
- 1 -

On the Generation of Test Patterns for Multiple Faults

Younès KARKOURI, El Mostapha ABOULHAMID and Eduard CERNY

Dép. d'informatique et de recherche opérationnelle
Université de Montréal, C.P. 6128, Succ. "A"

Montréal, (Québec), H3C-3J7, Canada.

ABSTRACT

 This paper presents a new method to generate test patterns for multiple stuck-at faults in combinational
circuits. We assume the presence of all multiple faults of all multiplicities and we do not resort to their explicit
enumeration: the target fault is a single component of possibly several multiple faults. New line and gate
models are introduced to handle multiple fault effect propagation through the circuits. The method tries to
generate test conditions that propagate the effect of the target fault to primary outputs. When these conditions
are fulfilled, the input vector is a test for the target fault and it is guaranteed that all multiple faults of all
multiplicities containing the target fault as component are also detected. The method uses similar techniques to
those in the FAN and SOCRATES algorithms to guide the search part of the algorithm and includes several
new heuristics to enhance the performance and fault detection capability. Experiments performed on the
ISCAS'85 benchmark circuits show that test sets for multiple faults can be generated with high fault coverage
and a reasonable increase in cost over test generation for single stuck-at faults.

Keywords: combinational circuits, stuck-at faults, multiple faults, fault analysis, test pattern generation.

- 2 -

1. Introduction

 The increased density of logic in digital circuits has a great impact on the complexity of
testing. It is well known that the fault detection problem is NP-Complete [13, 21, 23] even if the set
of faults is restricted to the traditional single stuck-at fault model (SSF). This model is commonly
used because it represents a large class of potential physical failures. It assumes that only one line in
the circuit under test is faulty, i.e., having a constant logic value of 0 or 1 independently of the circuit
inputs [6, 37] . Therefore, a circuit of n lines can have up to 2n different SSFs. Due to the high density
of modern circuits, this fault model may no longer be adequate. A manufacturing defect may result in
a fault involving more than one line, and the ability of the SSF model to represent this physical defect
decreases considerably. Consequently, fault detection methods may have to deal with the multiple
stuck-at fault (MSF) model. Under this model, a circuit of n lines can have up to 3n-1 different MSFs
which makes test generation for all of them difficult in most practical cases. Techniques such as fault
equivalence and collapsing [29] reduce the number of MSFs to deal with, but this is still too high for
explicit fault enumeration.

 Numerous fault simulation and test pattern generation methods have been developed for SSFs
[2] . Experience from actual circuit testing justifies the adoption of the SSF model: First, circuits are
assumed to be frequently tested so that at most one defect occurs at a time. Second, when evaluating
the detection capability of MSFs by a test set developed for SSFs, a high coverage of MSFs is
achieved for some classes of circuits (depending on their structure and the chosen measure for fault
coverage). For a fanout-free circuit, Hayes [17] showed that there exists a complete test set for SSFs
that detects all MSFs. Schertz [34] showed that for internal fanout-free circuits a complete test set for
SSFs detects all MSFs. Also, Kohavi [27] determined that any complete test set for SSFs in an
irredundant two-level circuit detects all MSFs. Unfortunately, these categories of circuits appear
rarely in actual designs which may be redundant and may contain a large number of internal
reconvergent fanouts (the cause of the NP-Completeness of the fault detection problem). These two
characteristics create a phenomenon of masking between faults [11] which limits a test set derived for
SSFs from detecting MSFs [38] . A fault f1 is said to be masked by a fault f2, if the test vector
generated to detect f1 does not detect the simultaneous occurrence of f1 and f2. A cycle of such

masking phenomena will result in a situation where all the fault components of a MSF are detectable
with a given test set, but the MSF itself is not.

 Considering such masking relations, Agarwal and Fung [4] derived a prediction algorithm for
the lower bound on MSF coverage using SSF test sets. They showed that the presence of reconvergent
fanouts can drastically reduce the coverage of multiple faults on the gates involved in the fanout
paths. Hughes and McCluskey [20] reported a simulation study on the coverage of MSFs by different
SSF test sets for the 74LS181 4-bit ALU. They found that any complete test set for SSFs detects more

- 3 -

that 99.96 percent of double faults, and many of the test sets detect most of the simulated triple and
quadruple faults. These results are analytically explained by Jacob and Biswas [22] . They showed
that at least 99.67 percent of all multiple faults in any circuit are detected by a test set for SSFs if the
number of observable outputs is greater or equal to three. Kubiak and Fuchs [28] recently reported a
multiple-fault simulation method that determines the fault coverage of MSFs with test sets for SSFs.
They confirm the results in [20] , i.e., high fault coverage is achieved for multiple faults of small
multiplicities in some well-known benchmark circuits.

 We believe that the results reported by the above methods [20, 22, 28] are too high because
the measure of fault coverage is not adequate. Misleading conclusions can be drawn, and as it will be
shown later, the definition of the fault coverage as given in [22] can be independent of the circuit
size. Also, a complete test set for SSFs is often incomplete for MSFs [19] due to fault masking [12] ,
and the analysis of MSFs for test generation is of great interest for achieving high reliability of VLSI
circuits. This has contributed to the development of methods to analyze MSF detection in
combinational circuits either explicitly under certain assumptions [5, 8, 18] , or implicitly [1, 10, 39] .

 Bossen and Hong [5] reduced the list of potential faults by considering stuck-at faults on
checkpoints, i.e., fanout branches and primary inputs that do not fan out. They showed that the set of
all combinations of these faults is equivalent to the set of all possible MSFs. The approach to test
generation establishes global equations for the circuit output functions, while considering all
possibilities of faulty conditions. The manipulation of such equations is impractical in the presence of
a large number of checkpoint faults or in the presence of redundancy, because masking between faults
can occur before reaching primary outputs. This is also true for the method presented in [18] which
uses the "G-F" formulas to derive test sets for MSFs. Cha [8] considered prime faults, an equivalent
class to the MSFs. He established masking relations between undetected potential faults, relative to a
given test set. These relations are used to break masking cycles and add new test vectors to the initial
set. This approach is not obvious in the presence of a large number of faults and reconvergent fanouts.
Abramovici and Breuer [1] developed a method to identify potential faults not detected by a given
test set. The method uses concepts similar to the D-algorithm [33] , but analyzes a set of vectors rather
than one vector at a time. However, it does not generate additional tests for undetected MSFs and its
performance on benchmark circuits was not reported.

 Other analysis methods deal with multiple faults implicitly [10, 39] and achieve a high degree
of efficiency. An unavoidable pessimism is inherent in these methods because they use a conservative
evaluation of the behavior of circuits under the presence of all possible MSFs (even if fault collapsing
is performed [39]). Given an initial test set, they determine the set of lines in the circuit that cannot
have a particular fault (fault dropping) under the MSF model when the correct output is observed. The
results obtained are not invalidated by the presence of undetected or undetectable faults: A fault is
dropped only if its effect is not masked by any other fault or combination of faults. The resulting fault

- 4 -

coverage is a lower bound on the MSF coverage that can be achieved in reality: Even though some
MSFs involving a particular line are detected, the fault on that line is not dropped unless all MSFs
involving this line are detected.

 Based on the conservative approach to MSF analysis [39] , we present in this paper a fault-
oriented test pattern generation method (TPG) for MSFs in combinational networks. The method is
similar to SSF TPG except that error propagation, line justification and implication consider signal
ambiguity introduced by the possible presence of all faults in the circuit. The search vehicle uses
techniques similar to the FAN [14] and SOCRATES [36] algorithms. Various heuristics as well as a
specific fault collapsing procedure are used to reduce signal ambiguity and to find test conditions that
detect a target fault. The signal ambiguity is also reduced by fault dropping: when a fault is declared
as detected it is dropped from the circuit and its effect is not considered any more.

 Our approach to test pattern generation does not perform explicit enumeration of multiple
faults; the targeted fault is a single fault component of possibly several MSFs. For each target fault,
the algorithm tries to identify test conditions, from a combination of values on primary inputs, which
propagate the effect of the target fault to primary outputs regardless the effects of other faults which
might be present in the circuit. The generated test vector thus guarantees the detection of the target
fault, unless its effect is hidden by a MSF which is really present in the circuit under test (the effect of
the target fault would never be observable on primary outputs under any other input vector).
Consequently, all MSFs containing this targeted fault component are implicitly detected by the
generated vector because no fault masking can occur. Furthermore, since the propagation of fault
effects is based on necessary conditions, the approach is conservative. It is thus possible that a test for
a fault is not found although it exists, but the algorithm will never claim a fault as detected while in
reality it is not. The algorithm also incorporates the efficient fault analysis method proposed in [39] .
The TPG method was applied to the ISCAS'85 benchmark circuits [7] , and satisfactory fault coverage
was obtained. The experimental results also provided an indication of the cost of deriving good test
sets for multiple faults, which is about 10 times the cost of deriving tests for SSFs.

 The rest of the paper is organized as follows: Section 2 presents the fault, line and gate models
under the MSF model. Section 3 contains an overview of the test pattern generator for MSFs. Section
4 presents the MSF test pattern generator and the different tools and heuristics included to guide the
search process. Section 5 reports the experimental results. Finally, Section 6 concludes with notes on
possible directions for multiple fault test pattern generation.

2. The Models

 Dealing with multiple faults requires a particular care when representing and propagating
faulty values in the circuit. The computation of the values is conservative in order not to create
optimistic conditions for fault detection that may invalidate the obtained results.

- 5 -

2.1. The Fault Model

 We assume that all faults occur on circuit lines only; we refer to a single fault component of a
multiple fault as a fault. The gates are fault free and may have up to m inputs (m ≥ 1) for AND, NAND,
OR and NOR gates. XOR and XNOR gates have two inputs. A path from line i to a primary output is
said normal if all lines along this path are normal, i.e., are faultless, but the other inputs to gates along
this path may be faulty.

 Fault collapsing is first performed to retain only one fault per equivalence class, and it is based
on the intuitive fact that a fault effect is easier to observe if it is closer to the primary outputs. Thus,
the representative fault is the closest one to the primary outputs. For example, a stuck-at-0 (s-a-0) on
an input of an AND gate is removed and placed on the output. We do not consider that all inputs of an
AND gate are simultaneously stuck-at-1 (s-a-1), because we assume an equivalent s-a-1 fault at the
gate output.

The following faults are retained after collapsing:
• s-a-1 (s-a-0) faults on all inputs of AND/NAND (OR/NOR) gates. The multiple fault consisting of s-a-1 (s-

a-0) on all inputs is not considered.
• No fault on the input of an inverter and a buffer gate, and on a fanout stem.
• Both s-a-0 and s-a-1 on primary outputs.
• Both s-a-0 and s-a-1 on each input of XOR and XNOR gates. The multiple fault consisting of s-a-1 or s-a-0

on both inputs is not considered.
 Furthermore, there is at least one normal path from each faulty site to a primary output.

 In a circuit consisting of n lines, a multiple fault is represented by a tuple with at most n faults
and denoted by f = (siα, sjß, …), i ≠ j, where siα represents the status of line i: α = 0 for s-a-0, α = 1
for s-a-1. A line k not present in the tuple is not faulty in that multiple fault. According to this
definition, a multiple fault f in the circuit under test partitions the lines into three disjoint categories,
Hidden Lines, Faulty Lines and Normal Lines:
- Line i is faulty if siα � f.
- Line j is normal if sjα � f and there is a normal path from j to a primary output.
- Line k is hidden if there is no normal path from k to a primary output.

 During TPG, we assume that the circuit under test contains one multiple fault consisting of a
combination faults that has not yet been dropped (detected). The effective values (real values) on
hidden lines are unknown, because they are unobservable due to the multiple fault, and there is no
algorithmic way to determine these values (Normal Path Theorem in [1]). We assume that these lines
carry fault free values. As will be seen in Section 4.3, this assumption does not invalidate the
generated tests.

- 6 -

2.2. The Line Model

 Various algebras have been used to describe the behavior of the fault free and the faulty circuit
using D symbols [33] . We represent the fault free value of a line i by a normal value ni = 0, 1 or X

(unspecified). Each line may carry a value that is different from the normal one due to propagated
fault effects. A fault effect is potential (may or may not be present), since all the faults can be
potentially present in the circuit.

 We represent the fault effect on a line i using a propagation bit pi = 0, 1, or X. pi = 1 if line i
propagates a potential fault effect different from its normal value. pi = 0 if no fault effect can

propagate to line i : Line i is carrying its normal value only, or is hidden or is faulty. Initially, all lines
have unspecified normal values (ni = X) and pi = X if under the current value assignment, the lines
driving i still have unspecified normal values. In the rest of the paper, the notation ni / pi will be used

to represent the value assignment to line i. For example, a line carrying the value 1/1 has a normal
value of 1 and may be propagating a fault effect (which can change its value to 0). Table I summarizes
the possible values of a line i.

TABLE I
LINE VALUE INTERPRETATION

ni / pi Fault free Faulty

0 / 0 0 0
0 / 1 0 0 or 1
0 / X 0 X
1 / 0 1 1
1 / 1 1 1 or 0
1 / X 1 X
X / 0 X X
X / 1 X X
X / X X X

The faulty value of a line is assumed unspecified when its normal value or propagation is equal to X.
Primary inputs are directly controlled from the circuit environment, hence no fault effects can
propagate to them.

 Each line i is associated with its status siα which can be viewed as an atomic proposition:
• siα = 0 if the fault s-a-α is not on line i (e.g., has been dropped),
• siα = 1 if the fault s-a-α is potentially present on line i.

2.3. The Gate Model

 The gate model computes the value on the output of a gate given the status and the values of
its inputs. It thus determines the normal value and the propagation of fault effects arising from a
combination of fault effects and potential stuck-at faults on its inputs. Since fault effects are assumed
independent, the evaluation is conservative and includes the real behavior of the circuit.

- 7 -

Example 1: Fig. 1 shows the computation of the value and the propagation bit for an AND gate for
different input situations. In Fig. 1a, given the input values i = 0/0 and j = 1/0, the normal value on the
gate output line g is ng = 0. If line g is normal then it may propagate a fault effect issued from the
combination of the fault si1 and the normal value nj = 1. Hence, g carries the value 0/1.

0/0
0/1

1/0

i

j

(a)

x
s-a-1

gx
s-a-1

X/X
0/X

0/1

i

j

(b)

g
0/1

0/1

i

j

(c)

x
s-a-1

g

X/X

Fig. 1. Fault effect propagation.

In Fig. 1b, we assume that both lines i and j are normal and line j may carry a fault effect (pj = 1). The
propagation bit at the output g remains unspecified because it depends on ni and pi. This not the case
in Fig. 1c where the fault effect on j may be combined with the fault si1 to propagate a fault effect on
g independently of ni and pi. Notice that a definite value is assigned to the output only if it is

guaranteed regardless the interpretation of X on the inputs.

 This conservative computation of propagated values is performed using equations similar to
those reported for 2-valued logic in fault analysis [39] . For TPG, these equations are extended to
handle 3-valued logic for both the normal values and the propagation bits. Let a = 0,X designate that
the variable a can take the value 0 or X (a � {0, X}), then the equation to determine the propagation
bit pout on the output out of a m-input AND gate is the following† (P and Q are predicates; P is true if
pout can be equal to 0; Q is true if pout can be equal to 1):

• P = [∃i, (ni=0,X ∧ pi=0,X ∧ si
1=0)] ∨ [∀i, (ni=0,X ∧ pi=0,X)] ∨ [nout=1 ∧ (∀i, pi=0,X)]

• Q = [(∃i, ni=1,X ∨ pi=1,X) ∧ (∀i, ni=0,X ⇒ (pi=1,X ∨ si
1=1))] ∨ [nout=1 ∧ (∃i, pi=1,X)]

The value of pout is then assigned as follows:

 pout = 0 ⇔ (P ∧ Q); pout = 1 ⇔ (Q ∧ P); pout = X ⇔ (P ∧ Q)

For example, no fault effect propagates to the output of the AND gate if there exists a normal input
having a normal value of 0 with no possible fault effect; this input disables the propagation of any
fault effect to the output. Also, the gate will not propagate a fault effect if all its inputs have a normal
value of 0 and none of them is carrying a fault effect. The fault effect on the output of the gate is
considered unspecified if it can be equal to 0 or 1 (i.e., P = Q = true). The equations for NAND, OR,
NOR, XOR and XNOR gates are in Appendix Ia. For a fanout stem, the propagation bit is broadcast as
is to all its branches. For inverters and buffers, the propagation bit is also transmitted as is to the
output, because there are no faults on their inputs. As discussed in Section 4.1, the necessary
conditions for sensitizing a gate to the effect of a target fault rely on assigning values (0 or 1

† "∀ i" in all equations represents "for each input i of the gate, i = 1, ..., m".

- 8 -

depending on the gate type) to unspecified normal values and/or propagation bits of its inputs that are
not reachable from the target fault site.

- 9 -

3. System Overview

 We consider that the circuit under test may contain a multiple fault consisting of a combination
of faults remaining after collapsing. This multiple fault partitions the lines into hidden, faulty and
normal lines (recall that hidden lines are assumed fault free). The goal of TPG is to generate a test set
that determines as many lines as possible that cannot be faulty when the fault free response is
observed. To do so, the algorithm identifies for each target fault the test conditions which allow to
declare the respective line necessarily not carrying that fault. The line may in reality be either hidden
or normal.

 A flowchart of the TPG system is in Fig. 2. First, a preprocessing phase is performed to
analyze the circuit structure, required for incorporating heuristics that guide the search part of the
algorithm, including the values of controllability/observability measures [3, 16] . As commonly used
in TPG systems, a random test pattern generation (RTPG) may be performed first. A non negligible
number of faults are usually dropped during this phase, which accelerates the subsequent
deterministic TPG. RTPG is stopped when either a maximum number of vectors has been reached or
the last n consecutive vectors do not detect any additional fault. This phase is performed at reasonable
cost since the multiple fault analyzer can manipulate 32 vectors simultaneously [24] .

 A target fault is arbitrarily selected from the list of remaining faults. The TPG gradually
determines a set of objectives that are necessary for activating the target fault and for propagating its
effect to a primary output, while taking into account the potential effects of the other faults still in the
fault list. To meet these objectives in terms of a combination of values on the primary inputs, the TPG
uses similar procedure as in FAN [14] and SOCRATES [36] , but using our models (Section 2):

• An implication procedure determines as many line values as possible that are uniquely implied.
Both local [14] and global implications [36] (learned during the preprocessing phase) are
performed.

• A multiple backtrace procedure concurrently traces more than one path to satisfy an objective.

• A unique sensitization procedure is applied whenever the S-frontier (which is similar to the D-
frontier in SSF TPG) consists of a single gate.

• The backtrace is stopped at head lines, since their justification can be done without conflicts even
under the MSF model, and is then completed in the final stage of the TPG process.

- 10 -

Start

Load Circuit

Preprocessing:
- Fault Collapsing
- Structure Analysis
- Learning Procedure
- Testability Measures

Random TPG

Construct Fault List

Fault
List Empty? y

n

Select a Target Fault

 TPG

Analysis

End

y

n

End of fault list
traversal and no
faults detected ?

Fig. 2. Flowchart of the test pattern generator.

The test conditions which activate the target fault and propagate its effect to a primary output, are
characterized as follows (the justification of these conditions is presented in Section 4.3):
C1: The effect of the target fault cannot be masked by any other fault(s), and
C2: The effect of the target fault was propagated through a normal path, or
C2': The effect of the target fault was propagated through all paths to primary outputs if no normal

path yet exists to a primary output.

Condition C1 is maintained during the propagation of the target fault effect due to the conservative
evaluation of line values (Section 2). Conditions C2 and C2' are verified during a backward deduction
phase which is engaged each time the target fault effect reaches a primary output. If fulfilled, the
target fault is declared as detected and is dropped from the fault list. An alternative equivalent
interpretation of the detection conditions is as follows: The effect of the target fault is observable on a
primary output through a fault free path (condition C2), or is not observable under any input vector

- 11 -

because its site is hidden by another MSF (condition C2'). Because of C1, the test vector detects all
multiple faults containing the target fault since the conservative evaluation guarantees that no fault
masking occurs.

 Multiple fault analysis is then applied, using the generated test vector with random values
assigned to unspecified primary inputs. This step is similar to performing fault simulation after
generating a test for a fault under the SSF model, and it allows to drop additional faults. The analysis
determines the lines that must be faultless in order to observe fault free response on the output of the
circuit. Given an input vector, the fault free circuit is evaluated and the effects of all remaining faults
are propagated using the conservative evaluation of line values. Assuming now that the fault free
response is observed, a backward deduction procedure identifies and drops faulty conditions (i.e.,
fault effects and faults) on lines that are not masked by other faults or could be hidden by yet
undetected faults. Similarly as in [10] , to reduce the pessimistic behavior, the deduction procedure
also performs event analysis between two consecutive vectors to retrace paths that propagated, from
primary inputs to the outputs, an event (a 0 to 1 or 1 to 0 transition). If found, such paths must be
normal and all faults along them are thus dropped. All equations to propagate fault effects and to
deduce the values and the status on a gate inputs are Boolean, and are implemented using bit strings
allowing to analyze up to 32 test vectors simultaneously (typically the length of a machine word) [24]
. This efficient implementation is about ten times faster than the original single pattern analysis [39] .

 Fault dropping permits gradual identification of normal paths (using the backward deduction
phase) and reduces the ambiguity caused by faults when the next target is selected for TPG. Fault
masking relations are not retained during TPG; therefore, each time the traversal of the target fault list
is completed with some of the faults detected, it is reprocessed with the aim to detect faults that were
possibly masked when targeted in the previous list traversal.

 Since our TPG uses conservative value propagation and bases fault detection on necessary
conditions only, the method is not a complete algorithm in that it may not always find a test for a fault
at a given step in the TPG, although it may find it later when other faults will have been detected and
dropped from the circuit. Given enough time to generate test patterns, the procedure will not find a
test only when circular masking between faults exists. But then such a test may not exist at all if all
the faults of the masking relation are present. Moreover, the method is also not complete for
generating tests for all detectable multiple faults: There are situations where a multiple fault
consisting of undetected faults is detectable, but the algorithm will not discover it because it is not
explicitly enumerated and the individual faults are not detectable in the presence of the other faults.

4. Multiple Fault TPG

- 12 -

 The TPG assumes that the circuit may contain a multiple fault, hence it takes into account all
possible values of the status of the lines when generating a test for a given target fault. Consequently,
the concepts of SSF TPG must be generalized to accommodate this factor.

4.1. Multiple Fault TPG Concepts

 When the effect of the target fault is propagated to a primary output under the SSF model, the
circuit lines are divided into two classes: those carrying the fault effect (D-drive), and those set to 0 or
1 to propagate the fault effect. With our MSF model, no distinction is made between these two
classes, since fault effects may be issued from either the target and/or other faults. We thus introduce
the concept of sensibility for implementing an equivalent notion to the D-drive and for distinguishing
the effect of the target fault from all the other fault effects.

Definition 1: A line j is sensible to a target fault si
α if under the current value assignments to lines,

line j propagates the effect of si
α (i.e., pj = 1). The sensibility of line j to si

α is denoted by
the attribute wj = 1. wj = 0 indicates that any fault effect on line j is not due to the target

fault.

 According to the above definition, si
α = 1 � pj = 1, but the fault effect on line j could also be

due to other faults in addition to si
α. Sensibility is propagated through the circuit similarly as D

propagation for SSF TPG. A line i is sensible to its own fault si
α whenever ni = α . The propagation of

sensibility through gates depends on the gate types, the polarity of the input line(s) sensible to the
target fault, and the normal values and the propagation bits of the inputs not reachable from the fault
site (called non-sensible inputs in the rest of the paper). Fig. 3 illustrates three examples of
propagation of sensibility through an AND gate, assuming that input i is sensible to the target fault
(i.e., wi = 1).

1/X

(a)

1/1
1/1

Gi

j
g 1/0

0/1

(b)

0/1

g
i

j

G 1/1
0/1

(c)

0/1

g
i

j

G
wi=1

wj=0
wg=1

wi=1

wj=0
wg=1

wi=1

wj=0
wg=0

Fig. 3. Sensibility propagation through an AND gate.

 In Fig. 3a, the output g is sensible to the target fault (wg = 1) because either line j propagates
no fault effect (pj = 0) and the fault effect on g is due to pi = 1 (since nj = 1), or both i and j propagate
a fault effect (pj = 1) in which case pg = 1 indicates that the effect of the target fault cannot be

distinguished from another effect, but it is certainly present. If the sensible input has a normal value 0,
then the gate output is sensible if every non-sensible input j has nj = 1 and pj = 0. In Fig. 3b, pg = 1 is
due to the effect of the target fault only, hence wg = 1. On the other hand, if input j may carry a fault

- 13 -

effect (pj = 1) (Fig. 3c), it may mask the effect of the target fault and even if pg = 1 (because of the
conservative propagation of fault effects), the gate output is not declared sensible (wg = 0).

 Sensibility to the target fault is propagated through the circuit using specific equations for each
gate type (Appendix Ib). For example, for an AND gate with output g, the sensibility propagation is:

wg = 1 ⇔ (∃i, wi=1) ∧ [(∀i, ni=1) ∨ (∀i, (ni=0 ∧ wi=1) ∨ (wi=0 ∧ ni=1 ∧ pi=0))]

 During TPG for SSFs, the propagation of the effect of the target fault consists of selecting one
gate from the D-frontier and assigning values to its unspecified non-sensible inputs so that the gate
output propagates a D or D value. Similarly, in the case of MSFs the S-frontier is a set of all gates
having one or more inputs sensible to the target fault, and the non-sensible ones having an unspecified
normal value and/or propagation bit such that the target fault effect is not masked. For example, the
inclusion of an AND gate G in the S-frontier is determined using the following expression:

G � S-frontier �
(∃i, wi=1) ∧ [[(∀i, ni=1,X) ∧ (∃i, ni=X)] ∨ [(∀i, ((ni=0 ∧ wi=1) ∨ (wi=0 ∧ ni=1,X ∧ pi=0,X))) ∧ (∃i, ni=X ∨ pi=X)]].

To illustrate the preceding concepts, consider the circuit in Fig. 1. Assuming that line j in Figures 1b
and 1c is sensible to the target fault, the AND gate is in the S-frontier since its output can become
sensible if 1/0 is assigned to line i. The required normal value on each non-sensible input j of the gate
is always 1 (non-controlling value), and the propagation bit pj on this input must be 0 whenever the
sensible input has the normal value 0, while pj is X if the sensible input has a normal value of 1. In

the latter case, the presence or absence of fault effects on the non-sensible inputs does not affect the
sensibility of the gate output to the target fault. Note that a gate is not included in the S-frontier if two
of its sensible inputs have different normal value polarities. This is captured in the above inclusion
expression of a gate in the S-frontier (see also Appendix Ic).

 We summarize in Table II the required values on the non-sensible inputs in order to propagate
the target fault effect through different types of gates. For a XOR or a XNOR gate, if the non-sensible
input j has both potential sj

0 and sj
1, the gate is not included in the S-frontier. The assignment to a

non-sensible input j of a XOR or a XNOR gate in Table II assumes that either sj
0 or sj

1 was dropped in
an earlier iteration of TPG, hence the assigned normal value nj depends on the remaining fault. If both
were dropped, then nj is chosen depending on the value of the controllability measure of line j

(Section 4.4).

TABLE II
REQUIREMENTS FOR THE PROPAGATION THROUGH A GATE IN THE S-FRONTIER

Gate types Sensible
input value(s)

Requirements on
non-sensible

input(s)

Output
Assignment

AND
(NAND)

1 / 1 1 / X 1 / 1 (0 / 1)

- 14 -

 0 / 1 1 / 0 0 / 1 (1 / 1)

OR (NOR) 0 / 1 0 / X 0 / 1 (1 / 1)

 1 / 1 0 / 0 1 / 1 (0 / 1)

XOR
(XNOR)

0 / 1 or 1 / 1 1 / 0 if sj
0 = 0

0 / 0 if sj
1 = 0

1 / 1 or 0 / 1

0 / 1 or 1 / 1

 The backward justification of values assigned to the non-sensible inputs is performed by
backward implication procedure in the same manner as in TPG algorithms for SSFs, except that it
again takes into account the propagation bits when required to be 0.

4.2. Implication and Unique Sensitization

 The assignments which propagate the effect of the target fault through the circuit are justified
by a search over possible line values (ni / pi) that have a good likelihood in satisfying them. This

search explores the space of possible solutions using a branch-and-bound technique [15] . The
convergence to a solution is improved using heuristics and techniques, described as implication and
unique sensitization, that are similar to those in FAN [14] and SOCRATES [36] .

• Implication

 The role of the implication procedure is to identify as many line values that are uniquely
determined as possible, to keep track of lines sensible to the target fault, to update the S-frontier, and
to check for the consistency of value assignments. Line values are determined by forward and
backward implications in the circuit. Forward implication consists of a simple computation of line
values using the gate model defined in Section 2.3. Backward implication determines, when possible,
the values on gate inputs that uniquely justify the value on the output of the gate. Both normal value
and propagation bit values are determined based on the function and the propagation bit equation of
the gate (Appendix Ia). The input values are left unspecified when there is no unique value
assignments. Such inputs are later processed in the multiple backtrace procedure (Section 4.4). Fig. 4
shows unique normal value assignments when the propagation bit on the output of an AND gate is not
specified.

- 15 -

Assignments Implications⇒

⇒
1/X

X/X

X/X
1/X

1/X

1/X

⇒
0/X

X/X

1/X
0/X

0/X

1/X

⇒
x

s-a-1 0/X
X/X

1/X
x

s-a-1 0/1
0/X

1/X

⇒
0/X

X/X

X/X
0/X

X/X

X/X (Unjustified)
Fig. 4. Uniquely determined input normal values of an AND gate.

When the propagation bit on the output of an AND gate is specified to be 0, the only two situations
which are uniquely determined are:

(1) If s-a-1 faults on all its input are still possible, then all the inputs are assigned 0/0. (Recall that
these s-a-1 faults cannot occur simultaneously).

(2) If there exists exactly one input i such that si
1 = 0, then this is the unique input that, when set to

0/0, disables the propagation of any fault effect to the gate output.

Fig. 5 shows unique input assignments when the propagation bit on the output of an AND gate is 0.
For other gate types, the unique assignments are easily derived from their propagation bit equations
(Appendix Ia).

- 16 -

Assignments Implications⇒

⇒
1/0

X/X

X/X
1/0

1/0

1/0

⇒
x

s-a-1

0/0
X/X

X/X x
s-a-1

0/0
0/0

X/X

⇒
x

s-a-1

x
s-a-1

0/0
X/X

X/X
x

s-a-1

x
s-a-1

0/0
0/0

0/0

⇒
0/0

X/X

X/X
0/0

X/X

X/X (Unjustified)
 Fig. 5. Uniquely determined input values of an AND gate.

 In FAN, the backward implication procedure makes unique assignments locally from the
output of each gate. In addition, global implications learned during the preprocessing phase were
introduced in SOCRATES [36] The global implications help to reduce the number of backtracks and
permit early recognition of conflicts and redundancies. We illustrate this learning procedure using an
example. The details can be found in [36] . Fig. 6 shows a small part of a circuit, in which the value 0
has been assigned to f. The gate feeding f becomes unjustified since either d or e set to 0 would satisfy
f = 0. The preprocessing phase uses a learning procedure to determine that (a = 1) � (f = 1) (Fig. 6a)
which also means (f = 0) � (a = 0) (Fig. 6b).

a

b

c

d

e

f
1

1

1

1

X

X

a

b

c

d

e

f
0

X

X

0

X

X

(a) Implications from a = 1 (b) Implications from f = 0

1

1

Fig. 6. Learning global implications [36] .

 In our case, only normal values are determined, and thus the learning procedure is the same as
in [36] . Propagation bits are not considered since invalid implications may result in the presence of a
multiple fault. In the circuit of Fig. 6, to justify the value 0/0 on f during the backward implication,

- 17 -

only na = 0 is assigned. pa will be specified by local backward implications depending on the
remaining faults on the gate inputs.

 Before assigning a value to a line, the implication procedure checks for the consistency of the
assignment. According to our line model, a conflict occurs when either a value α is to be assigned to a
line i having ni = α , or when 0 is to be assigned to pi which is already equal to 1. In such cases, the

implication procedure signals inconsistency and is aborted.

• Unique Sensitization

 In FAN [14] , when the D-frontier consists of a single gate, a unique sensitization procedure is
used to find immediately as many unique assignments of line values as possible. These assignments
decrease the number of choices and thus the number of backtracks. Fig. 7 shows an example of the
application of the unique sensitization procedure using our models, when the S-frontier consists of a
single gate.

x
s-a-1

a

b
c

d

e

f

g

h k

0/0

1/0
0/1

1/0

0/1

1/X

1/X

X/X
X/X
i

j

G1
G2

G3
G4

x
s-a-1

x
s-a-1

x
s-a-1

x
s-a-1

x
s-a-1

x
s-a-1

x
s-a-1

x
s-a-1

Fig. 7. Application of the unique sensitization.

The target fault is sa1 and the input a is assigned the value 0/0. The only gate in the S-frontier is G1,
and every path from G1 to primary outputs passes through c-e and i-k. In order to propagate the effect
of sa1, we have to sensitize paths c-e and i-k. To do so, non-sensible inputs of gates G1, G2, G3 and
G4 have to be assigned the non-controlling normal value 1 (from Table II). Justifying a propagation
bit set to 0 on a line is more difficult due to remaining faults, potentially requiring many more
assignments (as illustrated in Fig. 5). Propagation bits on these inputs are specified only if the polarity
of all the paths from the fault site to the corresponding gates is the same (i.e., even or odd but not
both), in order to propagate the target fault effect (to avoid its masking). Hence, we assign 1/0 to lines
b and d since the polarity of the path from line a to G1 and G2 is even. For gate G3, assuming that the
polarity of all the paths from a to g and to h can be either even or odd, that is, g and h may be assigned
1/1 or 0/1. Therefore, 1/X is assigned to f and has to be justified backward. The propagation bit on f
will be set to 0 only if a subsequent forward implication assigns 0/1 to g and h in order to sensitize G3
to the target fault. pf = 0 has to be subsequently justified by backward implication. But, if the forward
implication assigns 1/1 to g and to h, there is no need for specifying pf, because the value 1/X on line f
is sufficient to sensitize G3 to the target fault. The case for line j is similar. To conclude the example,

- 18 -

the unique sensitization procedure assigns 1/0 to b and d, and 1/X to f and j and then would justify
them, if possible, by backward implication.

 The unique sensitization procedure requires that line dominance be determined during the
preprocessing phase [26, 36] . Line y dominates line x if all directed paths from x to the primary
outputs pass through y. The polarity of these paths is also computed. For each line x we retain all
gates that dominate x and all their inputs which are not reachable from x. In Fig. 7, the outputs of the
gates G1, G2, G3 and G4 dominate line a, and the list of retained inputs is (b[E] d[E] f[-] j[-]), where the

polarity of the paths from a to these gates is indicated between brackets ([E]: Even, [O]: Odd, and [-]:
Even and odd).

4.3. Fault Detection

 The lines of the circuit are hidden, faulty or normal. The goal of our TPG is to generate a test
set that determines the lines that cannot be faulty (hidden or not) when the fault free response is
observed. The algorithm uses the sensibility concept to propagate the effect of the target fault through
the circuit, but cannot declare this fault as detected when a primary output is reached and is sensible
(as done under the SSF model when a primary output is assigned a D or D and all justifications of
line values succeed). The generated test may be invalid in the presence of another fault that masks the
effect of the target fault on the sensitized path only. Thus, we must establish additional test conditions
under which the target fault can be dropped (i.e., detected) assuming that the fault free response is
observed. These conditions are:

C1: The target fault is sensitized to a primary output through a normal path and thus the fault cannot
be present if the fault free response is observed on this output.

C2: No normal path has been identified from the target fault site, but all the paths to primary outputs
are sensitized to the target fault. In this case, if the fault free response is observed on these
primary outputs, the target fault site is either normal or hidden. Thus in both states, the target
fault can be dropped.

 To verify these conditions during the propagation of a target fault effect through the circuit,
the algorithm must maintain a list of all the paths along which the target fault can propagate (normal
paths) or must be propagated (not normal paths). This may result in an inefficient implementation
since a list traversal has to be performed at each step. To remedy this inefficiency, the algorithm does
not maintain such a list, but instead performs a backward deduction phase each time the target fault
effect is propagated to a primary output and all justifications are successful. This phase verifies the
presence of the test conditions that allow to drop the target fault, and at the same time it drops other
faults along sensitized paths for which the test conditions C1 and C2 are fulfilled. In TPG for SSFs,
this corresponds to dropping all activated faults along sensitized paths. Note that this phase is similar
to the backward deduction used in fault analysis [39] . It is a linear time algorithm that performs

- 19 -

backward sweeps from primary outputs having specified value toward primary inputs. It assumes that
fault free response is observed on the primary outputs and drops fault effects on them by resetting to 0
their propagation bits. Then, for each gate feeding these outputs, it deduces the possible values that
are actually carried by their inputs: The deductions may result in dropping fault effects and faults that
are not masked and thus cannot be present or their sites are hidden.

 A fault effect on a line is dropped by resetting to 0 its propagation bit, i.e., the line carries fault
free value only. When the propagation bit on a line is reset to 0, backward deduction continues further
into the driving network. Backward deduction is not performed through any gate having propagation
bit on its output different from 0. Depending on the type of the gates, the propagation bits and the
status of the inputs are deduced using the following deduction lemmas. For an AND/NAND the
deduction lemma can be stated as follows:

Lemma 1: If the propagation bit pg on the output g of an AND/NAND gate is reset to 0, then the
following are sufficient conditions for dropping the fault effect and the fault on each input i
of the gate:

 - Drop the fault effect: pi = 0 � pi = 1 � [(ni = 0 � (∀j≠i, nj = 1 � pj = 0)) ∆ (∀j, nj = 1)]
 - Drop the fault: si1 = 0 � ni = 0 � (∀j≠i, nj = 1 � pj = 0)

For a fanout stem, the conditions are stated in the following lemma:

Lemma 2: Let s be a fanout stem. Sufficient conditions for resetting the propagation bit ps to 0 are:
 - ∀ fanout branches b of s, pb = 0, or

- ∃ fanout branch b of s such that pb = 0 and b is normal.

The lemmas for all types of gates are presented in Appendix II and their proofs are similar to those
given for the analysis method [25, 39] . For inverters and buffers, if the propagation bit on the output
is reset to zero, it is also reset to zero on the input.

 A line i is declared normal if si
1 = 0 and si

0 = 0 (i.e., both faults were dropped) and there exists

a normal path from i to a primary output (i.e., all faults along this path have also been dropped). The
backward deduction phase determines such normal paths while backtracing in the circuit (Appendix
III).

 The following example illustrates some of the possible deductions during the backward phase.
Example 2: Consider the circuit in Fig. 8 containing faults sa

1, sb
0, sc

0, sd
1, sf

1, sh
1, si

1, si
0, sj

1 and sj
0.

Any combination of these faults constitutes a multiple fault whenever there is a normal path from each
of its components to at least one primary output and excluding simultaneous faults on inputs of the
same gate. Let the target fault be sb

0. The fault is activated (Fig. 8a) by assigning normal value 1 to
input b, and pb = 0 since it is a primary input. The assignment c = 0/0 propagates the target fault effect

to line e. Since there is no normal path from the fanout stem e to a primary output, the effect of the

- 20 -

target fault must be propagated through all its branches. By setting a and d to 1/0, the outputs i and j
are reached. At this stage, lines e, f, g, h, i and j are all sensible to sb

0.

(a) Propagation of the target fault effect. (b) Backward deduction phase.

a

b

c

d

e

f

g h

i

j

1/0

0/0
1/1

1/1

1/1

1/0

0/1

1/0

1/1

0/1
x

s-a-1,0

x
s-a-1

x
s-a-1

x
s-a-0

x
s-a-1,0

x
s-a-1

x
s-a-1

Target

x
s-a-0

a

b

c

d

e

f

g h

i

j

1/0

0/0
1/0

1/0

1/0

1/0

0/0

1/0

1/0

0/0
x

s-a-0

x
s-a-1

x
s-a-1

x
s-a-0

x
s-a-1

x
s-a-1

Detected

Fig. 8. Fault detection example.

 The backward deduction is now executed (Fig. 8b). First, it assumes that the fault free
response is observed on the primary outputs i and j, i.e., pi = pj = 0. Faults si

0 and sj
1 are detected and

dropped. Backtracing on each of the AND gates feeding i and j, the propagation bits on f and h are
reset to 0 according to lemma 1, i.e., these effects will be observable on i and j, unless they are hidden
by si

1 and sj
0, respectively. The fault sh

1 is detected based on the same deductions. The fault effect on

stem e is also reset to 0 since it was reset to 0 on all its fanout branches (f and g). Based on Lemma 3
of an OR gate (Appendix II), the fault effect on e is due to sb

0 only, and since pe = 0 then the fault sb
0

is detected. The vector t = (abcd) = (1101) is thus a test for the faults sb
0, sh

1, si
0 and sj

1. In fact,

implicitly, t is a test for all multiple faults containing one or more of these faults as a member. For
example, the set of multiple faults containing sb

0 and detected by t is F={(sb
0), (sb

0, sa
1), (sb

0, sf
1),

(sb
0, si

1), (sb
0, si

0), (sb
0, sd

1), (sb
0, sh

1), (sb
0, sj

0), (sb
0, sj

1), (sb
0, sa

1, sh
1), (sb

0, sa
1, sd

1), (sb
0, sf

1, sd
1),

(sb
0, si

0, sd
1), (sb

0, si
1, sd

1), (sb
0, sj

0, sa
1), (sb

0, sj
1, sa

1)}.

4.4. TPG algorithms

 The key concepts introduced in the previous sections are the propagation of sensibility (wi),
the propagation of fault effects (pi), and the test conditions for fault detection. These concepts and the

underlying fault, line and gate models can be incorporated in any TPG algorithm for SSFs to adapt it
for multiple faults. In our case, we use a branch-and-bound technique to explore the solution space
using a binary decision tree [15] with heuristics techniques to improve the performance. Fig. 9
illustrates the overall TPG procedure, based on a recursive version of FAN [2] . The procedure
assumes that the target fault is supplied by the caller procedure. The Boolean variable Test_Found is
true if the target fault is detected; the test vector is returned when the values on the head lines are
justified by the procedure Justify_Head_Lines().

- 21 -

 procedure TPG(Target_Fault) : return(SUCCESS, FAILURE);
 begin
 if Imply_and_Check() = FAILURE then return(FAILURE); /* 1 */
 if (error at PO and all bound lines are justified) then
 begin
 Justify_Head_Lines();
 Backward_Deduction(Target_Fault); /* 2 */
 if Test_Found then begin
 Analysis() ; /* 3 */
 return(SUCCESS);
 end;
 end;
 if (not error at PO and S-frontier = Ø) then return(FAILURE);
 Add every unjustified bound line to Current_Objectives;
 G := Select one gate from the S-frontier; /* 4 */
 Fix_Inputs(G);
 (line, value, propagation) = Multiple_Backtrace(Current_Objectives); /* 5 */
 if (line, value, propagation) is empty then return(FAILURE); /*no selections */
 Assign (i=line, ni=value, pi=propagation);

 if TPG(Target_Fault) = SUCCESS then return(SUCCESS);
 Assign (i=line, ni=ni , pi=X); /* 6 */

 if TPG(Target_Fault) = SUCCESS then return(SUCCESS);
 Assign (i=line, ni=X, pi=X);

 return(FAILURE);
 end;

Fig. 9. Test pattern generation algorithm.

 In the following, we explain the numbered lines in Fig. 9 that represent the newly introduced
or extended concepts in our TPG method.

 1) Imply_and_Check(): This procedure is as discussed in Section 4.2. It determines as many line
values as possible that are uniquely implied and updates the S-frontier. It performs unique
sensitization whenever the S-frontier consists of a single gate. The procedure fails when a conflict
occurs during a forward or a backward implication.

 2) Backward_Deduction(Target_Fault): This procedure performs a backward sweep from primary
outputs that have been assigned a value toward primary inputs. It relies on the lemmas in Section 4.3
to drop fault effects and faults on inputs of gates. The target fault is detected during this phase when
conditions C1 and C2 are fulfilled (Section 4.3).

 3) Analysis(): This is the multiple fault analysis method as in [39] and recently extended to handle
up to 32 input vectors in parallel [24] . The analysis is performed when the target fault is detected, in
order to detect additional faults. The primary inputs left unspecified by the TPG are assigned random
values.

- 22 -

 4) The S-frontier consists of a list of gates in decreasing order of their observability measure values
[3, 16] . This helps to select, at each step of the propagation of the target fault effect, the gate which is
the closest to a primary output and whose error propagation is the easiest to observe. This ordering is
neglected when the target fault effect is to be propagated first through a normal branch of a fanout
stem. In this case, the reachable gate in the S-frontier from this normal branch is chosen first. The
values are assigned to non-sensible inputs according to Table II (procedure Fix_Inputs(G) in Fig. 9).
These inputs are added to the Current_Objectives to be justified by the multiple backtrace procedure.

 5) Multiple_Backtrace(): This procedure traces backward multiple paths to satisfy the set of
Current_Objectives. It is similar to the procedure in FAN, except that an objective consists of a line, a
normal value and a propagation bit value. The selection of lines is performed as described in Section
4.2 when a gate output is specified but not its inputs (because of the presence of more than one input
choice), and it is guided using testability measure values [3, 16] . The procedure returns the line
number of a head line or a fanout stem i and values for ni and pi that have a good likelihood to satisfy

the objectives. This procedure was extended to handle XOR and XNOR gates [36] (Appendix IV).

 6) Backtracking: In this recursive version of the algorithm, the decision tree is identical to that of
PODEM or FAN. When a value assignment on a line is rejected due to a conflict, the alternative is
tried with the propagation bit set to X. It becomes 0 only if required for satisfying a subsequent
objective(s).

4.5. A Complete TPG Example

 Consider the circuit in Fig. 10. After fault collapsing, all the remaining faults (shown in the
figure) are assumed to be simultaneously present in the circuit, which is the initial circuit status. Lines
a, e and d are head lines, b and c are free lines and f, g, h, i and j are bound lines [14] . The list of
faults in an arbitrary order is sa

1 , sf
1 , sg

1 , sd
1 , sh

0 , si
0 , sj

1 , sj
0 , sb

1 , sc
1. Target faults are selected in

the order of appearance.

a

d

b

c

f

g

h

e

i

j

0/0

0/0

X/X

X/X
1/0

1/0

1/0
1/1

0/0

1/1
x

s-a-1,0x
s-a-0

x
s-a-1

x
s-a-1

x
s-a-1

x
s-a-1

x
s-a-1

x
s-a-1

x
s-a-0 G4

G3

G1

G2

0/0

Inconsistency

Fig. 10. Aborted Target Fault.

- 23 -

 Let sa
1 be the first target fault. The assignment a = 0/0 activates it and implies wa = 1, h = 1/X

and j = 1 / X. Since lines h and j dominate a, the unique sensitization procedure determines that f =
1/0 and i = 0/0 are necessary to propagate the effect of sa

1 to the primary output j. f = 1/0 implies e =
1/0, g = 1/0, h = 1/1, wh = 1, and j = 1/1. i = 1/0 implies d = 0/0 and g = 0/0 (since sg

1 and sd
1 are still

possible). At this step, the implication procedure stops because an inconsistency occurs on g - it was
assigned 1/0 earlier -, as shown in Fig. 10. No backtracking is performed because all assignments
were necessary and the target fault is aborted. In fact, sa

1 would be detected only if sd
1 is detected

because the presence of sd
1 masks sa

1 at gate G4: if sd
1 = 0, then d = 0/0 uniquely justifies i = 0/0.

 Let sf
1 be the next target fault. As shown in Fig. 11a, the assignment f = 0/X activates the fault

and implies wf = 1, e = 0/X, g = 0/X, h = 1/X, i = 0/X and j = 1/1. The unique sensitization procedure
determines that a = 1/0 and i = 0/0 are necessary to propagate the effect of sf

1 to primary output j. a =
1/0 implies h = 1/1 and wh = 1. i = 0/0 implies g = 0/0, d = 0/0, e = 0/0, f = 0/0 and wj = 1. At this

stage, all line justifications succeed and the primary output is sensible. The justification of 0/0 on the
head line e results in the unique assignments b = 0/0 and c = 0/0. The backward deduction procedure
(Fig. 11b) then drops sj

0, sh
0 and sf

1. The generated vector t = (abcd) = (1000) thus detects any MSF

containing one of these faults.

b) Backward deduction phase.a) Propagation of the target fault effect.

a

d

b

c

f

g

h

e

i

j

0/0

0/0

X/X

X/X
0/0

0/0

1/0
1/1

0/0

1/1
x

s-a-1,0xs-a-0x
s-a-1

x
s-a-1

x
s-a-1

x
s-a-1

x
s-a-1

x
s-a-1

x
s-a-0 G4

G3

G1

G2
a

d

b

c

f

g

h

e

i

j

0/0

0/0

0/0

0/0
0/0

0/0

1/0
1/0

0/0

1/0
x

s-a-1xs-a-0x
s-a-1

x
s-a-1

x
s-a-1

x
s-a-1

x
s-a-1

G4

G3

G1

G2

Fig. 11. TPG example.

 Table III summarizes the TPG results for all faults in the circuit of Fig. 10. The columns
indicate the selected target fault, the generated test vector, the list of dropped faults, the list of
deduced normal lines during backward deduction, and the result of TPG regarding the target fault.

- 24 -

TABLE III
COMPLETE TPG FOR THE CIRCUIT EXAMPLE

Target
Fault

Test
Vector

Dropped
Faults

Normal
Lines

TPG
Result

sa
1 � � � Aborted

sf
1 1000 sj

0, sh
0, sf

1 � Detected

sg
1 � � � Redundant

sd
1 1110 sj

1, sd
1 j, h, f, e Detected

si
0 1111 si

0 i Detected

sb
1 1010 sb

1 b Detected

sc
1 1100 sc

1 c Detected

sa
1 0110 sa

1 a Detected

 The faults sb
1 and sc

1 when selected, are sensitized to primary output j through the path e-f-h-j
that was declared normal. In the last row of Table III, the fault sa

1 is selected for the second time,

since it was aborted during the first traversal of the fault list. The final test set T = {1000, 1110, 1111,
1010, 1100, 0110} detects all multiple faults in the example except (sg

1) because its unique
component sg

1 is a redundant fault.

5. Experimental Results

 The TPG for multiple faults was implemented in the MainSailTM programming language on a
SUN SPARC-Station 2. Several experiments were conducted on the ISCAS'85 benchmark circuits [7]
, but before discussing the results we first present the definition of MSF coverage.

5.1. MSF Coverage

 The different definitions of multiple fault coverage found in the literature generally depend on
the method for detecting MSFs or for predicting their detection. Hence, these measures have to be
distinguished to avoid confusion [9] . For example, the coverage measure given in [22] was often
used in the past, but it can be misleading. In a circuit of n lines there are 2n faults, producing 3n - 1
possible MSFs. Assume that there are k lines on which the faults have been dropped because all MSFs
involving them are detected. Thus, the total number of remaining MSFs is 3n-k - 1. The lower bound C
on the MSF coverage, as defined in [22] , is then

C ≥
3n − 3n−k

3n = 1−
1

3k

 This lower bound depends on k but not on n (the circuit size)! For example, if we determine
that 4 lines are not faulty, the equivalent lower bound on the MSF coverage is 98.7%, independently
of the circuit size. This measure is misleading and we do not adopt it since a near 100% coverage
would be always achieved for all circuits. Instead, we use a more meaningful definition of MSF

- 25 -

coverage (an unconditional measure) as in [10] : The ratio of the number of dropped faults to the total
number of faults.

 Note, that this coverage is a lower bound for the measures defined in [4, 20, 22, 28] , since it is
more pessimistic: Even though some MSFs involving a particular line in the circuit are detected, the
fault on that line is not dropped unless all MSFs involving this line can be detected. For example, in
the circuit of Fig. 10, the total number of faults is 18, but only 17 faults are declared as detected,
leading to 94.4% fault coverage. If we had used the measure from [22], the coverage would have been
≈ 100%!

 Table IV presents some statistical data on the benchmark circuits. The table gives the circuit
name; the number of primary inputs and outputs, the number of gates, the number of faults remaining
after collapsing, the number of redundant single stuck-at faults [32] , the number of learned
implications during preprocessing, and the CPU time of the preprocessing phase. In all tables, the
CPU time is given in seconds (on a SPARC-Station 2), and the fault coverage in percent (%) as
defined above.

TABLE IV
STATISTICS ON BENCHMARK CIRCUITS

Circuit PIs POs Gates Faults Redundant Implic. CPU Time
c432 36 7 160 346 4 57 1.2
c499 41 32 202 640 8 40 2.8
c880 60 26 383 692 0 85 2.4
c1355 41 32 546 1056 8 208 20.2
c1908 33 25 880 1109 9 498 12.4
c2670 233 140 1193 1839 117 843 11.1
c3540 50 22 1669 2270 137 3920 65.9
c5315 178 123 2307 3738 59 1371 22.9
c6288 32 32 2406 4832 34 619 120.2
c7552 207 108 3512 4950 131 3356 51.0

5.2. MSF Detection by SSF Test Sets

 In the first experiment, we determined a lower bound on MSF detection by test sets developed
for SSFs. We analyzed two test sets for each circuit: (1) compressed sets [30] and (2) non-
compressed sets [31] . The coverage analysis was performed using the multiple fault analysis method
of [24] . Table V summarizes the fault coverage and the CPU times. Columns "(1)" and "(2)" identify
the two test sets. Due to fault masking that occurs when assuming the presence of all faults, the
analysis of a test set was repeated as long as faults could be dropped (the number of repetitions is
given in column "Repeat").

- 26 -

TABLE V
MSF COVERAGE BY TEST SETS FOR SSFs

Circuit Vectors
 (1) (2)

Repeat
 (1) (2)

Coverage (%)
 (1) (2)

CPU Time (sec.)
 (1) (2)

c432 44 520 8 2 81.2 99.4 1.7 4.3
c499 60 750 1 1 47.2 91.7 0.4 3.9
c880 30 942 1 2 69.2 98.2 0.6 16.2
c1355 95 1566 2 2 56.4 70.8 2.1 31.1
c1908 142 1863 2 2 85.5 97.2 15.7 58.2
c2670 67 2621 2 1 78.8 88.7 7.6 61.5
c3540 111 227 2 2 67.2 69.6 15.5 32.5
c5315 34 5261 2 1 81.5 93.1 15.7 259.8
c6288 16 49 2 2 56.3 54.2 20.9 23.3
c7552 87 375 2 4 72.5 75.1 47.4 84.9

The MSF coverage is far from acceptable for the majority of the circuits (e.g., c1355, c2670, c3540,
c6288 and c7552), especially in the case of compressed test sets. Therefore, MSF detection using test
sets developed for SSFs may not achieve a good MSF coverage. In particular, compressed test sets
may activate several faults and a high degree of fault masking can occur. Consequently, this seems to
indicate that a TPG for MSFs is necessary.

5.3. Multiple Fault TPG Experiments

 We performed two experiments on the benchmarks. The first one applies Random TPG
(RTPG) as the first step, while in the second one RTPG was omitted. The results are summarized in
Tables VI and VII, respectively. RTPG applies random vectors and is stopped when 64 consecutive
vectors do not detect any additional fault, using the fault analysis method of [24] . The backtracking
limit in TPG is set to 10. A target fault is aborted when the number of backtracks exceeds the limit
without generating a test for the fault. The number of undetected faults after TPG is shown in the
second column. It includes redundant faults (if any). The unique sensitization procedure and the
global implications learned during preprocessing highly contribute to the identification of 95% of
redundant faults without backtracking; they are removed from the fault list. The number of traversals
over the fault list is given in the third column. Recall that this list is repeatedly processed as long as
additional faults can be dropped.

- 27 -

TABLE VI
TPG RESULTS INCLUDING INITIAL RANDOM TPG

Circuit Unde- Traver- Back- Vectors Fault CPU Time (sec.)
 tected sals tracks Coverage RTPG TPG Total
c432 4 2 45 622 99.4% 4.5 2.0 6.5
c499 8 5 1447 1271 99.1% 2.8 61.8 64.6
c880 0 1 0 701 100% 8.2 3.5 11.7
c1908 20 4 1566 1737 99.4% 10.2 203.2 213.4
c2670 381 2 3312 2477 91.4% 26.6 387.8 414.3
c3540 167 2 627 2300 97.2% 108.3 170.3 278.6
c5315 614 2 5622 2567 93.2% 99.5 1464.5 1564.0
c6288 50 3 560 2039 99.5% 416.7 541.4 958.1
c7552 1231 2 12337 5322 90.2% 302.3 4709.6 5011.9

TABLE VII
TPG RESULTS WITHOUT RTPG

Circuit Unde-
tected

Traver-
sals

Back-
tracks

Vectors Fault
Coverage

CPU Time
(sec.)

c432 4 2 78 532 99.4% 5.4
c499 23 5 1658 1160 97.4% 97.2
c880 0 1 20 977 100% 12.6
c1908 18 4 1752 1960 99.4% 227.7
c2670 392 2 3367 2519 91.1% 409.7
c3540 168 3 1122 3400 97.2% 342.0
c5315 614 2 5600 2231 93.2% 1493.1
c6288 63 3 2142 6056 99.3% 1247.5
c7552 1229 2 12557 6954 90.2% 4936.5

 The use of the sophisticated heuristics from FAN and SOCRATES considerably reduce
backtracking, however, the conditions for propagating the target fault effect and for detecting the fault
are more strict than under the SSF model. For instance, even if the target fault effect on a line for
which no normal path has been yet found is propagated to the primary outputs, it is not declared
detected unless it can be propagated through all paths. Hence, the high number of backtracking
required on some benchmarks is mainly due to the TPG trying other assignments with the objective to
propagate the fault effect through all paths. The test sets shown in the fifth column are not
compressed.

 As expected, TPG for MSFs requires more CPU time than for SSFs, but achieves a fault
coverage which is quite high or even complete (e.g., c880). The generated test sets guarantee the
detection of at least all the multiple faults containing the dropped faults. Compared to the time
required by SOCRATES to derive tests for SSFs, our system is about 8 times slower on the average
with a standard deviation of 9. If we consider the complexity of deriving tests for MSFs, this CPU
time is quite acceptable, especially if we assume that the SSF model is not adequate.

- 28 -

 The c1908 circuit contains 9 redundant SSFs [32, 35] . Under the MSF model, the TPG
identifies these redundant faults without backtracking. The undetected faults that are not redundant
are masked by the redundant ones. For instance, consider a small part of the c1908 circuit shown in
Fig. 13. The faults s112

1 , s420
1 and s421

1 are redundant.

1/0

0/0

1/0

1/0
0/0

1/0

1/0

1/0 1/0

0/1

104 99

104

99

0/0

0/0

0/0

420

421

2279

1/0

2788

2800

2384

2811

0/1

112

x
s-a-1

x
s-a-0

x
s-a-1

x
s-a-1

Fig. 13. A part of the c1908 circuit.

 In addition to the redundant faults, s2384
0 remains undetected. The TPG attempts to detect this

fault by performing the following steps:
(1) To activate the fault s2384

0 , line 2279 is assigned 1/0 and the primary inputs 99 and 104 are

assigned 0/0.
(2) To propagate the effect of s2384

0 to the primary output 2811, line 2800 should be assigned 0/0.

Since all inputs of the AND gate feeding line 2800 have been justified, no assignments can be
made to satisfy the objective 0/0 on line 2800. The target fault may be masked at the output 2811.

The unique alternative to detect s2384
0 is to confirm the absence of s112

1 . Since it is redundant, no
algorithmic way can confirm the absence or presence of this fault. Therefore, s2384

0 remains undetected
because it can be masked by s112

1 (under the SSF model it is testable, however). The multiple fault
(s112

1 , s2384
0) is then redundant. This kind of information can be extracted from the list of undetected

faults after TPG, and can be helpful in determining the possible fault masking relations.

 A final note about the c1355 circuit: This circuit is functionally equivalent to c499 in which
the XOR gates are expanded into their NAND gate equivalents. This expansion introduces a high
degree of ambiguity into the analysis of MSFs for TPG. Since our method is conservative in nature,
the target fault effect is lost (i.e., sensibility) each time it is propagated into a possibly faulty NAND
structure of a XOR gate. Fault masking cycles are thus created and the target fault is aborted, which
has a great impact on the fault coverage. To break such cycles, one should perhaps explicitly consider
the masking relations as presented in [8] .

- 29 -

6. Conclusions

 The test pattern generation method presented in this paper is, to our knowledge, the first
practical attempt at generating tests for multiple stuck-at faults. The method assumes the presence of
all multiple faults of all multiplicities without resorting to their explicit enumeration. New line and
gate models were introduced to handle multiple fault propagation. Test conditions were defined so
that all multiple faults containing a detected target fault as a component are also detected. The search
for test vectors is guided using several techniques from earlier TPG systems for SSFs which were
adapted for MSFs. The method thus achieves high multiple fault coverage at reasonable cost. No
previous work reported results in MSF TPG on the ISCAS'85 benchmark circuits due to the
complexity of the problem.

 As seen in the experimental results, MSF detection using test sets developed for SSFs may not
achieve a good MSF coverage. In particular, compressed test sets may activate several faults and a
high degree of fault masking can occur. The test sets developed using our TPG method guarantee the
detection of all multiple faults containing one or more of the detected faults, and are valid even in the
presence of redundancy. Due to the conservatism of the method, the fault coverage obtained is a lower
bound on the actual coverage that can be really achieved for the circuit under test.

 The implementation of the TPG method can be further improved using some recently
developed techniques [32] . New heuristics can also be added to improve the performance, namely,
the order in which target faults are selected, fault dependencies and masking relations, and a deeper
analysis of the circuit structure to reduce backtracking when the target fault site may be hidden. Also,
since the method does not explicitly enumerate multiple faults and due to its conservatism, it is not a
complete algorithm, i.e., a test may exist for a MSF, but the method will not find it. We could
envisage generating tests for each remaining multiple faults (by enumerating them), however, this is
feasible if the number of such faults is relatively small.

REFERENCES

[1] M. Abramovici, M.A. Breuer, “Multiple Fault Diagnosis in Combinational Circuits Based on an Effect-Cause
Analysis.”, IEEE Trans. on Computers, vol. C-29, 1980, pp. 451-460.

[2] M. Abramovici, M.A. Breuer, A.D. Freidman, Digital Systems Testing and Testable Design, Computer Science Press,
1990.

[3] M. Abramovici, J.J. Kulikowski, P.R. Menon, D.T. Miller, “SMART and FAST: Test Generation for VLSI Scan-
Design Circuits.”, IEEE Design & Test, 1986, pp. 43-54.

[4] V.K. Agarwal, A.S.F. Fung, “Multiple Fault Testing of Large Circuits by Single Fault Test Sets.”, IEEE Trans. on
Computers, vol. C-30, no. 11, 1981, pp. 855-865.

- 30 -

[5] D.C. Bossen, S.J. Hong, “Cause-Effect Analysis for Multiple Fault Detection in Combinational Networks.”, IEEE
Trans. on Computers, vol. C-20, 1971, pp. 1252-1275.

[6] M.A. Breuer, A.D. Friedman, Diagnosis & Reliable Design of Digital Systems, Computer Science Press, 1976.

[7] F. Brglez, H. Fujiwara, “A Neutral Netlist of 10 Combinational Benchmark Circuits and a Target Translator in
Fortran”, Proc. of the Intl. Symp. Circuits and Systems, 1985,

[8] C.W. Cha, “Multiple Fault Diagnosis in Combinational Networks”, Proc. of the 16th Design Automation Conf., 1979,
pp. 149-155.

[9] H. Cox, A. Ivanov, V.K. Agarwal, J. Rajski, “On Multiple Fault Coverage and Aliasing Probability Measures”, Proc.
of the Intl. Test Conf., 1988, pp. 314-321.

[10] H. Cox, J. Rajski, “A Method of Fault Analysis for Test Generation and Fault Diagnosis.”, IEEE Trans. on
Computer-Aided Design, vol. 7, no. 7, 1988, pp. 813-833.

[11] F.J.O. Dias, “Fault Masking in Combinatorial Logic Circuits.”, IEEE Trans. on Computers, vol. C-24, no. 6, 1975,
pp. 476-482.

[12] A.D. Friedman, “Fault Detection in Redundant Circuits.”, IEEE Trans. Electron. Comput., vol. EC-16, 1967, pp. 99-
100.

[13] H. Fujiwara, “Computational Complexity of Controllability/Observability Problems for Combinational Circuits”,
Proc. of the 18th Fault-Tolerant Computing Symp., 1988, pp. 64-69.

[14] H. Fujiwara, T. Shimono, “On the Acceleration of Test Generation Algorithms”, Proc. of the 13th Fault-Tolerant
Computing Symp., 1983, pp. 98-105.

[15] P. Goel, “An Implicit Enumeration Algorithm to Generate Tests for Combinational Logic Circuits.”, IEEE Trans. on
Computers, vol. C-30, no. 3, 1981, pp. 215-222.

[16] L.H. Goldstein, E.L. Thigpen, “SCOAP: Sandia Controllability/Observability Analysis Program”, Proc. of the 17th
Design Automation Conf., 1980, pp. 190-196.

[17] J.P. Hayes, “A NAND Model for Fault Diagnosis in Combinational Logic Networks.”, IEEE Trans. on Computers,
vol. C-20, no. 12, 1971, pp. 1496-1506.

[18] Y. Huan, S.Q. Li, “The "G-F" 2-Valued Formula Generating Complete Set of Tests for Multiple Faults”, Proc. of the
Intl. VLSI Conf., 1991, pp. 343-349.

[19] J.L.A. Hughes, “Multiple Fault Detection Using Single Fault Test Sets.”, IEEE Trans. on Computer-Aided Design,
vol. 7, no. 1, 1988, pp. 100-108.

[20] J.L.A. Hughes, E.J. McCluskey, “Multiple Stuck-at Fault Coverage of Single Stuck-at Fault Test Sets”, Proc. of the
Intl. Test Conf., 1986, pp. 368-374.

[21] O.H. Ibarra, S.K. Sahni, “Polynomially Complete Fault Detection Problems.”, IEEE Trans. on Computers, vol. C-24,
no. 3, 1975, pp. 242-249.

[22] J. Jacob, N.N. Biswas, “GTBD Faults and Lower Bounds on Multiple Fault Coverage of Single Fault Test Sets”,
Proc. of the Intl. Test Conf., 1987, pp. 849-855.

[23] Y. Karkouri, E.M. Aboulhamid, “Complexité du test des circuits logiques.”, Technique et Science Informatiques, vol.
9, no. 4, 1990, pp. 273-287.

[24] Y. Karkouri, E.M. Aboulhamid, “Multiple Stuck-at Fault Diagnosis in Logic Circuits.”, Accepted in the Canadian
Conf. on VLSI, 1992.

[25] Y. Karkouri, E.M. Aboulhamid, E. Cerny, A. Verreault, “Use of Fault Dropping for Multiple Fault Analysis.”, to
appear in IEEE Trans. on Computers, 1992.

- 31 -

[26] T. Kirkland, M.R. Mercer, “A Topological Search Algorithm for ATPG”, Proc. of the 24th ACM/IEEE Design
Automation Conf., 1987, pp. 502-508.

[27] I. Kohavi, Z. Kohavi, “Detection of Multiple Faults in Combinational Logic Networks.”, IEEE Trans. on Computers,
vol. C-21, no. 6, 1972, pp. 556-568.

[28] K. Kubiak, W.K. Fuchs, “Multiple-Fault Simulation and Coverage of Deterministic Single-Fault Test Sets”, Proc. of
the Intl. Test Conf., 1991, pp. 956-962.

[29] E.J. McCluskey, F.W. Clegg, “Fault Equivalence in Combinational Logic Networks.”, IEEE Trans. on Computers,
vol. C-20, no. 11, 1971, pp. 1286-1293.

[30] I. Pomeranz, L.N. Reddy, S.M. Reddy, “COMPACTEST: A Method to Generate Compact Test Sets for
Combinational Circuits”, Proc. of the IEEE Intl. Test Conf., 1991, pp. 194-203.

[31] J. Rajski, H. Cox, Personal Communication, 1990.

[32] J. Rajski, H. Cox, “A Method to Calculate Necessary Assignments in Algorithmic Test Pattern Generation”, Proc. of
the Intl. Test Conf., 1990, pp 25-34.

[33] J.P. Roth, W.G. Bouricius, P.R. Shneider, “Programmed Algorithms to Computer Tests to Detect and Distinguish
between Failures in Logic Circuits.”, IEEE Trans. on Elect. Comput., vol. EC-16, no. 5, 1967, pp. 567-580.

[34] D.R. Schertz, G. Metze, “On the Design of Multiple Faults Diagnosable Networks.”, IEEE Trans. on Computers, vol.
C-20, 1971, pp. 1361-1364.

[35] M.H. Schultz, E. Auth, “Improved Deterministic Test Pattern Generation with Applications to Redundancy
Identification.”, IEEE Trans. on Computer-Aided Design, vol. 8, no. 7, 1989, pp. 811-816.

[36] M.H. Schultz, E. Trischler, T.M. Sarfert, “SOCRATES: A Highly Efficient Automatic Test Pattern Generation
System.”, IEEE Trans. on Computer-Aided Design, vol. 7, no. 1, 1988, pp. 126-137.

[37] J.P. Shen, W. Maly, F.J. Ferguson, “Inductive Fault Analysis of MOS Integrated Circuits.”, IEEE Design & Test, vol.
2, no. 12, 1985, pp. 13-26.

[38] J.E. Smith, “On Necessary and Sufficient Conditions for Multiple Fault Undetectability.”, IEEE Trans. on
Computers, vol C-28, no. 10, 1979, pp. 801-802.

[39] A. Verreault, E.M. Aboulhamid, Y. Karkouri, “Multiple Fault Analysis using a Fault Dropping Technique”, Proc. of
the 21th Fault-Tolerant Computing Symp., 1991, pp. 162-169.

APPENDIX I
TPG EQUATIONS

 In this appendix, we present the equations used in TPG for the propagation of fault effects, the propagation of
sensibility and the inclusion of the gate in the S-frontier for all gate types. We assume an m-input gate G with the output
out, except XOR and XNOR gates which have two inputs only.

A. Fault effect propagation
 P and Q are predicates; P is true if pout can be equal to 0; Q is true if pout can be equal to 1.

 AND / NAND:

 • P = [(∃i, (ni=0,X ∧ pi=0,X ∧ si
1=0)) ∨ (∀i, (ni=0,X ∧ pi=0,X))] ∨ [∀i, (ni=1 ∧ pi=0,X)]

- 32 -

 • Q = [(∃i, ni=1,X ∨ pi=1,X) ∧ (∀i, ni=0,X ⇒ (pi=1,X ∨ si
1=1))] ∨ [(∀i, ni=1) ∧ (∃i, pi=1,X)]

 • pout = 0 ⇔ (P ∧ Q); pout = 1 ⇔ (P ∧ Q); pout = X ⇔ (P ∧ Q);

 OR / NOR:

 • P = [(∃i, (ni=1,X ∧ pi=0,X ∧ si
0=0)) ∨ (∀i, (ni=1,X ∧ pi=0,X))] ∨ [∀i, (ni=0 ∧ pi=0,X)]

 • Q = [(∃i, ni=0,X ∨ pi=1,X) ∧ (∀i, ni=1,X ⇒ (pi=1,X ∨ si
0=1))] ∨ [(∀i, ni=0) ∧ (∃i, pi=1,X)]

 • pout = 0 ⇔ (P ∧ Q); pout = 1 ⇔ (P ∧ Q); pout = X ⇔ (P ∧ Q);

 XOR / XNOR:

 • P = [∀i, pi=0,X ∧ ((ni=0,X ∧ si
1=0) ∨ (ni=1,X ∧ si

0=0))]

 • Q = (∃i, pi=1,X) ∨ (∃i, (ni=0,X ∧ si
1=1) ∨ (ni=1,X ∧ si

0=1))

 • pout = 0 ⇔ (P ∧ Q); pout = 1 ⇔ (P ∧ Q); pout = X ⇔ (P ∧ Q);

B. Sensibility propagation

 AND / NAND: wout = 1 ⇔ (∃i, wi=1) ∧ [(∀i, ni=1) ∨ (∀i, (ni=0 ∧ wi=1) ∨ (wi=0 ∧ ni=1 ∧ pi=0))]

 OR / NOR: wout = 1 ⇔ (∃i, wi=1) ∧ [(∀i, ni=0)] ∨ (∀i, (ni=1 ∧ wi=1) ∨ (wi=0 ∧ ni=0 ∧ pi=0))]

 XOR / XNOR: wout = 1 ⇔ (∃i, wi=1) ∧ [pj=0 ∧ wj=0 ∧ ((nj=1 ∧ sj
0=0) ∨ (nj=0 ∧ sj

1=0))], j≠i

C. Inclusion in the S-frontier

 AND / NAND: G � S-frontier � (∃i, wi=1) �

 [(∀i, ni=1,X) ∧ (∃i, ni=X)] ∨ [(∀i, (ni=0 ∧ wi=1) ∨ (wi=0 ∧ ni=1,X ∧ pi=0,X)) ∧ (∃i, ni=X ∨ pi=X)]

 OR / NOR: G � S-frontier � (∃i, wi=1) �

 [(∀i, ni=0,X) ∧ (∃i, ni=X)] ∨ [(∀i, (ni=1 ∧ wi=1) ∨ (wi=0 ∧ ni=0,X ∧ pi=0,X)) ∧ (∃i, ni=X ∨ pi=X)]

 XOR / XNOR: G � S-frontier � (∃i, wi=1) �

 [pj=0,X ∧ wj=0 ∧ ((nj=1,X ∧ sj
0=0) ∨ (nj=0,X ∧ sj

1=0)) ∧ (nj=X ∨ pj=X)], j≠i

- 33 -

APPENDIX II
DEDUCTION LEMMAS

 For each gate type, the backward deduction phase applies the corresponding Lemma to deduce the propagation bit
and the status on the inputs of the gate.

Lemma 1: If the propagation bit pg on the output g of an AND/NAND gate is reset to 0, then the following are sufficient

conditions for dropping the fault effect and the fault on each input i:
 - pi = 0 � pi=1 � [(ni=0 � (∀j≠i, nj=1 � pj=0)) ∆ (∀j, nj=1)]

 - si1 = 0 � ni=0 � (∀j≠i, nj=1 � pj=0)

Lemma 2: Let s be a fanout stem. Sufficient conditions for resetting the propagation bit ps to 0 are:

 - ∀ fanout branch b of s, pb=0, or

- ∃ fanout branch b of s such that pb=0 and b is normal.

Lemma 3: If the propagation bit pg on the output g of an OR/NOR gate is reset to 0, then the following are sufficient

conditions for dropping the fault effect and the fault on each input i:
 - pi = 0 � pi=1 � [(ni=1 � (∀j≠i, nj=0 � pj=0)) ∆ (∀j, nj=0)]

 - si0 = 0 � ni=1 � (∀j≠i, nj=0 � pj=0)

Lemma 4: If the propagation bit pg on the output g of an XOR/XNOR gate is reset to 0, then the following are sufficient

conditions for dropping the fault effect and the fault on each input i:
 - pi = 0 � pi=1 � pj=0 � [(nj=0 � sj

1=0) ∆ (nj=1 � sj
0=0)], j ≠ i

 - si1 = 0 � ni=0 � pj=0, j ≠ i

 - si0 = 0 � ni=1 � pj=0, j ≠ i

- 34 -

APPENDIX III
BACKWARD DEDUCTION PROCEDURE

The variables associated with each line are the following:
ni : normal value;
pi : propagation bit;
hi = 1 if there is no normal path from line i to a primary output;
hi = 0 if there is a normal path from line i to a primay output
si

α = 1 if the fault s-a-α is still possible on line i.
si

α = 0 if the fault s-a-α is dropped on line i.

The following procedure performs the backward deduction phase of the TPG:

procedure Backward_Deduction();
begin
 for each line g in reverse topological order do
 if (ng ≠ X) and (pg ≠ X) then begin

 if g is a PO then begin
 pg := 0; /* Fault free value is observed on the PO */
 if (sg

1
 = 0) and (sg

0
 = 0) then hg := 0; /* PO is normal if all its faults are dropped */

 end
 else if g is a fanout stem then begin
 Apply_Stem_Lemma(g);
 if (∃ branch j of g such that hj = 0) then hg := 0;

 end
 else begin
 Apply_Gate_Lemma(Gate feeding g);
 if hg = 0 then

 for each input i of the gate feeding g do
 if (si

1
 = 0) and (si

0
 = 0) then hi := 0

 end;
 end;
end;

- 35 -

APPENDIX IV
MULTIPLE BACKTRACE PROCEDURE

 In this appendix, we present the multiple backtrace procedure that traces more than one path to satisfy a set of
objectives. The procedure uses 3 sets of objectives: Head_Objectives for head lines, Stem_Objectives for fanout stems,
and Current_Objectives which contains the unjustified bound lines during the Imply_and_Check, the non-sensible inputs
(if any) that propagate the target fault effect and the new generated objectives at each iteration of the procedure. An
objective is a 3-tuple (i, val, prop), where i is the line number, val is the chosen value for ni and prop is the requested
value for pi.

 As in FAN algorithm, we associate to each line two counters n0 and n1 that indicate the number of times the values 0

and 1, respectively, are requested for the normal value of this line. These counters are updated using the procedure
Increment_Request(Line, Value);

procedure Multiple_Backtrace(Current_Objectives) : return (i, val, prop);
begin

 while Current_Objectives ≠ � do
 begin
 remove one tuple (i, val, prop) from Current_Objectives;
 if i is a head line then
 add (i, val, prop) to Head_Objectives;
 else if i is a fanout branch then begin
 s := stem(i);
 Increment_Request (s, val);
 add (s, val, prop) to Stem_Objectives;
 end
 else Determine_Gate_Objectives (i, val, prop, Current_Objectives);
 end;

 if Stem_Objectives ≠ � then begin
 (s, val, prop) := Choose_Highest_Level_Stem(Stem_Objectives);
 val := most requested normal value on s;
 if prop = 0 was requested on s with val then
 prop := 0
 else prop := X;
 if (s has contradictory requirements) and
 (s is not reachable from the target fault site) then
 return (s, val, prop);
 add (s, val, prop) to Current_Objectives;
 return(Multiple_Backtrace(Current_Objectives));
 end;

 remove on tuple (i, val, prop) from Head_Objectives;
 return (i, val, prop);

end;

- 36 -

procedure Choose_Gates_Objectives (gate, gate_val, gate_prop, Current_Objectives);
begin

 if gate is an inverter or a buffer gate then begin
 i := input of gate;
 val := gate_val ⊕ (inversion of gate);
 add (i, val, gate_prop) to Current_Objectives;
 end

 else if gate is an AND, NAND, OR or NOR gate then begin
 c := controlling normal value of gate; /* AND/NAND: c = 0; OR/NOR: c = 1 */
 if gate_val ⊕ (inversion of gate) ≠ c then begin
 for every input i of gate do
 if (ni = X) or (pi = X and gate_prop = 0) then begin
 Increment_Request (i, c);
 add (i, c , gate_prop) to Current_objectives;
 end
 end
 else if gate_prop ≠ 0 then begin /* Consider normal values only on the inputs of gate */
 Select an input i of gate with the lowest cost for c; /* Selected according to its controllability value */
 Increment_Request (i, c);
 add (i, c, X) to Current_objectives;
 end
 else begin /* The propagation bit on the output of gate is requested to be 0 */
 Select an input i of gate with the lowest cost for c with si

c = 0;
 if i ≠ 0 then begin /* This is the input when set to c/0 disables fault effect on the gate output */
 Increment_Request (i, c);
 add (i, c, 0) to Current_objectives;
 end
 else for every input i of gate do /* All inputs have si

c = 1 � all of them must be equal to c/0 */
 if ni = X or pi = X then begin
 Increment_Request (i, c);
 add (i, c, 0) to Current_Objectives;
 end;
 end
 end

 else Choose_XOR_Gates (gate, gate_val, gate_prop, Current_Objectives);

end;

- 37 -

procedure Choose_XOR_Gates (gate, gate_val, gate_prop, Current_Objectives);
begin
 i := First input of gate; j := Second input of gate;

 C00 := i.C0 + j.C0; C11 := i.C1 + j.C1; /* C0 and C1: Values of the controllability to 0 and 1 */
 C01 := i.C0 + j.C1; C10 := i.C1 + j.C0;

 if gate_prop ≠ 0 then begin
 if gate_val = 0 then begin /* if gate_val = 1 ... for XNOR gate */
 if ni = X and nj = X then
 if C00 < C11 then begin i_val := 0; j_val := 0 end else begin i_val := 1; j_val := 1; end
 else if ni ≠ X and nj = X then j_val := ni
 else if ni = X and nj ≠ X then i_val := nj

 end
 else begin
 if ni = X and nj = X then
 if C01 < C10 then begin i_val := 0; j_val := 1 end else begin i_val := 1; j_val := 0; end
 else if ni ≠ X and nj = X then j_val := ni
 else if ni = X and nj ≠ X then i_val := n j

 end
 end
 else begin /* 0 is requested for the propagation bit on the gate output */
 if gate_val = 0 then begin /* if gate_val = 1 ... for XNOR gate */
 if C00 < C11 then begin i_val := 0; j_val := 0;
 if ni = 1 or si

1 = 1 or nj = 1 or sj
1 = 1 then begin i_val := 1; j_val := 1; end;

 end
 else begin i_val := 1; j_val := 1;
 if ni = 0 or si

0 = 1 or nj = 0 or sj
0 = 1 then begin i_val := 0; j_val := 0; end;

 end;
 end
 else begin
 if C01 < C10 then begin i_val := 0; j_val := 1;
 if ni = 1 or si

1 = 1 or nj = 0 or sj
0 = 1 then begin i_val := 1; j_val := 0; end;

 end
 else begin i_val := 1; j_val := 0;
 if ni = 0 or si

0 = 1 or nj = 1 or sj
1 = 1 then begin i_val := 0; j_val := 1; end;

 end;
 end;
 end;

 if i_val ≠ X then begin
 Increment_Request (i, i_val);
 Add (i, i_val, gate_prop) to Current_Objectives;
 end;

 if j_val ≠ X then begin
 Increment_Request (j, j_val);
 Add (j, j_val, gate_prop) to Current_Objectives;
 end;

- 38 -

end;

