
- 1 -

Use of Fault Dropping for Multiple Fault Analysis

Younès KARKOURI, El Mostapha ABOULHAMID, Eduard CERNY and Alain VERREAULT

Dép. d'informatique et de recherche opérationnelle
Université de Montréal, C.P. 6128, Succ. "A"

Montréal, (Québec), H3C-3J7, Canada.

ABSTRACT

 A new approach to fault analysis is presented. We consider multiple stuck-at-0/1 faults at the gate
level. First, a fault collapsing phase is applied to the network, so that equivalent faults are eliminated.
During the analysis we consider frontier faults where there is at least a normal path from each faulty line to
a primary output. It is shown that the set of frontier faults is equivalent to the set of multiple faults. Given
an input vector, we evaluate the fault free circuit and then propagate fault effects. Assuming that fault free
response is observed, a fault dropping procedure is then applied to eliminate faulty conditions on lines, that
are either absent or may be hidden by other faulty conditions. This method is applied to some benchmark
circuits and achieves high degree of efficiency.

Keywords: logic circuits, stuck-at faults, fault collapsing, fault dropping, multiple fault analysis.

- 2 -

I. INTRODUCTION

 This paper presents a new approach to multiple fault analysis. Given a set of input vectors, our
objective is to determine the set of multiple stuck-at-0/1 (s-a-0/1) faults that are not present in the
circuit under test (CUT). Multiple faults have been considered as very difficult since a m-line circuit
may have 3m - 1 faulty situations compared to 2m faulty situations under the single fault model.
Usually, research has been directed to fault simulation and ATPG for single stuck-at faults, assuming
that a circuit is frequently tested so that it does not contain more than one fault at a time. This
frequent test strategy was shown to be inefficient in the presence of redundant faults [8], when a
defect appears as a multiple fault or when test sets are incomplete [9]. Other works showed that test
sets generated for single faults detect a high number of multiple faults, but this is valid only for some
classes of circuits [2] (depending on their structures), multiple faults of small multiplicities [9] and
the adopted measures to evaluate the fault coverage [7].

 Even if it seems very hard to tackle the problem of multiple faults, this model is very important in
the design of logic circuits [1, 3, 5, 6]. Several analysis methods have been proposed [1, 5, 6, 11] for
finding multiple faults not detected by a given set of input vectors, and dropping faults that cannot be
present in the circuit. However, these methods have a limited possibility of fault dropping: No fault is
dropped unless a normal path (i.e., faultless path) has been deduced from its site to a primary output,
and its effect is observable on a primary output along this path.

 In this paper, we propose a multiple fault analysis method using a new fault dropping technique.
The method can be summarized as follows: First, a fault collapsing phase is applied to the network,
so that equivalent faults on lines are eliminated. After this phase, only combinations of remaining
faulty lines are considered. Furthermore, these combinations are restricted to frontier faults, each one
of them has at least one normal path from each faulty line to a primary output. We show that the set
of frontier faults is equivalent to the set of multiple faults. Given an input vector, we evaluate the
fault free circuit and propagate fault effects. Assuming that fault free response is observed, a fault
dropping procedure is then applied to eliminate faulty conditions on specific lines that are either
absent or hidden by other faulty conditions. This premature fault dropping on possibly hidden lines is
based on the frontier fault model and significantly improves the performance of the method. Frontier
faults are enumerated implicitly, that is each time we drop a fault on a line, a whole class of frontier
faults that involve this line is in fact dropped because no fault masking can occur. The method
manipulates single vectors to model the circuit behavior under multiple faults. This makes our
approach much simpler than methods requiring manipulation of masking expressions between faults
[5], backtracking [1] or pairs of vectors [6, 11]. Experiments were performed on the ISCAS'85
benchmark circuits and high fault coverage is achieved at reasonable cost.

 The rest of the paper is organized as follows: Section II introduces fault collapsing and the fault
model. Section III presents the fault analysis method. Section IV reports experimental results, and
finally we conclude in Section V.

- 3 -

II. FAULT MODEL

 Our method is based on early fault dropping of multiple faults. This is done in two manners: Fault
collapsing which is based on the circuit topology only, and fault dropping which is performed during
the analysis and based on the frontier fault model.

A. Fault Collapsing

 We consider faults on circuit lines only; the gates are assumed to perform fault free functions. In
order to reduce the number of faults to deal with, multiple fault collapsing has been proposed in [3,
5]. It is shown that any multiple fault is equivalent to a combination of faults on checkpoints [3].
Primary inputs that do not fan out and fanout branches of the circuit are checkpoints. Cha [5] showed
that if the number of checkpoints is c, then the number of faulty conditions is 3c - 1 which may be
large even for small values of c. He then introduced the notion of prime faults for circuits consisting
of AND, NAND, OR, and NOR gates only. Under this fault model, there is at most one fault on each
line of the circuit, and the number of faulty conditions is 2p - 1, where p is the number of prime faults.

 Our approach to fault collapsing is based on the intuitive fact that a fault effect is easier to
observe if it is closer to primary outputs. Therefore we delay the effect of a fault as far as possible.
For example, if there is a s-a-0 on an input of an AND gate, we remove it and place it on the output.
We do not have to consider that all inputs of an AND gate are simultaneously s-a–1, because we
assume a s-a-1 fault on its output. The resulting procedure from our collapsing is the following [12]:

for all gates in the circuit put:
• s-a-1 (s-a-0) faults on all inputs of any AND/NAND (OR/NOR) gate (not present simultaneously on all inputs).
• No fault on the input of an inverter or on a fanout stem.
• s-a-0 and s-a-1 on inputs of XOR and XNOR gates (not present simultaneously on all inputs).
• Both s-a-0 and s-a-1 on primary outputs.

 Experimentations show that using our collapsing procedure we consider at most 4% more faults
than [5]. This percentage is roughly the percentage of combinations of faults that exist explicitly in
the circuit (for example, simultaneous faults on all inputs of a gate are represented explicitly by a
fault on the output). Note, however, that on the ISCAS'85 benchmark circuits the number of
remaining faults after our collapsing is 30% less than the number of faults on checkpoints (each
checkpoint has two faults).

 Fig. 1 illustrates the remaining faults when the collapsing procedure is applied to the example
circuit: lines 3, 4, 5 and 6 can be s-a-1 or normal; lines 7 and 8 can be s-a-0 or normal; line 9 can be
s-a-0, s-a-1 or normal. Lines which are inputs of the same gate, i.e., (4, 5), (3, 6) and (7, 8), cannot be
faulty at the same time. There are 80 multiple faults to be considered after fault collapsing. However,
our analysis method will not enumerate them.

- 4 -

a) Before fault collapsing

1

2

3

4

5

6

7

8

s-a-0/1

s-a-0/1

s-a-0/1

s-a-0/1

s-a-0/1

s-a-0/1

s-a-0/1
9

s-a-0/1

s-a-0/1
1

2

3

4

5

6

7

8

s-a-1

s-a-1

s-a-1

s-a-1

s-a-0

s-a-0

s-a-0/1
9

b) After fault collapsing

Fig. 1. Fault collapsing example.

B. Fault Model

 We consider multiple faults which are combination of faults remaining after collapsing. We then
characterize frontier faults which are equivalent to all multiple faults. This characterization allows us
to drop a fault from a line even if its effect may be hidden.

 In a circuit consisting of m lines, a multiple fault is represented by a tuple with at most m
components and denoted by f = (fiα, fjß, …), i ≠ j, where fiα represents the status of line i : α = 0 for
s-a-0, α = 1 for s-a-1. A line k missing in the tuple is not faulty in that specific multiple fault.

Definition: A path from line i to a primary output is said normal if all lines along this path are
normal, but the other inputs to gates along this path may be faulty.

Definition: Let f = (fiα, fjß, …) be a multiple fault. Line i is a faulty line iff fiα belongs to f and there
exists at least one normal path from line i to a primary output.

Definition: Let f = (fiα, fjß, …) be a multiple fault; then f is a frontier fault iff for each fault
component fiα , line i is a faulty line.

 The following lemma shows that each multiple fault is equivalent to a frontier fault, then as a
consequence, if a test set covers all frontier faults then it will cover all multiple faults.

Lemma 1: Every multiple fault f = (fi
α, fjß, …) is equivalent to a frontier fault.

Proof: Construct a multiple fault fr from f as the following: For all components fiα, if there is no
normal path from line i to a primary output then remove fiα from f because line i is hidden. The
resulting multiple fault fr will contain only components fiα of faulty lines, hence fr is a frontier
fault. QED

Example: For the circuit in Fig. 1, the number of frontier faults is only 16 compared to 80 multiple
faults after collapsing. The set of frontier faults is: {(f3

1), (f4
1), (f5

1), (f6
1), (f7

0), (f8
0), (f9

0), (f9
1), (f3

1, f4
1),

(f3
1, f5

1), (f3
1, f7

0), (f4
1, f6

1), (f4
1, f8

0), (f5
1, f6

1), (f5
1, f8

0), (f6
1, f7

0)}.

 According to the previous definition, a frontier fault f in the circuit under test (CUT) partitions the
lines into three categories, Hidden Lines, Faulty Lines and Normal Lines, defined as follows:
 - Line i is faulty if fiα � f.

- 5 -

 - Line j is normal if fjα � f and there is a normal path from line j to a primary output.
 - Line k is hidden if there is no normal path from k to a primary output.

 During fault analysis, we assume that the circuit under test contains one frontier fault consisting
of faults that has not been yet dropped. The effective values (real values) on hidden lines are
unknown since they are unobservable due to the frontier fault, and there is no algorithmic way to
determine these values (Normal Path Theorem in [1]). In our case, we assume that these lines carry
fault free values. As it will be seen in Section III.C, this assumption does not invalidate the
deductions made during analysis.

Example: For the circuit in Fig. 2, the presence of the frontier fault (fa1, fj0) partitions its lines as
follows: Hidden lines = {d, g, h}; Faulty lines = {a, j}; Normal lines = {b, c, e, i, k, m}.

c

d

e

g

h

i

j

k

m

1:1

0:1

1:1

0:1

0:0 0:0

0:1

1:1

a

b
s-a-1

0:0
1:0

1:0x s-a-0
x

Fig. 2. Lines behavior in the presence of a frontier fault.

Each line carries a couple of values x:y, where x is the fault free value and y is the value in the CUT.
Lines d, g and h are hidden, so their values are equal to the fault free ones. The faulty value on line a
propagates to lines c and e but not to d and h. During analysis, we consider simultaneous presence of
all possible faults -since their presence is potential- and their effects are then propagated through the
circuit whenever they are activated by the current input vector.

III. FAULT ANALYSIS

 Fault analysis assumes that the set of multiple faults to be covered is the set of all frontier faults
and it is performed into two main phases: propagation phase and backward phase. Forward phase
determines all possible values on the circuit lines. It takes into account any possibility of propagating
faulty values due to any frontier fault not yet dropped. Backward phase starts from primary outputs
assuming that the fault free response is observed and progresses toward primary inputs. For a given
gate, it deduces values that are actually present on its inputs in order to observe fault free response
only. From these deduced values, faults and fault effects may be dropped on lines and the backward
phase continues on the driving network. Once a fault is dropped, it means that it cannot be component
of any other frontier fault, and cannot reappear because we assume permanent faults. Therefore, a
whole class of frontier faults is dropped at once because no fault masking can occur. (We say that a
fault fiα is masked by a fault fjβ, if the test vector that detects fiα does not detect the simultaneous
occurence of fiα and fjβ).Thus, the results obtained are not invalidated in the presence of redundant

- 6 -

and undetected faults: a fault is dropped when it is not masked by another fault or combination of
faults and it is either observable or its site may be hidden in the CUT.
A. Line Model

 Given an input vector, a line i propagates a fault effect if its value in the CUT is different from its
fault free one due to some fault(s) in the driving network. To model the behavior of a line i in the
CUT, we associate the following bit variables: ni / pi

*, si
1, si

0:

• ni designates the fault free value on line i.

• si
1 = 1 (si

0 = 1) if fi1 (fi0) is a component of a frontier fault still to be considered.

• pi is called the propagation bit. It is equal to 1 if line i may be normal and may propagate a fault
effect. It is equal to 0 if line i carries fault free value only, or it is hidden or faulty.

 As a consequence of the definition of the propagation bit, fault effects are potential and may
propagate on normal lines only. That is on hidden and faulty lines the propagation bit is always equal
to 0 (hidden lines carry fault free values only). These properties are reflected through the propagation
bit in our analysis algorithm.

B. Forward Phase

 We assume that primary inputs are directly controlled from the circuit environment and that no
fault effects propagate to them. Starting from primary inputs and proceeding in topological order
toward primary outputs, we compute fault free values and propagate fault effects assuming that the
output of the gates are normal, otherwise they will not propagate any fault effect by definition. Fault
effects are assumed independent (no correlation between fault effects issued from the same fault or
fanout stem), hence, the evaluation of line values is conservative and includes the behavior of the
CUT. Thus, in computing the output value, we take into account the gate functionality and any
possibility of faulty values on its inputs.

The propagation bit on the output of an AND/NAND gate is set to 1 (i.e., the gate propagates a fault
effect) in the following cases:

i) All fault free values of its inputs are equal to 1 and at least one input i carries a fault effect, or

ii) For each input i with ni = 0, either pi or si
1 are equal to 1. Furthermore, if for each input i, ni = 0,

then there must be at least one input carrying a fault effect.
In case i) all inputs have fault free value of 1, and if there is a fault effect on one of them, say input i,
it is assumed normal and the output is normal so the propagation bit is set to 1 on the output. In case
ii) the fault free value on the output is 0, but if for each input i with ni = 0 there is a possibility of a s-

* ni / pi has a different meaning from the D notation. D = 1/0 means that line i is equal to 1 in the fault free circuit and 0 in the CUT. ni
/ pi = 1/1 means that line i is equal to 1 in the fault free circuit and may be 0 or 1 in the CUT, and this effect may be observed on some
primary outputs.

- 7 -

a-1 or a fault effect then the gate may propagate a faulty value on the output. If all inputs have a fault
free value 0, we do not consider them simultaneously s-a-1. This can be summarized in the following
formula:
 pout = 1 � [(∀i, ni = 1) � (∃i, pi = 1)] ∆
 [(∃i, ni = 0) � (∀i, ni = 0 � (pi ∆ si

1 = 1)) � (∃i, ni ∆ pi = 1)]

Fig. 3 illustrates two situations of the propagation bit computation for an AND gate. For each line i
we represent its fault free value and propagation bit by ni / pi. Values in bold characters constitute one
of the possible combinations that may propagate a fault effect on the gate output.

1/1

1/00/1

0/0 s-a-1
0/11/0 s-a-1 1/0 1/1

Fig. 3. Propagation bit computation for an AND gate.

Similarly, the propagation bit on the output of an OR/NOR gate can be computed as follows:

 pout = 1 � [(∀i, ni = 0) � (∃i, pi = 1)] ∆
 [(∃i, ni = 1) � (∀i, ni = 1 � (pi ∆ si

0 = 1)) � (∃i, ni ∆ pi = 1)]

For a XOR or XNOR gate, a fault effect is propagated on the output on the output if there is at least a
fault effect on one of its inputs; this will change the input value and then the output value too. Also,
there is a fault effect on the output if the fault free value of one input is v with a possible stuck-at-v
fault. For example, if the fault free value of an input is 1 and with a possible s-a-0 fault, combined
with the fault free value of the other input will produce a different value from the fault free one at the
output (i.e., propagates a fault effect at the output). This is computed as follow:

 pout = 1 � (∃i, pi = 1) ∆ (∃i, (ni = v � siv = 1))

 The propagation bit is transmitted as is from the input of an inverter to its output sine no faults are
considered on its input. For a fanout stem, it is broadcast to all its branches. Fig. 4 illustrates an
example of the computation of the propagation bit on each line given the input vector t = 000. The s-
a-1 fault on line 4 combined with the fault free value of line 5 propagates a fault effect on line 7 (p7 =
1). There is no fault effect on line 8 (p8 = 0) because we do not consider simultaneous s-a-1 (or s-a-0)
on the inputs of any gate. The fault effect on line 7 combined with the s-a-0 or the fault free value on
line 8 propagates a fault effect on line 9.

- 8 -

1

2

3

4

5

6

7

8

0/0 s-a-1

0/0

s-a-1

s-a-1

s-a-1

s-a-0

s-a-0 s-a-0/1

0/0 1/0

0/0

0/0
0/0

0/1

0/1
9

Fig. 4. Evaluation and fault effect propagation.

C. Backward Phase

 The purpose of this phase is to eliminate faulty conditions that contradict the observed fault free
response on primary outputs, or that may be hidden by other faulty conditions. The backward phase
starts from primary outputs and progresses toward primary inputs. It assumes that fault free response
is observed and drops fault effects on these outputs by resetting to 0 their propagation bits. Then, for
each gate feeding the outputs, it deduces possible values that are actually carried by their inputs: The
deductions may result in dropping fault effects and faults that are not masked and cannot be present
in order to observe fault free response only.

 A fault effect on a line is dropped by resetting to 0 its propagation bit, i.e., the line carries fault
free value only. Each time the propagation bit on a line is reset to 0, the backward phase continues
further in the driving network. This phase is not performed for any gate whose propagation bit on its
output is not reset to 0. Depending on types of the encountered gates, propagation bits and status of
its inputs are deduced according to its functionality and the following deduction lemma which
determines, if possible, the unique input responsible for a fault effect on the gate output, and which is
not be masked by any other fault effects. For an AND/NAND the deduction lemma can be stated as:

Lemma 2: If the propagation bit pg on the output g of an AND/NAND gate is reset to 0, then the
following are sufficient conditions for dropping on each input i of the gate the fault effect
and the fault:

 - Drop the fault effect: pi = 0 � (ni = 0 � (∀j≠i, nj = 1 � pj = 0)) ∆ (∀j, nj = 1)
 - Drop the fault: si1 = 0 � ni = 0 � (∀j≠i, nj = 1 � pj = 0)

Proof: Since pg was reset to 0, then g could be in one of the following states:

• g is a faulty or a hidden line: All the inputs of the gate are hidden; therefore they carry fault
free value only, i.e., ∀i, pi = 0 and si

1 = 0.
• g is normal:

(i) ∀i, ni = 1: A fault effect on any input i will propagate to the output g. Since pg = 0
then ∀i, pi = 0.

(ii) There is an input i such that ni = 0 and (∀j≠i, (nj = 1 and pj = 0)): A fault effect on i
will be the only cause of the fault effect on g. Since pg = 0 then pi = 0 and si1 = 0.

QED

- 9 -

The corresponding lemmas for others types of gates are stated as follows (their proofs are similar to
the previous one according to the gate functionalities):.

Lemma 3: If the propagation bit pg on the output g of an OR/NOR gate is reset to 0, then the following
are sufficient conditions for dropping on each input i of the gate the fault effect and the
fault:

 - Drop the fault effect: pi := 0 � (ni = 1 � (∀j ≠ i, nj = 0 � pj = 0)) ∆ (∀j, nj = 0)
 - Drop the fault: si

0 := 0 � ni = 1 � (∀j ≠ i, nj = 0 � pj = 0)
Lemma 4: If the propagation bit pg on the output g of an XOR/XNOR gate is reset to 0, then the

following are sufficient conditions for dropping on each input i of the gate the fault effect
and the fault:

 - Drop the fault effect: pi:= 0 ⇔ (nj = v) ∧ (pj = 0) ∧ (sj
v = 0), j ≠ i

 - Drop the fault: si
v: = 0 ⇔ (ni = v) ∧ (pj = 0), j ≠ i

For inverters and buffers, if the propagation bit on the output is reset to zero, it is also reset to zero on
the input. For a fanout stem, the conditions are stated in the following lemma:

Lemma 5: Let s be a fanout stem. Sufficient conditions for resetting the propagation bit ps to 0 are:
 - ∀ fanout branches b of s, pb = 0, or

- ∃ fanout branch b of s such that pb = 0 and b is normal.

Proof: We can have one of the following situations in the circuit under test:
• Let b be a branch of s, b is normal and pb = 0 then obviously ps = 0 otherwise pb would

necessarily have to be 1.
• For every branch b of s, pb = 0:
 (i) All branches are hidden or faulty lines. The stem s is hidden and carries fault free
value, therefore ps = 0.
 (ii) At least one branch b is normal, then ps = 0 otherwise pb would necessarily have to be
1.

QED

Example: Fig. 5 shows an example of deductions made during the backward phase. If the observed
fault free value on line 9 is 0, then the frontier fault (f41) is detected, or line 4 is hidden by the
undetected fault (f70) or (f90). The fault f41 is thus dropped according to the deduction lemmas and
implicitly all frontier faults containing f41 as component are dropped too, i.e., the set {(f41), (f31, f41),
(f41, f61), (f41, f80)}.

- 10 -

1

2

3

4

5

6

7

8

0/0 s-a-1

0/0

s-a-1

s-a-1

s-a-1

s-a-0

s-a-0 s-a-0

0/0 1/0

0/0

0/0
0/0

0/1

0/1
9
X

X

Fig. 5. Fault dropping example.

 Each time a fault is dropped on a line, the backward phase determines in the same time the
possible presence of a normal path from that line to a primary output in order to declare this line as
normal. At the end of fault analysis, the used fault dropping technique will have determined four
classes of lines which are summarized in Table I. Deduction 1 and Deduction 2 in the table designate
the deductions made on a line, if any, in order to belong to the corresponding class.

TABLE I
FAULT ANALYSIS RESULTS

Class Deduction 1 Deduction 2
Normal Y Y
Normal or Hidden Y N
Faulty or Normal N Y
Faulty, Normal or
Hidden

N N

 Deduction 1: Fault dropped on the line.
 Deduction 2: Normal path(s) from the line to a primary output.

D. Analysis Example

 The circuit example presented in Fig. 6 makes the emphasis on the contribution of our analysis
method compared to the existing ones in the literature. In Fig. 6a, the forward phase is performed for
the input vector adg = 010. Faults (fb1), (fh1) and (fi1) may propagate fault effects on lines k, l and m
respectively (i.e., pk = pl = pm =1). In Fig. 6b, the backward phase is applied to the circuit assuming
that the fault free value 0 is observed on line out. Fault effects on k, l and m are reset to 0 by Lemma
3. According to our model, faults (fb1), (fh1) and (fi1) are dropped when the backward phase continues
for the gates feeding lines k, l and m, respectively.

- 11 -

a) Forward Phase

a

b

c

d e

f

g i

h

j

k

l

m

1

0

0 0/0

0/0

1/0

1/0

1/0
0/1

0/1

0/1

0/1

0/0

out

s1

s0

s1

s1

s1

s1

s1

s0
s0

s0,1

b) Backward Phase

a

b

c

d e

f

g i

h

j

k

l

m

1

0

0 0/0

0/0

1/0

1/0

1/0
0/1

0/1

0/1

0/1

0/0

out

s1

s0

s1

s1

s1

s1

s1

s0
s0

s0
X

X

X

X

X

X

X

Fig. 6. Fault analysis example.

 In this example circuit, the single fault fl0 is redundant and thus, no method can claim the
presence or absence of (fl0) and would not drop the faults (ff1) and (fh1) since no normal path could be
deduced from lines f and h to the primary output out. Using our analysis method, a complete test set
will drop all faults in the circuit except (fl0). The faults of interest ff1 and fh1 are also dropped because
either lines f and h are hidden by (fl0) if present in the CUT, or in the absence of this latter fault, their
effects will be observable on the output.

E. Event Analysis

 When testing our algorithm, we noted that it includes an inherent pessimism due to the use of
single vectors in the presence of multiple faults and the conservative evaluation of line values, and
that event analysis improves the performance of the method. The second step of our algorithm
analyzes events which represent signal changes (0 to 1 or 1 to 0) between two consecutive vectors
[1]. Lines that propagate such changes can be asserted as normal. Compared to the method presented
in [6], our approach to event analysis does not perform explicit propagation and deduction of pairs of
vectors through the network. After the analysis of each single vector, event analysis consists in
retracing signal changes that have been propagated and observed on a primary output, by simply
comparing the deduced values between the current and precedent input vectors.

 We define an event on a line as a change that must have occurred on that line if the circuit were
fault free. We also define a potential event as the possibility of having a change on a line due to
remaining potential faults, i.e., when a change may propagate in the CUT but not in the fault free one.
In order to simplify explanations, we consider 2-input gates; we designate them as the upper and the
lower inputs. A generalization to n-input gates (n > 2) is immediate.

 Fig. 7 illustrates different combinations of events and potential events. Notation x-y represents a
change from value x to value y in the fault free circuit, and x- represents no change. In Fig. 7a, there
are events with different polarities on both inputs, then there is no change in the fault free circuit but
due to a s-a-1 or a fault effect on the lower input, there may be a change on the gate output in the
CUT (potential event). Fig. 7b represents the propagation of a potential event. Fig. 7c represents the
case where an event occurs regardless the state of the lower input. Fig. 7d represents the absorption

- 12 -

of an event due to the dominant value on the lower input (we assume that the s-a-1 fault has been
dropped and that there is no fault effect on this input).

0-Event 0-1

1-0Event
s-a-1

Potential
Event(a)

(b) 0-
0-

0-0
Potential

Event

Potential
Event

Event 0-1

1-1(c)
0-1 Event

Event 0-1

0-0(d) 0-0

s-a-1
Fig. 7. Propagation of events and potential events.

 The objective of the event analysis is to trace backward single paths along which events have
occurred and declare all lines belonging to such paths as normal. Fig. 8a shows such cases: if we
deduce an event on the output of an AND gate and it is only due to an event on the upper input, then
this input must be normal, i.e., the presence of a fault would have been detected.

Event

Event1-1

0-1 0-1

(a)

Event
?

?
0-1

0-1

0-1
Event

Event
s-a-1

s-a-1

(b)

Event
?

0-1

0-1

0-1
Event

Event
s-a-1

(c)
Fig. 8. Possible deductions in the presence of events.

 The event on one input combined with an appropriate event or a stuck-at fault on the other input
may produce a change on the output, as illustrated in Fig. 8b where two events are combined at the
output of the gate; we are not sure if both events occurred or only one of them. In this case the event
analysis is not resumed to pass through this gate. In Fig. 8c, since we have observed an event at the
output of the gate, we can deduce the event on the upper input when no fault effect is possible during
the first vector. For the lower input, two situations are possible: An event or a s-a-1 fault. These
situations are not distinguishable because both of them, if present, when combined with the event on
the upper input, can produce the event at the output of the gate.

 When no deductions can be made on the inputs of a gate which propagate an event, we try to
identify, if possible, the unique stem that feeds this gate and propagates an event too. If such stem
exists, then we are sure that it is the unique responsible of the event observed on the gate output.
Therefore, the fault effect that disables the event on this fanout stem is dropped and the analysis is
resumed starting from this stem toward primary inputs. This is similar to the stem regions analysis [6,
10] which identifies reconvergent fanout stems and then correlates values emanating from them.

IV. EXPERIMENTAL RESULTS

- 13 -

 The analysis program consists of approximately 2000 lines of code. The test vectors were
randomly generated, except for the ALU 74181 where it is well known that there are 16 basic vectors
that detect all multiple faults. For other circuits, we analyze random vectors, and a number of them
were retained to constitute the test sets presented in Table II.

 When dealing with multiple faults, different measures have been proposed for the evaluation of
the fault coverage [7], and misleading conclusions on this coverage can be drawn. In our case, we
adopt the measure presented in [7] as unconditional fault coverage, because it is more adequate: In a
circuit of m lines, each line can be s-a-0 or s-a-1. These 2m faults are components of multiple faults.
Therefore, the coverage is defined as the ratio of the number of dropped faults to the total number of
faults. Note that this coverage can be used as a lower bound for the actual coverage since it is more
pessimistic: A fault on a line is not dropped unless all frontier faults involving this line are dropped.
For example, in the circuit in Fig. 6 consisting of 10 lines (excluding fanout stems), the initial number
of faults is 20. After the analysis of the first vector (Fig. 6b), we dropped 13 faults out of the 20
possible ones (i.e., 65% fault coverage), and a complete test set will drop all faults except (fl0),
producing 95% fault coverage.
 Table II shows the results obtained from the analysis of the ISCAS'85 benchmark circuits [4]. The
table gives the circuit name (C432 indicates that the circuit consists of 432 lines); the number of
faults on lines after collapsing (components of frontier faults); the test size; the fault coverage as
defined above; and the total CPU time to analyze the complete test set on a SPARC-Station 2. Note
that the test size is the length of the input sequences analyzed by the algorithm. Some input vectors
may have been repeated.

TABLE II
FAULT COVERAGE FOR ISCAS'85 CIRCUITS

Circuit Faults Test Size Coverage CPU Time
74181 175 22 100% 0.67 sec
C432 345 146 99.4% 8.2 sec
C499 640 250 99.1% 15.3 sec
C880 692 175 100% 23.6 sec
C1355 1056 601 84.4% 1 mn 50.8 sec
C1908 1109 523 96.6% 2 mn 16.3 sec

C2670 1839 639 88.2% 3 mn 45.5 sec
C3540 2270 1254 97.3% 10 mn 35.4 sec
C5315 3738 865 89.3% 11 mn 31.2 sec
C6288 4832 785 73.3% 226 mn 20.6 sec
C7552 4950 1561 84.8% 27 mn 30.8 sec

 Since fault collapsing is first performed, we end up with less faults (second column of Table II)
than methods considering faults on checkpoints, as in [6]. Thus, a less number of faults and the use of
single vectors make our method efficient enough to achieve high fault coverage at reasonable amount
of computing time.

 For the ALU 74181, test sets generated for single stuck-at faults are not sufficient to cover all
multiple faults [9]. In our case, there are 16 basic input vectors [11] that detect all multiple faults of

- 14 -

all multiplicities. These vectors were applied more than once to obtain a sequence of 78 vectors in
[6], while in our case a sequence of 22 vectors suffices and it is analyzed in only 2.7 seconds
compared to 14.66 sec (=0.188*78) in [6] (on the same frame, i.e., SUN-3/260).

 The C880 circuit is testable for all multiple faults of all multiplicities. Our method were able to
achieve a 100% coverage in only 23.6 seconds with a test set consisting of 175 single vectors.
However, for the C6288 (a 16 bit multiplier which is time consuming due to its topology), a method
of generating very high quality test is more suitable in order to achieve a better fault coverage in less
computing time.

V. CONCLUSION

 We have presented a new method to analyze multiple faults at the gate level in combinational
circuits. The frontier fault model reduces the number of faults to consider during the analysis and
improves the deduction power of the method. Faults that are dropped cannot be masked and are either
observable on primary outputs or their sites are hidden by yet undetected faults. Early fault dropping
avoids the need of backtracking in the analyzed input sequence in order to find (if any) a test vector
for a given fault for which a normal path has been deduced during the analysis. When the analysis is
completed, the remaining undetected faults in the circuit do not invalidate the obtained results.

 The use of single vectors requires simpler algebraic manipulation and is less time consuming than
pairs of vectors. Event analysis, which retraces normal paths that propagated events between two
consecutive vectors, remedies to the inherent pessimism and loss of value correlations. Clusters of
vectors can be useful in this case, but there is a trade off manipulating simple algebraic equations
using single vectors against sets of bit sequences using clusters of vectors. The efficiency of clusters
over single vectors is not undoubted when considering the combinatorial explosion of values using
clusters of vectors. Experimental results show the speedup and efficiency when analyzing multiple
stuck-at faults using our method, compared to results published in the literature.

 We plan to extend our analysis method to handle diagnosis and we are currently developing an
automatic test pattern generator for multiple faults based on the frontier fault model and the concepts
of this analysis method.

REFERENCES

[1] M. Abramovici, M.A. Breuer, “Multiple Fault Diagnosis in Combinational Circuits Based on an Effect-Cause
Analysis.”, IEEE Trans. on Computers, vol. C-29, 1980, pp. 451-460.

[2] V.K. Agarwal, A.S.F. Fung, “Multiple Fault Testing of Large Circuits by Single Fault Test Sets.”, IEEE Trans. on
Computers, vol. C-30, no. 11, 1981, pp. 855-865.

[3] D.C. Bossen, S.J. Hong, “Cause-Effect Analysis for Multiple Fault Detection in Combinational Networks.”, IEEE
Trans. on Computers, vol. C-20, 1971, pp. 1252-1275.

[4] F. Brglez, H. Fujiwara, “A Neutral Netlist of 10 Combinational Benchmark Circuits and a Target Translator in
Fortran”, Proc. of the Intl. Symp. Circuits and Systems, 1985,

[5] C.W. Cha, “Multiple Fault Diagnosis in Combinational Networks”, Proc. of the 16th Design Automation Conf.,
1979, pp. 149-155.

- 15 -

[6] H. Cox, J. Rajski, “A Method of Fault Analysis for Test Generation and Fault Diagnosis.”, IEEE Trans. on
Computer-Aided Design, vol. 7, no. 7, 1988, pp. 813-833.

[7] H. Cox, A. Ivanov, V.K. Agarwal, J. Rajski, “On Multiple Fault Coverage and Aliasing Probability Measures.”,
Proc. of the Intl. Test Conf., 1988, pp. 314-321.

[8] A.D. Friedman, “Fault Detection in Redundant Circuits.”, IEEE Trans. Electron. Comput., vol. EC-16, 1967, pp. 99-
100.

[9] J.L.A. Hughes, “Multiple Fault Detection Using Single Fault Test Sets.”, IEEE Trans. on Computer-Aided Design,
vol. 7, no. 1, 1988, pp. 100-108.

[10] F. Maamari, J. Rajski, “A Reconvergent Fanout Analysis for Efficient Exact-Fault Simulation of Combinational
Circuits”, Proc. of the 18th Fault-Tolerant Computing Symp., 1988, pp. 122-127.

[11] J. Rajski, “GEMINI - A Logic System for Fault Diagnosis Based on Set Functions”, Technical Report TR-87-5R,
McGill University, 1987.

[12] A. Verreault, E.M. Aboulhamid, Y. Karkouri, “Multiple Fault Analysis using a Fault Dropping Technique”, Proc. of
the 21th Fault-Tolerant Computing Symp., 1991, pp. 162-169.

