detect a high number of multiple faults, but this is valid only for some 
classes of circuits [2] (depending on their structures), multiple faults of small multiplicities [9] and 
the adopted measures to evaluate the fault coverage [7]. 

 Even if it seems very hard to tackle the problem of multiple faults, this model is very important in 
the design of logic circuits [1, 3, 5, 6]. Several analysis methods have been proposed [1, 5, 6, 11] for 
finding multiple faults not detected by a given set of input vectors, and dropping faults that cannot be 
present in the circuit. However, these methods have a limited possibility of fault dropping: No fault is 
dropped unless a normal path (i.e., faultless path) has been deduced from its site to a primary output, 
and its effect is observable on a primary output along this path.  

 In this paper, we propose a multiple fault analysis method using a new fault dropping technique. 
The method can be summarized as follows: First, a fault collapsing phase is applied to the network, 
so that equivalent faults on lines are eliminated. After this phase, only combinations of remaining 
faulty lines are considered. Furthermore, these combinations are restricted to frontier faults, each one 
of them has at least one normal path from each faulty line to a primary output. We show that the set 
of frontier faults is equivalent to the set of multiple faults. Given an input vector, we evaluate the 
fault free circuit and propagate fault effects. Assuming that fault free response is observed, a fault 
dropping procedure is then applied to eliminate faulty conditions on specific lines that are either 
absent or hidden by other faulty conditions. This premature fault dropping on possibly hidden lines is 
based on the frontier fault model and significantly improves the performance of the method. Frontier 
faults are enumerated implicitly, that is each time we drop a fault on a line, a whole class of frontier 
faults that involve this line is in fact dropped because no fault masking can occur. The method 
manipulates single vectors to model the circuit behavior under multiple faults. This makes our 
approach much simpler than methods requiring manipulation of masking expressions between faults 
[5], backtracking [1] or pairs of vectors [6, 11]. Experiments were performed on the ISCAS'85 
benchmark circuits and high fault coverage is achieved at reasonable cost. 

 The rest of the paper is organized as follows: Section II introduces fault collapsing and the fault 
model. Section III presents the fault analysis method. Section IV reports experimental results, and 
finally we conclude in Section V. 
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II. FAULT MODEL 

 Our method is based on early fault dropping of multiple faults. This is done in two manners: Fault 
collapsing which is based on the circuit topology only, and fault dropping which is performed during 
the analysis and based on the frontier fault model. 

A. Fault Collapsing 

 We consider faults on circuit lines only; the gates are assumed to perform fault free functions. In 
order to reduce the number of faults to deal with, multiple fault collapsing has been proposed in [3, 
5]. It is shown that any multiple fault is equivalent to a combination of faults on checkpoints [3]. 
Primary inputs that do not fan out and fanout branches of the circuit are checkpoints. Cha [5] showed 
that if the number of checkpoints is c, then the number of faulty conditions is 3c - 1 which may be 
large even for small values of c. He then introduced the notion of prime faults for circuits consisting 
of AND, NAND, OR, and NOR gates only. Under this fault model, there is at most one fault on each 
line of the circuit, and the number of faulty conditions is 2p - 1, where p is the number of prime faults. 

 Our approach to fault collapsing is based on the intuitive fact that a fault effect is easier to 
observe if it is closer to primary outputs. Therefore we delay the effect of a fault as far as possible. 
For example, if there is a s-a-0 on an input of an AND gate, we remove it and place it on the output. 
We do not have to consider that all inputs of an AND gate are simultaneously s-a–1, because we 
assume a s-a-1 fault on its output. The resulting procedure from our collapsing is the following [12]: 

for all gates in the circuit put: 
• s-a-1 (s-a-0) faults on all inputs of any AND/NAND (OR/NOR) gate (not present simultaneously on all inputs). 
• No fault on the input of an inverter or on a fanout stem. 
• s-a-0 and s-a-1 on inputs of XOR and XNOR gates (not present simultaneously on all inputs). 
• Both s-a-0 and s-a-1 on primary outputs. 

 Experimentations show that using our collapsing procedure we consider at most 4% more faults 
than [5]. This percentage is roughly the percentage of combinations of faults that exist explicitly in 
the circuit (for example, simultaneous faults on all inputs of a gate are represented explicitly by a 
fault on the output). Note, however, that on the ISCAS'85 benchmark circuits the number of 
remaining faults after our collapsing is 30% less than the number of faults on checkpoints (each 
checkpoint has two faults). 

 Fig. 1 illustrates the remaining faults when the collapsing procedure is applied to the example 
circuit: lines 3, 4, 5 and 6 can  be s-a-1 or normal; lines 7 and 8 can be s-a-0 or normal; line 9 can be 
s-a-0, s-a-1 or normal. Lines which are inputs of the same gate, i.e., (4, 5), (3, 6) and (7, 8), cannot be 
faulty at the same time. There are 80 multiple faults to be considered after fault collapsing. However, 
our analysis method will not enumerate them. 
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b) After fault collapsing

Fig. 1. Fault collapsing example. 

B. Fault Model 

 We consider multiple faults which are combination of faults remaining after collapsing. We then 
characterize frontier faults which are equivalent to all multiple faults. This characterization allows us 
to drop a fault from a line even if its effect may be hidden. 

 In a circuit consisting of m lines, a multiple fault is represented by a tuple with at most m 
components and denoted by f = (fiα, fjß, … ), i ≠ j, where fiα represents the status of line i : α = 0 for 
s-a-0, α = 1 for s-a-1. A line k missing in the tuple is not faulty in that specific multiple fault. 

Definition: A path from line i to a primary output is said normal if all lines along this path are 
normal, but the other inputs to gates along this path may be faulty. 

Definition: Let f = (fiα, fjß, … ) be a multiple fault. Line i is a faulty line iff  fiα belongs to f and there 
exists at least one normal path from line i to a primary output.  

Definition: Let f = (fiα, fjß, … ) be a multiple fault; then f is a frontier fault iff for each fault 
component fiα , line i is a faulty line. 

 The following lemma shows that each multiple fault is equivalent to a frontier fault, then as a 
consequence, if a test set covers all frontier faults then it will cover all multiple faults. 

Lemma 1: Every multiple fault f = (fi
α, fjß, … ) is equivalent to a frontier fault. 

Proof: Construct a multiple fault fr from f as the following: For all components fiα, if there is no 
normal path from line i to a primary output then remove fiα from f because line i is hidden. The 
resulting multiple fault fr  will contain only components fiα of faulty lines, hence fr is a frontier 
fault. QED 

Example: For the circuit in Fig. 1, the number of frontier faults is only 16 compared to 80 multiple 
faults after collapsing. The set of frontier faults is: {(f3

1), (f4
1), (f5

1), (f6
1), (f7

0), (f8
0), (f9

0), (f9
1), (f3

1, f4
1), 

(f3
1, f5

1), (f3
1, f7

0), (f4
1, f6

1), (f4
1, f8

0), (f5
1, f6

1), (f5
1, f8

0), (f6
1, f7

0)}. 

 According to the previous definition, a frontier fault f in the circuit under test (CUT) partitions the 
lines into three categories, Hidden Lines, Faulty Lines and Normal Lines, defined as follows: 
 - Line i is faulty if fiα � f. 
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 - Line j is normal if fjα � f and there is a normal path from line j to a primary output. 
 - Line k is hidden if there is no normal path from k to a primary output. 

 During fault analysis, we assume that the circuit under test contains one frontier fault consisting 
of faults that has not been yet dropped. The effective values (real values) on hidden lines are 
unknown since they are unobservable due to the frontier fault, and there is no algorithmic way to 
determine these values (Normal Path Theorem in [1]). In our case, we assume that these lines carry 
fault free values. As it will be seen in Section III.C, this assumption does not invalidate the 
deductions made during analysis. 

Example: For the circuit in Fig. 2, the presence of the frontier fault (fa1, fj0) partitions its lines as 
follows: Hidden lines = {d, g, h}; Faulty lines = {a, j}; Normal lines = {b, c, e, i, k, m}. 

c
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0:0 0:0

0:1

1:1
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Fig. 2. Lines behavior in the presence of a frontier fault. 

Each line carries a couple of values x:y, where x is the fault free value and y is the value in the CUT. 
Lines d, g and h are hidden, so their values are equal to the fault free ones. The faulty value on line a 
propagates to lines c and e but not to d and h. During analysis, we consider simultaneous presence of 
all possible faults -since their presence is potential- and their effects are then propagated through the 
circuit whenever they are activated by the current input vector.  

III. FAULT ANALYSIS 

 Fault analysis assumes that the set of multiple faults to be covered is the set of all frontier faults 
and it is performed into two main phases: propagation phase and backward phase. Forward phase 
determines all possible values on the circuit lines. It takes into account any possibility of propagating 
faulty values due to any frontier fault not yet dropped. Backward phase starts from primary outputs 
assuming that the fault free response is observed and progresses toward primary inputs. For a given 
gate, it deduces values that are actually present on its inputs in order to observe fault free response 
only. From these deduced values, faults and fault effects may be dropped on lines and the backward 
phase continues on the driving network. Once a fault is dropped, it means that it cannot be component 
of any other frontier fault, and cannot reappear because we assume permanent faults. Therefore, a 
whole class of frontier faults is dropped at once because no fault masking can occur. (We say that a 
fault fiα is masked by a fault fjβ, if the test vector that detects fiα does not detect the simultaneous 
occurence of fiα and fjβ).Thus, the results obtained are not invalidated in the presence of redundant 
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and undetected faults: a fault is dropped when it is not masked by another fault or combination of 
faults and it is either observable or its site may be hidden in the CUT. 
A. Line Model 

 Given an input vector, a line i propagates a fault effect if its value in the CUT is different from its 
fault free one due to some fault(s) in the driving network. To model the behavior of a line i in the 
CUT, we associate the following bit variables: ni / pi

*, si
1, si

0: 

• ni designates the fault free value on line i. 

• si
1 = 1 (si

0 = 1) if fi1 (fi0) is a component of a frontier fault still to be considered. 

• pi is called the propagation bit. It is equal to 1 if line i may be normal and may propagate a fault 
effect. It is equal to 0 if line i carries fault free value only, or it is hidden or faulty. 

 As a consequence of the definition of the propagation bit, fault effects are potential and may 
propagate on normal lines only. That is on hidden and faulty lines the propagation bit is always equal 
to 0 (hidden lines carry fault free values only). These properties are reflected through the propagation 
bit in our analysis algorithm. 

B. Forward Phase 

 We assume that primary inputs are directly controlled from the circuit environment and that no 
fault effects propagate to them. Starting from primary inputs and proceeding in topological order 
toward primary outputs, we compute fault free values and propagate fault effects assuming that the 
output of the gates are normal, otherwise they will not propagate any fault effect by definition. Fault 
effects are assumed independent (no correlation between fault effects issued from the same fault or 
fanout stem), hence, the evaluation of line values is conservative and includes the behavior of the 
CUT. Thus, in computing the output value, we take into account the gate functionality and any 
possibility of faulty values on its inputs. 

The propagation bit on the output of an AND/NAND gate is set to 1 (i.e., the gate propagates a fault 
effect) in the following cases: 

i)  All fault free values of its inputs are equal to 1 and at least one input i carries a fault effect, or 

ii) For each input i with ni = 0, either pi or si
1 are equal to 1. Furthermore, if for each input i, ni = 0, 

then there must be at least one input carrying a fault effect.  
In case i) all inputs have fault free value of 1, and if there is a fault effect on one of them, say input i, 
it is assumed normal and the output is normal so the propagation bit is set to 1 on the output. In case 
ii) the fault free value on the output is 0, but if for each input i with ni = 0 there is a possibility of a s-

                                                 
* ni / pi has a different meaning from the D notation. D = 1/0 means that line i is equal to 1 in the fault free circuit and 0 in the CUT. ni 
/ pi = 1/1 means that line i is equal to 1 in the fault free circuit and may be 0 or 1 in the CUT, and this effect may be observed on some 
primary outputs. 
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a-1 or a fault effect then the gate may propagate a faulty value on the output. If all inputs have a fault 
free value 0, we do not consider them simultaneously s-a-1. This can be summarized in the following 
formula: 
 pout = 1 � [(∀i, ni = 1) � (∃i, pi = 1)] ∆  
     [(∃i, ni = 0) � (∀i, ni = 0 � (pi ∆ si

1 = 1)) � (∃i, ni ∆ pi = 1)] 

Fig. 3 illustrates two situations of the propagation bit computation for an AND gate. For each line i 
we represent its fault free value and propagation bit by ni / pi. Values in bold characters constitute one 
of the possible combinations that may propagate a fault effect on the gate output. 

1/1

1/00/1  

0/0  s-a-1
0/11/0  s-a-1 1/0 1/1

 
Fig. 3. Propagation bit computation for an AND gate. 

Similarly, the propagation bit on the output of an OR/NOR gate can be computed as follows: 

 pout = 1 � [(∀i, ni = 0) � (∃i, pi = 1)] ∆  
     [(∃i, ni = 1) � (∀i, ni = 1 � (pi ∆ si

0 = 1)) � (∃i, ni ∆ pi = 1)] 

For a XOR or XNOR gate, a fault effect is propagated on the output on the output if there is at least a 
fault effect on one of its inputs; this will change the input value and then the output value too. Also, 
there is a fault effect on the output if the fault free value of one input is v with a possible stuck-at-v 
fault. For example, if the fault free value of an input is 1 and with a possible s-a-0 fault, combined 
with the fault free value of the other input will produce a different value from the fault free one at the 
output (i.e., propagates a fault effect at the output). This is computed as follow: 

 pout = 1 � (∃i, pi = 1) ∆ (∃i, (ni = v � siv = 1)) 

 The propagation bit is transmitted as is from the input of an inverter to its output sine no faults are 
considered on its input. For a fanout stem, it is broadcast to all its branches. Fig. 4 illustrates an 
example of the computation of the propagation bit on each line given the input vector t = 000. The s-
a-1 fault on line 4 combined with the fault free value of line 5 propagates a fault effect on line 7 (p7 = 
1). There is no fault effect on line 8 (p8 = 0) because we do not consider simultaneous s-a-1 (or s-a-0) 
on the inputs of any gate. The fault effect on line 7 combined with the s-a-0 or the fault free value on 
line 8 propagates a fault effect on line 9. 
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Fig. 4. Evaluation and fault effect propagation. 

C. Backward Phase 

 The purpose of this phase is to eliminate faulty conditions that contradict the observed fault free 
response on primary outputs, or that may be hidden by other faulty conditions. The backward phase 
starts from primary outputs and progresses toward primary inputs. It assumes that fault free response 
is observed and drops fault effects on these outputs by resetting to 0 their propagation bits. Then, for 
each gate feeding the outputs, it deduces possible values that are actually carried by their inputs: The 
deductions may result in dropping fault effects and faults that are not masked and cannot be present 
in order to observe fault free response only. 

 A fault effect on a line is dropped by resetting to 0 its propagation bit, i.e., the line carries fault 
free value only. Each time the propagation bit on a line is reset to 0, the backward phase continues 
further in the driving network. This phase is not performed for any gate whose propagation bit on its 
output is not reset to 0. Depending on types of the encountered gates, propagation bits and status of 
its inputs are deduced according to its functionality and the following deduction lemma which 
determines, if possible, the unique input responsible for a fault effect on the gate output, and which is 
not be masked by any other fault effects. For an AND/NAND the deduction lemma can be stated as: 

Lemma 2: If the propagation bit pg on the output g of an AND/NAND gate is reset to 0, then the 
following are sufficient conditions for dropping on each input i of the gate the fault effect 
and the fault: 

 - Drop the fault effect: pi = 0 �  (ni = 0 � (∀j≠i, nj = 1 � pj = 0)) ∆ (∀j, nj = 1) 
 - Drop the fault: si1 = 0 �  ni = 0 � (∀j≠i, nj = 1 � pj = 0) 

Proof: Since pg was reset to 0, then g could be in one of the following states: 

• g is a faulty or a hidden line: All the inputs of the gate are hidden; therefore they carry fault 
free value only, i.e., ∀i, pi = 0 and si

1 = 0. 
• g is normal: 

(i) ∀i, ni = 1: A fault effect on any input i will propagate to the output g. Since pg = 0 
then ∀i, pi = 0. 

(ii) There is an input i such that ni = 0 and (∀j≠i, (nj = 1 and pj = 0)): A fault effect on i 
will be the only cause of the fault effect on g. Since pg = 0 then pi = 0 and si1 = 0. 

QED 
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The corresponding lemmas for others types of gates are stated as follows (their proofs are similar to 
the previous one according to the gate functionalities):. 

Lemma 3: If the propagation bit pg on the output g of an OR/NOR gate is reset to 0, then the following 
are sufficient conditions for dropping on each input i of the gate the fault effect and the 
fault: 

   - Drop the fault effect: pi := 0 �  (ni = 1 � (∀j ≠ i, nj = 0 � pj = 0)) ∆ (∀j, nj = 0) 
   - Drop the fault: si

0 := 0 �  ni = 1 � (∀j ≠ i, nj = 0 � pj = 0) 
Lemma 4: If the propagation bit pg on the output g of an XOR/XNOR gate is reset to 0, then the 

following are sufficient conditions for dropping on each input i of the gate the fault effect 
and the fault: 

   - Drop the fault effect: pi:= 0 ⇔ (nj = v) ∧ ( pj = 0) ∧ (sj
v = 0), j ≠ i  

   - Drop the fault: si
v: = 0 ⇔ (ni = v) ∧ (pj = 0), j ≠ i  

For inverters and buffers, if the propagation bit on the output is reset to zero, it is also reset to zero on 
the input. For a fanout stem, the conditions are stated in the following lemma: 

Lemma 5: Let s be a fanout stem. Sufficient conditions for resetting the propagation bit ps to 0 are: 
 - ∀ fanout branches b of s, pb = 0, or 

- ∃ fanout branch b of s such that pb = 0 and b is normal. 

Proof: We can have one of the following situations in the circuit under test: 
• Let b be a branch of s, b is normal and pb = 0 then obviously ps = 0 otherwise pb would 

necessarily have to be 1. 
• For every branch b of s, pb = 0: 
 (i) All branches are hidden or faulty lines. The stem s is hidden and carries fault free 
value,      therefore ps = 0. 
 (ii) At least one branch b is normal, then ps = 0 otherwise pb would necessarily have to be 
1. 

QED 

Example: Fig. 5 shows an example of deductions made during the backward phase. If the observed 
fault free value on line 9 is 0, then the frontier fault (f41) is detected, or line 4 is hidden by the 
undetected fault (f70) or (f90). The fault f41 is thus dropped according to the deduction lemmas and 
implicitly all frontier faults containing f41 as component are dropped too, i.e., the set {(f41), (f31, f41), 
(f41, f61), (f41, f80)}. 
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Fig. 5. Fault dropping example. 

 Each time a fault is dropped on a line, the backward phase determines in the same time the 
possible presence of a normal path from that line to a primary output in order to declare this line as 
normal. At the end of fault analysis, the used fault dropping technique will have determined four 
classes of lines which are summarized in Table I. Deduction 1 and Deduction 2 in the table designate 
the deductions made on a line, if any, in order to belong to the corresponding class. 

TABLE I 
FAULT ANALYSIS RESULTS 

Class Deduction 1 Deduction 2 
Normal Y Y 
Normal or Hidden Y N 
Faulty or Normal N Y 
Faulty, Normal or 
Hidden 

N N 

 Deduction 1: Fault dropped on the line. 
 Deduction 2: Normal path(s) from the line to a primary output. 

D. Analysis Example 

 The circuit example presented in Fig. 6 makes the emphasis on the contribution of our analysis 
method compared to the existing ones in the literature. In Fig. 6a, the forward phase is performed for 
the input vector adg = 010. Faults (fb1), (fh1) and (fi1) may propagate fault effects on lines k, l and m 
respectively (i.e., pk = pl = pm =1). In  Fig. 6b, the backward phase is applied to the circuit assuming 
that the fault free value 0 is observed on line out. Fault effects on k, l and m are reset to 0 by Lemma 
3. According to our model, faults (fb1), (fh1) and (fi1) are dropped when the backward phase continues 
for the gates feeding lines k, l and m, respectively.  
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Fig. 6. Fault analysis example. 

 In this example circuit, the single fault fl0 is redundant and thus, no method can claim the 
presence or absence of (fl0) and would not drop the faults (ff1) and (fh1) since no normal path could be 
deduced from lines f and h to the primary output out. Using our analysis method, a complete test set 
will drop all faults in the circuit except (fl0). The faults of interest ff1 and fh1 are also dropped because 
either lines f and h are hidden by (fl0) if present in the CUT, or in the absence of this latter fault, their 
effects will be observable on the output. 

E. Event Analysis 

 When testing our algorithm, we noted that it includes an inherent pessimism due to the use of 
single vectors in the presence of multiple faults and the conservative evaluation of line values, and 
that event analysis improves the performance of the method. The second step of our algorithm 
analyzes events which represent signal changes (0 to 1 or 1 to 0) between two consecutive vectors 
[1]. Lines that propagate such changes can be asserted as normal. Compared to the method presented 
in [6], our approach to event analysis does not perform explicit propagation and deduction of pairs of 
vectors through the network. After the analysis of each single vector, event analysis consists in 
retracing signal changes that have been propagated and observed on a primary output, by simply 
comparing the deduced values between the current and precedent input vectors. 

  We define an event on a line as a change that must have occurred on that line if the circuit were 
fault free. We also define a potential event as the possibility of having a change on a line due to 
remaining potential faults, i.e., when a change may propagate in the CUT but not in the fault free one. 
In order to simplify explanations, we consider 2-input gates; we designate them as the upper and the 
lower inputs. A generalization to n-input gates (n > 2) is immediate. 

 Fig. 7 illustrates different combinations of events and potential events. Notation x-y represents a 
change from value x to value y in the fault free circuit, and x- represents no change. In Fig. 7a, there 
are events with different polarities on both inputs, then there is no change in the fault free circuit but 
due to a s-a-1 or a fault effect on the lower input, there may be a change on the gate output in the 
CUT (potential event). Fig. 7b represents the propagation of a potential event. Fig. 7c represents the 
case where an event occurs regardless the state of the lower input. Fig. 7d represents the absorption 
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of an event due to the dominant value on the lower input (we assume that the s-a-1 fault has been 
dropped and that there is no fault effect on this input). 
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Event

Potential 
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Fig. 7. Propagation of events and potential events. 

 The objective of the event analysis is to trace backward single paths along which events have 
occurred and declare all lines belonging to such paths as normal. Fig. 8a shows such cases: if we 
deduce an event on the output of an AND gate and it is only due to an event on the upper input, then 
this input must be normal, i.e., the presence of a fault would have been detected. 
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Fig. 8. Possible deductions in the presence of events. 

 The event on one input combined with an appropriate event or a stuck-at fault on the other input 
may produce a change on the output, as illustrated in Fig. 8b where two events are combined at the 
output of the gate; we are not sure if both events occurred or only one of them. In this case the event 
analysis is not resumed to pass through this gate. In Fig. 8c, since we have observed an event at the 
output of the gate, we can deduce the event on the upper input when no fault effect is possible during 
the first vector. For the lower input, two situations are possible: An event or a s-a-1 fault. These 
situations are not distinguishable because both of them, if present, when combined with the event on 
the upper input, can produce the event at the output of the gate. 

 When no deductions can be made on the inputs of a gate which propagate an event, we try to 
identify, if possible, the unique stem that feeds this gate and propagates an event too. If such stem 
exists, then we are sure that it is the unique responsible of the event observed on the gate output. 
Therefore, the fault effect that disables the event on this fanout stem is dropped and the analysis is 
resumed starting from this stem toward primary inputs. This is similar to the stem regions analysis [6, 
10] which identifies reconvergent fanout stems and then correlates values emanating from them. 

IV. EXPERIMENTAL RESULTS 
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 The analysis program consists of approximately 2000 lines of code. The test vectors were 
randomly generated, except for the ALU 74181 where it is well known that there are 16 basic vectors 
that detect all multiple faults. For other circuits, we analyze random vectors, and a number of them 
were retained to constitute the test sets presented in Table II. 

 When dealing with multiple faults, different measures have been proposed for the evaluation of 
the fault coverage [7], and misleading conclusions on this coverage can be drawn. In our case, we 
adopt the measure presented in [7] as unconditional fault coverage, because it is more adequate: In a 
circuit of m lines, each line can be s-a-0 or s-a-1. These 2m faults are components of multiple faults. 
Therefore, the coverage is defined as the ratio of the number of dropped faults to the total number of 
faults. Note that this coverage can be used as a lower bound for the actual coverage since it is more 
pessimistic: A fault on a line is not dropped unless all frontier faults involving this line are dropped. 
For example, in the circuit in Fig. 6 consisting of 10 lines (excluding fanout stems), the initial number 
of faults is 20. After the analysis of the first vector (Fig. 6b), we dropped 13 faults out of the 20 
possible ones (i.e., 65% fault coverage), and a complete test set will drop all faults except (fl0), 
producing 95% fault coverage. 
 Table II shows the results obtained from the analysis of the ISCAS'85 benchmark circuits [4]. The 
table gives the circuit name (C432 indicates that the circuit consists of 432 lines); the number of 
faults on lines after collapsing (components of frontier faults); the test size; the fault coverage as 
defined above; and the total CPU time to analyze the complete test set on a SPARC-Station 2. Note 
that the test size is the length of the input sequences analyzed by the algorithm. Some input vectors 
may have been repeated. 

TABLE II 
FAULT COVERAGE FOR ISCAS'85 CIRCUITS 

Circuit  Faults Test Size Coverage CPU Time 
74181  175  22  100% 0.67 sec 
C432  345  146  99.4% 8.2 sec 
C499  640  250   99.1% 15.3 sec 
C880  692  175  100% 23.6 sec 
C1355  1056  601  84.4% 1 mn 50.8 sec 
C1908  1109  523  96.6% 2 mn 16.3 sec 

C2670  1839  639  88.2% 3 mn 45.5 sec 
C3540  2270  1254  97.3% 10 mn 35.4 sec 
C5315  3738  865  89.3% 11 mn 31.2 sec 
C6288  4832  785  73.3% 226 mn 20.6 sec 
C7552  4950  1561  84.8% 27 mn 30.8 sec 

 

 Since fault collapsing is first performed, we end up with less faults (second column of Table II) 
than methods considering faults on checkpoints, as in [6]. Thus, a less number of faults and the use of 
single vectors make our method efficient enough to achieve high fault coverage at reasonable amount 
of computing time. 

 For the ALU 74181, test sets generated for single stuck-at faults are not sufficient to cover all 
multiple faults [9]. In our case, there are 16 basic input vectors [11] that detect all multiple faults of 
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all multiplicities. These vectors were applied more than once to obtain a sequence of 78 vectors in 
[6], while in our case a sequence of 22 vectors suffices and it is analyzed in only 2.7 seconds 
compared to 14.66 sec (=0.188*78) in [6] (on the same frame, i.e., SUN-3/260). 

 The C880 circuit is testable for all multiple faults of all multiplicities. Our method were able to 
achieve a 100% coverage in only 23.6 seconds with a test set consisting of 175 single vectors. 
However, for the C6288 (a 16 bit multiplier which is time consuming due to its topology), a method 
of generating very high quality test is more suitable in order to achieve a better fault coverage in less 
computing time. 

V. CONCLUSION 

 We have presented a new method to analyze multiple faults at the gate level in combinational 
circuits. The frontier fault model reduces the number of faults to consider during the analysis and 
improves the deduction power of the method. Faults that are dropped cannot be masked and are either 
observable on primary outputs or their sites are hidden by yet undetected faults. Early fault dropping 
avoids the need of backtracking in the analyzed input sequence in order to find (if any) a test vector 
for a given fault for which a normal path has been deduced during the analysis. When the analysis is 
completed, the remaining undetected faults in the circuit do not invalidate the obtained results. 

 The use of single vectors requires simpler algebraic manipulation and is less time consuming than 
pairs of vectors. Event analysis, which retraces normal paths that propagated events between two 
consecutive vectors, remedies to the inherent pessimism and loss of value correlations. Clusters of 
vectors can be useful in this case, but there is a trade off manipulating simple algebraic equations 
using single vectors against sets of bit sequences using clusters of vectors. The efficiency of clusters 
over single vectors is not undoubted when considering the combinatorial explosion of values using 
clusters of vectors. Experimental results show the speedup and efficiency when analyzing multiple 
stuck-at faults using our method, compared to results published in the literature.  

 We plan to extend our analysis method to handle diagnosis and we are currently developing an 
automatic test pattern generator for multiple faults based on the frontier fault model and the concepts 
of this analysis method. 
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