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ABSTRACT 

 This paper presents a new method to generate test patterns for multiple stuck-at faults in combinational 
circuits. We assume the presence of all multiple faults of all multiplicities and we do not resort to their explicit 
enumeration: the target fault is a single component of possibly several multiple faults. New line and gate 
models are introduced to handle multiple fault effect propagation through the circuits. The method tries to 
generate test conditions that propagate the effect of the target fault to primary outputs. When these conditions 
are fulfilled, the input vector is a test for the target fault and it is guaranteed that all multiple faults of all 
multiplicities containing the target fault as component are also detected. The method uses similar techniques to 
those in the FAN and SOCRATES algorithms to guide the search part of the algorithm and includes several 
new heuristics to enhance the performance and fault detection capability. Experiments performed on the 
ISCAS'85 benchmark circuits show that test sets for multiple faults can be generated with high fault coverage 
and a reasonable increase in cost over test generation for single stuck-at faults. 

Keywords: combinational circuits, stuck-at faults, multiple faults, fault analysis, test pattern generation. 
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1. Introduction 

 The increased density of logic in digital circuits has a great impact on the complexity of 
testing. It is well known that the fault detection problem is NP-Complete [13, 21, 23]  even if the set 
of faults is restricted to the traditional single stuck-at fault model (SSF). This model is commonly 
used because it represents a large class of potential physical failures. It assumes that only one line in 
the circuit under test is faulty, i.e., having a constant logic value of 0 or 1 independently of the circuit 
inputs [6, 37] . Therefore, a circuit of n lines can have up to 2n different SSFs. Due to the high density 
of modern circuits, this fault model may no longer be adequate. A manufacturing defect may result in 
a fault involving more than one line, and the ability of the SSF model to represent this physical defect 
decreases considerably. Consequently, fault detection methods may have to deal with the multiple 
stuck-at fault (MSF) model. Under this model, a circuit of n lines can have up to  3n-1 different MSFs 
which makes test generation for all of them difficult in most practical cases. Techniques such as fault 
equivalence and collapsing [29]  reduce the number of MSFs to deal with, but this is still too high for 
explicit fault enumeration.  

 Numerous fault simulation and test pattern generation methods have been developed for SSFs 
[2] . Experience from actual circuit testing justifies the adoption of the SSF model: First, circuits are 
assumed to be frequently tested so that at most one defect occurs at a time. Second, when evaluating 
the detection capability of MSFs by a test set developed for SSFs, a high coverage of MSFs is 
achieved for some classes of circuits (depending on their structure and the chosen measure for fault 
coverage). For a fanout-free circuit, Hayes [17]  showed that there exists a complete test set for SSFs 
that detects all MSFs. Schertz [34]  showed that for internal fanout-free circuits a complete test set for 
SSFs detects all MSFs. Also, Kohavi [27]  determined that any complete test set for SSFs in an 
irredundant two-level circuit detects all MSFs. Unfortunately, these categories of circuits appear 
rarely in actual designs which may be redundant and may contain a large number of internal 
reconvergent fanouts (the cause of the NP-Completeness of the fault detection problem). These two 
characteristics create a phenomenon of masking between faults [11]  which limits a test set derived for 
SSFs from detecting MSFs [38] . A fault f1 is said to be masked by a fault f2, if the test vector 
generated to detect f1 does not detect the simultaneous occurrence of f1 and f2. A cycle of such 

masking phenomena will result in a situation where all the fault components of a MSF are detectable 
with a given test set, but the MSF itself is not. 

 Considering such masking relations, Agarwal and Fung [4]  derived a prediction algorithm for 
the lower bound on MSF coverage using SSF test sets. They showed that the presence of reconvergent 
fanouts can drastically reduce the coverage of multiple faults on the gates involved in the fanout 
paths. Hughes and McCluskey [20]  reported a simulation study on the coverage of MSFs by different 
SSF test sets for the 74LS181 4-bit ALU. They found that any complete test set for SSFs detects more 
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that 99.96 percent of double faults, and many of the test sets detect most of the simulated triple and 
quadruple faults. These results are analytically explained by Jacob and Biswas [22] . They showed 
that at least 99.67 percent of all multiple faults in any circuit are detected by a test set for SSFs if the 
number of observable outputs is greater or equal to three. Kubiak and Fuchs [28]  recently reported a 
multiple-fault simulation method that determines the fault coverage of MSFs with test sets for SSFs. 
They confirm the results in [20] , i.e., high fault coverage is achieved for multiple faults of small 
multiplicities in some well-known benchmark circuits.  

 We believe that the results reported by the above methods [20, 22, 28]  are too high because 
the measure of fault coverage is not adequate. Misleading conclusions can be drawn, and as it will be 
shown later, the definition of the fault coverage as given in [22]  can be independent of the circuit 
size. Also, a complete test set for SSFs is often incomplete for MSFs [19]  due to fault masking [12] , 
and the analysis of MSFs for test generation is of great interest for achieving high reliability of VLSI 
circuits. This has contributed to the development of methods to analyze MSF detection in 
combinational circuits either explicitly under certain assumptions [5, 8, 18] , or implicitly [1, 10, 39] . 

 Bossen and Hong [5]  reduced the list of potential faults by considering stuck-at faults on 
checkpoints, i.e., fanout branches and primary inputs that do not fan out. They showed that the set of 
all combinations of these faults is equivalent to the set of all possible MSFs. The approach to test 
generation establishes global equations for the circuit output functions, while considering all 
possibilities of faulty conditions. The manipulation of such equations is impractical in the presence of 
a large number of checkpoint faults or in the presence of redundancy, because masking between faults 
can occur before reaching primary outputs. This is also true for the method presented in [18]  which 
uses the "G-F" formulas to derive test sets for MSFs. Cha [8]  considered prime faults, an equivalent 
class to the MSFs. He established masking relations between undetected potential faults, relative to a 
given test set. These relations are used to break masking cycles and add new test vectors to the initial 
set. This approach is not obvious in the presence of a large number of faults and reconvergent fanouts. 
Abramovici and Breuer [1]  developed a method to identify potential faults not detected by a given 
test set. The method uses concepts similar to the D-algorithm [33] , but analyzes a set of vectors rather 
than one vector at a time. However, it does not generate additional tests for undetected MSFs and its 
performance on benchmark circuits was not reported. 

 Other analysis methods deal with multiple faults implicitly [10, 39]  and achieve a high degree 
of efficiency. An unavoidable pessimism is inherent in these methods because they use a conservative 
evaluation of the behavior of circuits under the presence of all possible MSFs (even if fault collapsing 
is performed [39] ). Given an initial test set, they determine the set of lines in the circuit that cannot 
have a particular fault (fault dropping) under the MSF model when the correct output is observed. The 
results obtained are not invalidated by the presence of undetected or undetectable faults: A fault is 
dropped only if its effect is not masked by any other fault or combination of faults. The resulting fault 
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coverage is a lower bound on the MSF coverage that can be achieved in reality: Even though some 
MSFs involving a particular line are detected, the fault on that line is not dropped unless all MSFs 
involving this line are detected. 

 Based on the conservative approach to MSF analysis [39] , we present in this paper a fault-
oriented test pattern generation method (TPG) for MSFs in combinational networks. The method is 
similar to SSF TPG except that error propagation, line justification and implication consider signal 
ambiguity introduced by the possible presence of all faults in the circuit. The search vehicle uses 
techniques similar to the FAN [14]  and SOCRATES [36]  algorithms. Various heuristics as well as a 
specific fault collapsing procedure are used to reduce signal ambiguity and to find test conditions that 
detect a target fault. The signal ambiguity is also reduced by fault dropping: when a fault is declared 
as detected it is dropped from the circuit and its effect is not considered any more. 

 Our approach to test pattern generation does not perform explicit enumeration of multiple 
faults; the targeted fault is a single fault component of possibly several MSFs. For each target fault, 
the algorithm tries to identify test conditions, from a combination of values on primary inputs, which 
propagate the effect of the target fault to primary outputs regardless the effects of other faults which 
might be present in the circuit. The generated test vector thus guarantees the detection of the target 
fault, unless its effect is hidden by a MSF which is really present in the circuit under test (the effect of 
the target fault would never be observable on primary outputs under any other input vector). 
Consequently, all MSFs containing this targeted fault component are implicitly detected by the 
generated vector because no fault masking can occur. Furthermore, since the propagation of fault 
effects is based on necessary conditions, the approach is conservative. It is thus possible that a test for 
a fault is not found although it exists, but the algorithm will never claim a fault as detected while in 
reality it is not. The algorithm also incorporates the efficient fault analysis method proposed in [39] . 
The TPG method was applied to the ISCAS'85 benchmark circuits [7] , and satisfactory fault coverage 
was obtained. The experimental results also provided an indication of the cost of deriving good test 
sets for multiple faults, which is about 10 times the cost of deriving tests for SSFs. 

 The rest of the paper is organized as follows: Section 2 presents the fault, line and gate models 
under the MSF model. Section 3 contains an overview of the test pattern generator for MSFs. Section 
4 presents the MSF test pattern generator and the different tools and heuristics included to guide the 
search process. Section 5 reports the experimental results. Finally, Section 6 concludes with notes on 
possible directions for multiple fault test pattern generation. 

2. The Models 

 Dealing with multiple faults requires a particular care when representing and propagating 
faulty values in the circuit. The computation of the values is conservative in order not to create 
optimistic conditions for fault detection that may invalidate the obtained results. 
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2.1. The Fault Model 

 We assume that all faults occur on circuit lines only; we refer to a single fault component of a 
multiple fault as a fault. The gates are fault free and may have up to m inputs (m ≥ 1) for AND, NAND, 
OR and NOR gates. XOR and XNOR gates have two inputs. A path from line i to a primary output is 
said normal if all lines along this path are normal, i.e., are faultless, but the other inputs to gates along 
this path may be faulty. 

 Fault collapsing is first performed to retain only one fault per equivalence class, and it is based 
on the intuitive fact that a fault effect is easier to observe if it is closer to the primary outputs. Thus, 
the representative fault is the closest one to the primary outputs. For example, a stuck-at-0 (s-a-0) on 
an input of an AND gate is removed and placed on the output. We do not consider that all inputs of an 
AND gate are simultaneously stuck-at-1 (s-a-1), because we assume an equivalent s-a-1 fault at the 
gate output. 

The following faults are retained after collapsing: 
• s-a-1 (s-a-0) faults on all inputs of AND/NAND (OR/NOR) gates. The multiple fault consisting of s-a-1 (s-

a-0) on all inputs is not considered. 
• No fault on the input of an inverter and a buffer gate, and on a fanout stem. 
• Both s-a-0 and s-a-1 on primary outputs. 
• Both s-a-0 and s-a-1 on each input of XOR and XNOR gates. The multiple fault consisting of s-a-1 or s-a-0 

on both inputs is not considered. 
 Furthermore, there is at least one normal path from each faulty site to a primary output. 

 In a circuit consisting of n lines, a multiple fault is represented by a tuple with at most n faults 
and denoted by f = (siα, sjß, … ), i ≠ j, where siα  represents the status of line i: α = 0 for s-a-0, α = 1 
for s-a-1. A line k not present in the tuple is not faulty in that multiple fault. According to this 
definition, a multiple fault f in the circuit under test partitions the lines into three disjoint categories, 
Hidden Lines, Faulty Lines and Normal Lines: 
- Line i is faulty if siα � f. 
- Line j is normal if sjα � f and there is a normal path from j to a primary output. 
- Line k is hidden if there is no normal path from k to a primary output. 

 During TPG, we assume that the circuit under test contains one multiple fault consisting of a 
combination faults that has not yet been dropped (detected). The effective values (real values) on 
hidden lines are unknown, because they are unobservable due to the multiple fault, and there is no 
algorithmic way to determine these values (Normal Path Theorem in [1] ). We assume that these lines 
carry fault free values. As will be seen in Section 4.3, this assumption does not invalidate the 
generated tests. 
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2.2. The Line Model 

 Various algebras have been used to describe the behavior of the fault free and the faulty circuit 
using D symbols [33] . We represent the fault free value of a line i by a normal value ni = 0, 1 or X 

(unspecified). Each line may carry a value that is different from the normal one due to propagated 
fault effects. A fault effect is potential (may or may not be present), since all the faults can be 
potentially present in the circuit. 

 We represent the fault effect on a line i using a propagation bit pi = 0, 1, or X. pi = 1 if line i 
propagates a potential fault effect different from its normal value. pi = 0 if no fault effect can 

propagate to line i : Line i is carrying its normal value only, or is hidden or is faulty. Initially, all lines 
have unspecified normal values (ni = X) and pi = X if under the current value assignment, the lines 
driving i still have unspecified normal values. In the rest of the paper, the notation ni / pi will be used 

to represent the value assignment to line i. For example, a line carrying the value 1/1 has a normal 
value of 1 and may be propagating a fault effect (which can change its value to 0). Table I summarizes 
the possible values of a line i. 

TABLE I  
LINE VALUE INTERPRETATION 

ni / pi Fault free Faulty 

0 / 0 0 0 
0 / 1 0 0 or 1 
0 / X 0 X 
1 / 0 1 1 
1 / 1 1 1 or 0 
1 / X 1 X 
X / 0 X X 
X / 1 X X 
X / X X X 

The faulty value of a line is assumed unspecified when its normal value or propagation is equal to X. 
Primary inputs are directly controlled from the circuit environment, hence no fault effects can 
propagate to them. 

 Each line i is associated with its status siα which can be viewed as an atomic proposition: 
• siα = 0 if the fault s-a-α is not on line i (e.g., has been dropped), 
• siα = 1 if the fault s-a-α is potentially present on line i. 

2.3. The Gate Model 

 The gate model computes the value on the output of a gate given the status and the values of 
its inputs. It thus determines the normal value and the propagation of fault effects arising from a 
combination of fault effects and potential stuck-at faults on its inputs. Since fault effects are assumed 
independent, the evaluation  is conservative and includes the real behavior of the circuit. 
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Example 1: Fig. 1 shows the computation of the value and the propagation bit for an AND gate for 
different input situations. In Fig. 1a, given the input values i = 0/0 and j = 1/0, the normal value on the 
gate output line g is ng = 0. If line g is normal then it may propagate a fault effect issued from the 
combination of the fault si1 and the normal value nj = 1. Hence, g carries the value 0/1. 
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j
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X/X
0/X

0/1

i

j
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g
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0/1

i

j
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x
s-a-1

g

X/X

 
Fig. 1. Fault effect propagation. 

In Fig. 1b, we assume that both lines i and j are normal and line j may carry a fault effect (pj = 1). The 
propagation bit at the output g remains unspecified because it depends on ni and pi. This not the case 
in Fig. 1c where the fault effect on j may be combined with the fault si1 to propagate a fault effect on 
g independently of ni and pi. Notice that a definite value is assigned to the output only if it is 

guaranteed regardless the interpretation of X on the inputs. 

 This conservative computation of propagated values is performed using equations similar to 
those reported for 2-valued logic in fault analysis [39] . For TPG, these equations are extended to 
handle 3-valued logic for both the normal values and the propagation bits. Let a = 0,X designate that 
the variable a can take the value 0 or X (a � {0, X}), then the equation to determine the propagation 
bit pout on the output out of a m-input AND gate is the following† (P and Q are predicates; P is true if 
pout can be equal to 0; Q is true if pout can be equal to 1): 

• P = [∃i, (ni=0,X ∧ pi=0,X ∧ si
1=0)] ∨ [∀i, (ni=0,X ∧ pi=0,X)] ∨ [nout=1 ∧ (∀i, pi=0,X)] 

• Q = [(∃i, ni=1,X ∨ pi=1,X) ∧ (∀i, ni=0,X ⇒ (pi=1,X ∨ si
1=1))] ∨ [nout=1 ∧ (∃i, pi=1,X)] 

The value of pout is then assigned as follows: 

 pout = 0 ⇔ (P ∧ Q); pout = 1 ⇔ (Q ∧ P); pout = X ⇔ (P ∧ Q)  

For example, no fault effect propagates to the output of the AND gate if there exists a normal input 
having a normal value of 0 with no possible fault effect; this input disables the propagation of any 
fault effect to the output. Also, the gate will not propagate a fault effect if all its inputs have a normal 
value of 0 and none of them is carrying a fault effect. The fault effect on the output of the gate is 
considered unspecified if it can be equal to 0 or 1 (i.e., P = Q = true). The equations for NAND, OR, 
NOR, XOR and XNOR gates are in Appendix Ia. For a fanout stem, the propagation bit is broadcast as 
is to all its branches. For inverters and buffers, the propagation bit is also transmitted as is to the 
output, because there are no faults on their inputs. As discussed in Section 4.1, the necessary 
conditions for sensitizing a gate to the effect of a target fault rely on assigning values (0 or 1 

                                                 
† "∀ i" in all equations represents "for each input i of the gate, i = 1, ..., m". 
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depending on the gate type) to unspecified normal values and/or propagation bits of its inputs that are 
not reachable from the target fault site. 



- 9 - 

3. System Overview  

 We consider that the circuit under test may contain a multiple fault consisting of a combination 
of faults remaining after collapsing. This multiple fault partitions the lines into hidden, faulty and 
normal lines (recall that hidden lines are assumed fault free). The goal of TPG is to generate a test set 
that determines as many lines as possible that cannot be faulty when the fault free response is 
observed. To do so, the algorithm identifies for each target fault the test conditions which allow to 
declare the respective line necessarily not carrying that fault. The line may in reality be either hidden 
or normal. 

 A flowchart of the TPG system is in Fig. 2. First, a preprocessing phase is performed to 
analyze the circuit structure, required for incorporating heuristics that guide the search part of the 
algorithm, including the values of controllability/observability measures [3, 16] . As commonly used 
in TPG systems, a random test pattern generation (RTPG) may be performed first. A non negligible 
number of faults are usually dropped during this phase, which accelerates the subsequent 
deterministic TPG. RTPG is stopped when either a maximum number of vectors has been reached or 
the last n consecutive vectors do not detect any additional fault. This phase is performed at reasonable 
cost since the multiple fault analyzer can manipulate 32 vectors simultaneously [24] . 

 A target fault is arbitrarily selected from the list of remaining faults. The TPG gradually 
determines a set of objectives that are necessary for activating the target fault and for propagating its 
effect to a primary output, while taking into account the potential effects of the other faults still in the 
fault list. To meet these objectives in terms of a combination of values on the primary inputs, the TPG 
uses similar procedure as in FAN [14]  and SOCRATES [36] , but using our models (Section 2): 

• An implication procedure determines as many line values as possible that are uniquely implied. 
Both local [14]  and global implications [36]  (learned during the preprocessing phase) are 
performed. 

• A multiple backtrace procedure concurrently traces more than one path to satisfy an objective. 

• A unique sensitization procedure is applied whenever the S-frontier (which is similar to the D-
frontier in SSF TPG) consists of a single gate. 

• The backtrace is stopped at head lines, since their justification can be done without conflicts even 
under the MSF model, and is then completed in the final stage of the TPG process. 
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Fig. 2. Flowchart of the test pattern generator. 

The test conditions which activate the target fault and propagate its effect to a primary output, are 
characterized as follows (the justification of these conditions is presented in Section 4.3): 
C1: The effect of the target fault cannot be masked by any other fault(s), and 
C2: The effect of the target fault was propagated through a normal path, or 
C2': The effect of the target fault was propagated through all paths to primary outputs if no normal 

path yet exists to a primary output. 

Condition C1 is maintained during the propagation of the target fault effect due to the conservative 
evaluation of line values (Section 2). Conditions C2 and C2' are verified during a backward deduction 
phase which is engaged each time the target fault effect reaches a primary output. If fulfilled, the 
target fault is declared as detected and is dropped from the fault list. An alternative equivalent 
interpretation of the detection conditions is as follows: The effect of the target fault is observable on a 
primary output through a fault free path (condition C2), or is not observable under any input vector 



- 11 - 

because its site is hidden by another MSF (condition C2'). Because of C1, the test vector detects all 
multiple faults containing the target fault since the conservative evaluation guarantees that no fault 
masking occurs. 

 Multiple fault analysis is then applied, using the generated test vector with random values 
assigned to unspecified primary inputs. This step is similar to performing fault simulation after 
generating a test for a fault under the SSF model, and it allows to drop additional faults. The analysis 
determines the lines that must be faultless in order to observe fault free response on the output of the 
circuit. Given an input vector, the fault free circuit is evaluated and the effects of all remaining faults 
are propagated using the conservative evaluation of line values. Assuming now that the fault free 
response is observed, a backward deduction procedure identifies and drops faulty conditions (i.e., 
fault effects and faults) on lines that are not masked by other faults or could be hidden by yet 
undetected faults. Similarly as in [10] , to reduce the pessimistic behavior, the deduction procedure 
also performs event analysis between two consecutive vectors to retrace paths that propagated, from 
primary inputs to the outputs, an event (a 0 to 1 or 1 to 0 transition). If found, such paths must be 
normal and all faults along them are thus dropped. All equations to propagate fault effects and to 
deduce the values and the status on a gate inputs are Boolean, and are implemented using bit strings 
allowing to analyze up to 32 test vectors simultaneously (typically the length of a machine word) [24] 
. This efficient implementation is about ten times faster than the original single pattern analysis [39] . 

 Fault dropping permits gradual identification of normal paths (using the backward deduction 
phase) and reduces the ambiguity caused by faults when the next target is selected for TPG. Fault 
masking relations are not retained during TPG; therefore, each time the traversal of the target fault list 
is completed with some of the faults detected, it is reprocessed with the aim to detect faults that were 
possibly masked when targeted in the previous list traversal. 

 Since our TPG uses conservative value propagation and bases fault detection on necessary 
conditions only, the method is not a complete algorithm in that it may not always find a test for a fault 
at a given step in the TPG, although it may find it later when other faults will have been detected and 
dropped from the circuit. Given enough time to generate test patterns, the procedure will not find a 
test only when circular masking between faults exists. But then such a test may not exist at all if all 
the faults of the masking relation are present. Moreover, the method is also not complete for 
generating tests for all detectable multiple faults: There are situations where a multiple fault 
consisting of undetected faults is detectable, but the algorithm will not discover it because it is not 
explicitly enumerated and the individual faults are not detectable in the presence of the other faults. 

4. Multiple Fault TPG 
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 The TPG assumes that the circuit may contain a multiple fault, hence it takes into account all 
possible values of the status of the lines when generating a test for a given target fault. Consequently, 
the concepts of SSF TPG must be generalized to accommodate this factor. 

4.1. Multiple Fault TPG Concepts 

 When the effect of the target fault is propagated to a primary output under the SSF model, the 
circuit lines are divided into two classes: those carrying the fault effect (D-drive), and those set to 0 or 
1 to propagate the fault effect. With our MSF model, no distinction is made between these two 
classes, since fault effects may be issued from either the target and/or other faults. We thus introduce 
the concept of sensibility for implementing an equivalent notion to the D-drive and for distinguishing 
the effect of the target fault from all the other fault effects. 

Definition 1: A line j is sensible to a target fault si
α if under the current value assignments to lines, 

line j propagates the effect of si
α (i.e., pj = 1). The sensibility of line j to si

α is denoted by 
the attribute wj = 1. wj = 0 indicates that any fault effect on line j is not due to the target 

fault. 

 According to the above definition, si
α = 1 � pj = 1, but the fault effect on line j could also be 

due to other faults in addition to si
α. Sensibility is propagated through the circuit similarly as D 

propagation for SSF TPG. A line i is sensible to its own fault si
α whenever ni = α . The propagation of 

sensibility through gates depends on the gate types, the polarity of the input line(s) sensible to the 
target fault, and the normal values and the propagation bits of the inputs not reachable from the fault 
site (called non-sensible inputs in the rest of the paper). Fig. 3 illustrates three examples of 
propagation of sensibility through an AND gate, assuming that input i is sensible to the target fault 
(i.e., wi = 1).  

1/X
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1/1
1/1

Gi

j
g 1/0
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wg=1

wi=1
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Fig. 3. Sensibility propagation through an AND gate. 

 In Fig. 3a, the output g is sensible to the target fault (wg = 1) because either line j propagates 
no fault effect (pj = 0) and the fault effect on g is due to pi = 1 (since nj = 1), or both i and j propagate 
a fault effect (pj = 1) in which case pg = 1 indicates that the effect of the target fault cannot be 

distinguished from another effect, but it is certainly present. If the sensible input has a normal value 0, 
then the gate output is sensible if every non-sensible input j has nj = 1 and pj = 0. In Fig. 3b, pg = 1 is 
due to the effect of the target fault only, hence wg = 1. On the other hand, if input j may carry a fault 
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effect (pj = 1) (Fig. 3c), it may mask the effect of the target fault and even if pg = 1 (because of the 
conservative propagation of fault effects), the gate output is not declared sensible (wg = 0). 

 Sensibility to the target fault is propagated through the circuit using specific equations for each 
gate type (Appendix Ib). For example, for an AND gate with output g, the sensibility propagation is: 

wg = 1 ⇔ (∃i, wi=1) ∧ [(∀i, ni=1) ∨ (∀i, (ni=0 ∧ wi=1) ∨ (wi=0 ∧ ni=1 ∧ pi=0))] 

 During TPG for SSFs, the propagation of the effect of the target fault consists of selecting one 
gate from the D-frontier and assigning values to its unspecified non-sensible inputs so that the gate 
output propagates a D or D  value. Similarly, in the case of MSFs the S-frontier is a set of all gates 
having one or more inputs sensible to the target fault, and the non-sensible ones having an unspecified 
normal value and/or propagation bit such that the target fault effect is not masked. For example, the 
inclusion of an AND gate G in the S-frontier is determined using the following expression:  

G � S-frontier � 
(∃i, wi=1) ∧ [[(∀i, ni=1,X) ∧ (∃i, ni=X)] ∨ [(∀i, ((ni=0 ∧ wi=1) ∨ (wi=0 ∧ ni=1,X ∧ pi=0,X))) ∧ (∃i, ni=X ∨ pi=X)]]. 

To illustrate the preceding concepts, consider the circuit in Fig. 1. Assuming that line j in Figures 1b 
and 1c is sensible to the target fault, the AND gate is in the S-frontier since its output can become 
sensible if 1/0 is assigned to line i. The required normal value on each non-sensible input j of the gate 
is always 1 (non-controlling value), and the propagation bit pj on this input must be 0 whenever the 
sensible input has the normal value 0, while pj  is X if the sensible input has a normal value of 1. In 

the latter case, the presence or absence of fault effects on the non-sensible inputs does not affect the 
sensibility of the gate output to the target fault. Note that a gate is not included in the S-frontier if two 
of its sensible inputs have different normal value polarities. This is captured in the above inclusion 
expression of a gate in the S-frontier (see also Appendix Ic). 

 We summarize in Table II the required values on the non-sensible inputs in order to propagate 
the target fault effect through different types of gates. For a XOR or a XNOR gate, if the non-sensible 
input j has both potential sj

0 and sj
1, the gate is not included in the S-frontier. The assignment to a 

non-sensible input j of a XOR or a XNOR gate in Table II assumes that either sj
0 or sj

1 was dropped in 
an earlier iteration of TPG, hence the assigned normal value nj depends on the remaining fault. If both 
were dropped, then  nj is chosen depending on the value of the controllability measure of line j 

(Section 4.4). 

TABLE II  
REQUIREMENTS FOR THE PROPAGATION THROUGH A GATE IN THE S-FRONTIER  

Gate types Sensible 
input value(s) 

Requirements on 
non-sensible 

input(s) 

Output 
Assignment 

AND  
(NAND) 

1 / 1 1 / X 1 / 1  (0 / 1) 
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 0 / 1 1 / 0 0 / 1  (1 / 1) 

OR  (NOR) 0 / 1 0 / X 0 / 1  (1 / 1) 

 1 / 1 0 / 0 1 / 1  (0 / 1) 

XOR  
(XNOR) 

0 / 1 or 1 / 1 1 / 0  if  sj
0 = 0  

0 / 0  if  sj
1 = 0 

1 / 1 or 0 / 1 

0 / 1 or 1 / 1 

 The backward justification of values assigned to the non-sensible inputs is performed by 
backward implication procedure in the same manner as in TPG algorithms for SSFs, except that it 
again takes into account the propagation bits when required to be 0. 

4.2. Implication and Unique Sensitization 

 The assignments which propagate the effect of the target fault through the circuit are justified 
by a search over possible line values (ni / pi) that have a good likelihood in satisfying them. This 

search explores the space of possible solutions using a branch-and-bound technique [15] . The 
convergence to a solution is improved using heuristics and techniques, described as implication and 
unique sensitization, that are similar to those in FAN [14]  and SOCRATES [36] . 

• Implication 

  The role of the implication procedure is to identify as many line values that are uniquely 
determined as possible, to keep track of lines sensible to the target fault, to update the S-frontier, and 
to check for the consistency of value assignments. Line values are determined by forward and 
backward implications in the circuit. Forward implication consists of a simple computation of line 
values using the gate model defined in Section 2.3. Backward implication determines, when possible, 
the values on gate inputs that uniquely justify the value on the output of the gate. Both normal value 
and propagation bit values are determined based on the function and the propagation bit equation of 
the gate (Appendix Ia). The input values are left unspecified when there is no unique value 
assignments. Such inputs are later processed in the multiple backtrace procedure (Section 4.4). Fig. 4 
shows unique normal value assignments when the propagation bit on the output of an AND gate is not 
specified. 
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Assignments Implications⇒

⇒
1/X

X/X

X/X
1/X

1/X

1/X

⇒
0/X

X/X

1/X
0/X

0/X

1/X

⇒
x

s-a-1 0/X
X/X

1/X
x

s-a-1 0/1
0/X

1/X

⇒
0/X

X/X

X/X
0/X

X/X

X/X (Unjustified)  
Fig. 4. Uniquely determined input normal values of an AND gate. 

When the propagation bit on the output of an AND gate is specified to be 0, the only two situations 
which are uniquely determined are: 

(1) If s-a-1 faults on all its input are still possible, then all the inputs are assigned 0/0. (Recall that 
these s-a-1 faults cannot occur simultaneously). 

(2) If there exists exactly one input i such that si
1 = 0, then this is the unique input that, when set to 

0/0, disables the propagation of any fault effect to the gate output. 

Fig. 5 shows unique input assignments when the propagation bit on the output of an AND gate is 0. 
For other gate types, the unique assignments are easily derived from their propagation bit equations 
(Appendix Ia). 
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Assignments Implications⇒

⇒
1/0

X/X

X/X
1/0

1/0

1/0

⇒
x

s-a-1

0/0
X/X

X/X x
s-a-1

0/0
0/0

X/X

⇒
x

s-a-1

x
s-a-1

0/0
X/X

X/X
x

s-a-1

x
s-a-1

0/0
0/0

0/0

⇒
0/0

X/X

X/X
0/0

X/X

X/X (Unjustified)  
 Fig. 5. Uniquely determined input values of an AND gate. 

 In FAN, the backward implication procedure makes unique assignments locally from the 
output of each gate. In addition, global implications learned during the preprocessing phase were 
introduced in SOCRATES [36]  The global implications help to reduce the number of backtracks and 
permit early recognition of conflicts and redundancies. We illustrate this learning procedure using an 
example. The details can be found in [36] . Fig. 6 shows a small part of a circuit, in which the value 0 
has been assigned to f. The gate feeding f becomes unjustified since either d or e set to 0 would satisfy 
f = 0. The preprocessing phase uses a learning procedure to determine that (a = 1) � (f = 1) (Fig. 6a) 
which also means (f = 0) � (a = 0) (Fig. 6b). 

a

b

c

d

e

f
1

1

1

1

X

X

a

b

c

d

e

f
0

X

X

0

X

X

(a) Implications from a = 1 (b) Implications from f = 0

1

1

 
Fig. 6. Learning global implications [36] . 

 In our case, only normal values are determined, and thus the learning procedure is the same as 
in [36] . Propagation bits are not considered since invalid implications may result in the presence of a 
multiple fault. In the circuit of Fig. 6, to justify the value 0/0 on f during the backward implication, 
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only na = 0 is assigned. pa will be specified by local backward implications depending on the 
remaining faults on the gate inputs. 

 Before assigning a value to a line, the implication procedure checks for the consistency of the 
assignment. According to our line model, a conflict occurs when either a value α is to be assigned to a 
line i having ni = α , or when 0 is to be assigned to pi which is already equal to 1. In such cases, the 

implication procedure signals inconsistency and is aborted. 

• Unique Sensitization 

 In FAN [14] , when the D-frontier consists of a single gate, a unique sensitization procedure is 
used to find immediately as many unique assignments of line values as possible. These assignments 
decrease the number of choices and thus the number of backtracks. Fig. 7 shows an example of the 
application of the unique sensitization procedure using our models, when the S-frontier consists of a 
single gate. 

x
s-a-1

a

b
c

d

e

f

g

h k

0/0

1/0
0/1

1/0

0/1

1/X

1/X

X/X
X/X
i

j

G1
G2

G3
G4

x
s-a-1

x
s-a-1

x
s-a-1

x
s-a-1

x
s-a-1

x
s-a-1

x
s-a-1

x
s-a-1

 
Fig. 7. Application of the unique sensitization. 

The target fault is sa1 and the input a is assigned the value 0/0. The only gate in the S-frontier is G1, 
and every path from G1 to primary outputs passes through c-e and i-k. In order to propagate the effect 
of sa1, we have to sensitize paths c-e and i-k. To do so, non-sensible inputs of gates G1, G2, G3 and 
G4 have to be assigned the non-controlling normal value 1 (from Table II). Justifying a propagation 
bit set to 0 on a line is more difficult due to remaining faults, potentially requiring many more 
assignments (as illustrated in Fig. 5). Propagation bits on these inputs are specified only if the polarity 
of all the paths from the fault site to the corresponding gates is the same (i.e., even or odd but not 
both), in order to propagate the target fault effect (to avoid its masking). Hence, we assign 1/0 to lines 
b and d since the polarity of the path from line a to G1 and G2 is even. For gate G3, assuming that the 
polarity of all the paths from a to g and to h can be either even or odd, that is, g and h may be assigned 
1/1 or 0/1. Therefore, 1/X is assigned to f and has to be justified backward. The propagation bit on f 
will be set to 0 only if a subsequent forward implication assigns 0/1 to g and h in order to sensitize G3 
to the target fault. pf = 0 has to be subsequently justified by backward implication. But, if the forward 
implication assigns 1/1 to g and to h, there is no need for specifying pf, because the value 1/X on line f 
is sufficient to sensitize G3 to the target fault. The case for line j is similar. To conclude the example, 
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the unique sensitization procedure assigns 1/0 to b and d, and 1/X to f and j and then would justify 
them, if possible, by backward implication. 

 The unique sensitization procedure requires that line dominance be determined during the 
preprocessing phase [26, 36] . Line y dominates line x if all directed paths from x to the primary 
outputs pass through y. The polarity of these paths is also computed. For each line x we retain all 
gates that dominate x and all their inputs which are not reachable from x. In Fig. 7, the outputs of the 
gates G1, G2, G3 and G4 dominate line a, and the list of retained inputs is (b[E] d[E] f[-] j[-]), where the 

polarity of the paths from a to these gates is indicated between brackets ([E]: Even, [O]: Odd, and [-]: 
Even and odd). 

4.3. Fault Detection 

 The lines of the circuit are hidden, faulty or normal. The goal of our TPG is to generate a test 
set that determines the lines that cannot be faulty (hidden or not) when the fault free response is 
observed. The algorithm uses the sensibility concept to propagate the effect of the target fault through 
the circuit, but cannot declare this fault as detected when a primary output is reached and is sensible 
(as done under the SSF model when a primary output is assigned a D or D  and all justifications of 
line values succeed). The generated test may be invalid in the presence of another fault that masks the 
effect of the target fault on the sensitized path only. Thus, we must establish additional test conditions 
under which the target fault can be dropped (i.e., detected) assuming that the fault free response is 
observed. These conditions are: 

C1: The target fault is sensitized to a primary output through a normal path and thus the fault cannot 
be present if the fault free response is observed on this output. 

C2: No normal path has been identified from the target fault site, but all the paths to primary outputs 
are sensitized to the target fault. In this case, if the fault free response is observed on these 
primary outputs, the target fault site is either normal or hidden. Thus in both states, the target 
fault can be dropped. 

 To verify these conditions during the propagation of a target fault effect through the circuit, 
the algorithm must maintain a list of all the paths along which the target fault can propagate (normal 
paths) or must be propagated (not normal paths). This may result in an inefficient implementation 
since a list traversal has to be performed at each step. To remedy this inefficiency, the algorithm does 
not maintain such a list, but instead performs a backward deduction phase each time the target fault 
effect is propagated to a primary output and all justifications are successful. This phase verifies the 
presence of the test conditions that allow to drop the target fault, and at the same time it drops other 
faults along sensitized paths for which the test conditions C1 and C2 are fulfilled. In TPG for SSFs, 
this corresponds to dropping all activated faults along sensitized paths. Note that this phase is similar 
to the backward deduction used in fault analysis [39] . It is a linear time algorithm that performs 
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backward sweeps from primary outputs having specified value toward primary inputs. It assumes that 
fault free response is observed on the primary outputs and drops fault effects on them by resetting to 0 
their propagation bits. Then, for each gate feeding these outputs, it deduces the possible values that 
are actually carried by their inputs: The deductions may result in dropping fault effects and faults that 
are not masked and thus cannot be present or their sites are hidden. 

 A fault effect on a line is dropped by resetting to 0 its propagation bit, i.e., the line carries fault 
free value only. When the propagation bit on a line is reset to 0, backward deduction continues further 
into the driving network. Backward deduction is not performed through any gate having propagation 
bit on its output different from 0. Depending on the type of the gates, the propagation bits and the 
status of the inputs are deduced using the following deduction lemmas. For an AND/NAND the 
deduction lemma can be stated as follows: 

Lemma 1: If the propagation bit pg on the output g of an AND/NAND gate is reset to 0, then the 
following are sufficient conditions for dropping the fault effect and the fault on each input i 
of the gate: 

 - Drop the fault effect: pi = 0 �  pi = 1 � [(ni = 0 � (∀j≠i, nj = 1 � pj = 0)) ∆ (∀j, nj = 1)] 
 - Drop the fault: si1 = 0 �  ni = 0 � (∀j≠i, nj = 1 � pj = 0) 

For a fanout stem, the conditions are stated in the following lemma: 

Lemma  2: Let s be a fanout stem. Sufficient conditions for resetting the propagation bit ps to 0 are: 
 - ∀ fanout branches b of s, pb = 0, or 

- ∃ fanout branch b of s such that pb = 0 and b is normal. 

The lemmas for all types of gates are presented in Appendix II and their proofs are similar to those 
given for the analysis method [25, 39] . For inverters and buffers, if the propagation bit on the output 
is reset to zero, it is also reset to zero on the input. 

 A line i is declared normal if si
1 = 0 and si

0 = 0 (i.e., both faults were dropped) and there exists 

a normal path from i to a primary output (i.e., all faults along this path have also been dropped). The 
backward deduction phase determines such normal paths while backtracing in the circuit (Appendix 
III).  

 The following example illustrates some of the possible deductions during the backward phase. 
Example 2: Consider the circuit in Fig. 8 containing faults sa

1, sb
0, sc

0, sd
1, sf

1, sh
1, si

1, si
0, sj

1 and sj
0. 

Any combination of these faults constitutes a multiple fault whenever there is a normal path from each 
of its components to at least one primary output and excluding simultaneous faults on inputs of the 
same gate. Let the target fault be sb

0. The fault is activated (Fig. 8a) by assigning normal value 1 to 
input b, and pb = 0 since it is a primary input. The assignment c = 0/0 propagates the target fault effect 

to line e. Since there is no normal path from the fanout stem e  to a primary output, the effect of the 
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target fault must be propagated through all its branches. By setting a and d to 1/0, the outputs i and j 
are reached. At this stage, lines e, f, g, h, i and j are all sensible to sb

0. 

(a) Propagation of the target fault effect. (b) Backward deduction phase.
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Fig. 8. Fault detection example. 

 The backward deduction is now executed (Fig. 8b). First, it assumes that the fault free 
response is observed on the primary outputs i and j, i.e., pi = pj = 0. Faults si

0 and sj
1 are detected and 

dropped. Backtracing on each of the AND gates feeding i and j, the propagation bits on f and h are 
reset to 0 according to lemma 1, i.e., these effects will be observable on i and j, unless they are hidden 
by si

1 and sj
0, respectively. The fault sh

1 is detected based on the same deductions. The fault effect on 

stem e is also reset to 0 since it was reset to 0 on all its fanout branches (f and g). Based on Lemma 3 
of an OR gate (Appendix II), the fault effect on e is due to sb

0 only, and since pe = 0 then the fault sb
0 

is detected. The vector t  = (abcd) = (1101) is thus a test for the faults sb
0, sh

1, si
0 and sj

1. In fact, 

implicitly, t is a test for all multiple faults containing one or more of these faults as a member. For 
example, the set of multiple faults containing sb

0 and detected by t is F={(sb
0), (sb

0, sa
1), (sb

0, sf
1), 

(sb
0, si

1), (sb
0, si

0), (sb
0, sd

1), (sb
0, sh

1), (sb
0, sj

0), (sb
0, sj

1), (sb
0, sa

1, sh
1), (sb

0, sa
1, sd

1), (sb
0, sf

1, sd
1), 

(sb
0, si

0, sd
1), (sb

0, si
1, sd

1), (sb
0, sj

0, sa
1), (sb

0, sj
1, sa

1)}. 

4.4. TPG algorithms 

 The key concepts introduced in the previous sections are the propagation of sensibility (wi), 
the propagation of fault effects (pi), and the test conditions for fault detection. These concepts and the 

underlying fault, line and gate models can be incorporated in any TPG algorithm for SSFs to adapt it 
for multiple faults. In our case, we use a branch-and-bound technique to explore the solution space 
using a binary decision tree [15]  with heuristics techniques to improve the performance. Fig. 9 
illustrates the overall TPG procedure, based on a recursive version of FAN [2] . The procedure 
assumes that the target fault is supplied by the caller procedure. The Boolean variable Test_Found is 
true if the target fault is detected; the test vector is returned when the values on the head lines are 
justified by the procedure Justify_Head_Lines(). 
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 procedure TPG( Target_Fault ) : return( SUCCESS, FAILURE ); 
 begin 
  if Imply_and_Check() = FAILURE then return( FAILURE );              /* 1 */ 
  if (error at PO and all bound lines are justified) then 
   begin 
    Justify_Head_Lines(); 
    Backward_Deduction( Target_Fault );                                        /* 2 */ 
       if Test_Found then begin 
     Analysis() ;                                                                     /* 3 */ 
     return( SUCCESS ); 
    end; 
   end; 
  if (not error at PO and S-frontier = Ø) then return( FAILURE ); 
  Add every unjustified bound line to Current_Objectives; 
  G :=  Select one gate from the S-frontier;                                            /* 4 */ 
  Fix_Inputs( G ); 
  (line, value, propagation) = Multiple_Backtrace( Current_Objectives );     /* 5 */ 
  if (line, value, propagation) is empty then return( FAILURE ); /*no selections */ 
  Assign (i=line, ni=value, pi=propagation); 

  if TPG( Target_Fault ) = SUCCESS then return( SUCCESS ); 
  Assign (i=line, ni=ni , pi=X);                                                           /* 6 */ 

  if TPG( Target_Fault ) = SUCCESS then return( SUCCESS ); 
  Assign (i=line, ni=X, pi=X); 

  return( FAILURE ); 
 end; 
 

Fig. 9. Test pattern generation algorithm. 

 In the following, we explain the numbered lines in Fig. 9 that represent the newly introduced 
or extended concepts in our TPG method. 

   1) Imply_and_Check(): This procedure is as discussed in Section 4.2. It determines as many line 
values as possible that are uniquely implied and updates the S-frontier. It performs unique 
sensitization whenever the S-frontier consists of a single gate. The procedure fails when a conflict 
occurs during a forward or a backward implication. 

   2)  Backward_Deduction( Target_Fault ): This procedure performs a backward sweep from primary 
outputs that have been assigned a value toward primary inputs. It relies on the lemmas in Section 4.3 
to drop fault effects and faults on inputs of gates. The target fault is detected during this phase when 
conditions C1 and C2 are fulfilled (Section 4.3). 

   3) Analysis(): This is the multiple fault analysis method as in [39]  and recently extended to handle 
up to 32 input vectors in parallel [24] . The analysis is performed when the target fault is detected, in 
order to detect additional faults. The primary inputs left unspecified by the TPG are assigned random 
values. 
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   4) The S-frontier consists of a list of gates in decreasing order of their observability measure values 
[3, 16] . This helps to select, at each step of the propagation of the target fault effect, the gate which is 
the closest to a primary output and whose error propagation is the easiest to observe. This ordering is 
neglected when the target fault effect is to be propagated first through a normal branch of a fanout 
stem. In this case, the reachable gate in the S-frontier from this normal branch is chosen first. The 
values are assigned to non-sensible inputs according to Table II (procedure Fix_Inputs( G ) in Fig. 9). 
These inputs are added to the Current_Objectives to be justified by the multiple backtrace procedure. 

   5) Multiple_Backtrace(): This procedure traces backward multiple paths to satisfy the set of 
Current_Objectives. It is similar to the procedure in FAN, except that an objective consists of a line, a 
normal value and a propagation bit value. The selection of lines is performed as described in Section 
4.2 when a gate output is specified but not its inputs (because of the presence of more than one input 
choice), and it is guided using testability measure values [3, 16] . The procedure returns the line 
number of a head line or a fanout stem i and values for ni and pi that have a good likelihood to satisfy 

the objectives. This procedure was extended to handle XOR and XNOR gates [36] (Appendix IV). 

   6) Backtracking: In this recursive version of the algorithm, the decision tree is identical to that of 
PODEM or FAN. When a value assignment on a line is rejected due to a conflict, the alternative is 
tried with the propagation bit set to X. It becomes 0 only if required for satisfying a subsequent 
objective(s). 

4.5. A Complete TPG Example 

 Consider the circuit in Fig. 10. After fault collapsing, all the remaining faults (shown in the 
figure) are assumed to be simultaneously present in the circuit, which is the initial circuit status. Lines 
a, e and d are head lines, b and c are free lines and f, g, h, i and j are bound lines [14] . The list of 
faults in an arbitrary order is sa

1 , sf
1 , sg

1 , sd
1 , sh

0 , si
0 , sj

1 , sj
0 , sb

1 , sc
1. Target faults are selected in 

the order of appearance. 
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Fig. 10. Aborted Target Fault. 
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 Let sa
1 be the first target fault. The assignment a = 0/0 activates it and implies wa = 1, h = 1/X 

and j = 1 / X. Since lines h and j dominate a, the unique sensitization procedure determines that f = 
1/0 and i = 0/0 are necessary to propagate the effect of sa

1 to the primary output j. f = 1/0 implies e = 
1/0, g = 1/0, h = 1/1, wh = 1, and j = 1/1. i = 1/0 implies d = 0/0 and g = 0/0 (since sg

1 and sd
1 are still 

possible). At this step, the implication procedure stops because an inconsistency occurs on g - it was 
assigned 1/0 earlier -, as shown in Fig. 10. No backtracking is performed because all assignments 
were necessary and the target fault is aborted. In fact, sa

1 would be detected only if sd
1 is detected 

because the presence of sd
1 masks sa

1 at gate G4: if sd
1 = 0, then d = 0/0 uniquely justifies i = 0/0. 

 Let sf
1 be the next target fault. As shown in Fig. 11a, the assignment f = 0/X activates the fault 

and implies wf = 1, e = 0/X, g = 0/X, h = 1/X, i = 0/X and j = 1/1. The unique sensitization procedure 
determines that a = 1/0 and i = 0/0 are necessary to propagate the effect of sf

1 to primary output j. a = 
1/0 implies h = 1/1 and wh = 1. i = 0/0 implies g = 0/0, d = 0/0, e = 0/0, f = 0/0 and wj = 1. At this 

stage, all line justifications succeed and the primary output is sensible. The justification of 0/0 on the 
head line e results in the unique assignments b = 0/0 and c = 0/0. The backward deduction procedure 
(Fig. 11b) then drops sj

0, sh
0 and sf

1. The generated vector t = (abcd) = (1000) thus detects any MSF 

containing one of these faults. 

b) Backward deduction phase.a) Propagation of the target fault effect.
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Fig. 11. TPG example. 

 Table III summarizes the TPG results for all faults in the circuit of Fig. 10. The columns 
indicate the selected target fault, the generated test vector, the list of dropped faults, the list of 
deduced normal lines during backward deduction, and the result of TPG regarding the target fault. 
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TABLE III 
COMPLETE TPG FOR THE CIRCUIT EXAMPLE 

Target 
Fault 

Test 
Vector 

Dropped  
Faults 

Normal 
Lines 

TPG 
Result 

sa
1 � � � Aborted 

sf
1 1000 sj

0, sh
0, sf

1 � Detected 

sg
1 � � � Redundant 

sd
1 1110 sj

1, sd
1 j, h, f, e Detected 

si
0 1111 si

0 i Detected 

sb
1 1010 sb

1 b Detected 

sc
1 1100 sc

1 c Detected 

sa
1 0110 sa

1 a Detected 

 The faults sb
1 and sc

1 when selected, are sensitized to primary output j through the path e-f-h-j 
that was declared normal. In the last row of Table III, the fault sa

1 is selected for the second time, 

since it was aborted during the first traversal of the fault list. The final test set T = {1000, 1110, 1111, 
1010, 1100, 0110} detects all multiple faults in the example except (sg

1) because its unique 
component sg

1 is a redundant fault. 

5. Experimental Results 

 The TPG for multiple faults was implemented in the MainSailTM programming language on a 
SUN SPARC-Station 2. Several experiments were conducted on the ISCAS'85 benchmark circuits [7] 
, but before discussing the results we first present the definition of MSF coverage. 

5.1. MSF Coverage 

 The different definitions of multiple fault coverage found in the literature generally depend on 
the method for detecting MSFs or for predicting their detection. Hence, these measures have to be 
distinguished to avoid confusion [9] . For example, the coverage measure given in [22]  was often 
used in the past, but it can be misleading. In a circuit of n lines there are 2n faults, producing 3n - 1 
possible MSFs. Assume that there are k lines on which the faults have been dropped because all MSFs 
involving them are detected. Thus, the total number of remaining MSFs is 3n-k - 1. The lower bound C 
on the MSF coverage, as defined in [22] , is then 

C ≥
3n − 3n−k

3n = 1−
1

3k  

 This lower bound depends on k but not on n (the circuit size)! For example, if we determine 
that 4 lines are not faulty, the equivalent lower bound on the MSF coverage is 98.7%, independently 
of the circuit size. This measure is misleading and we do not adopt it since a near 100% coverage 
would be always achieved for all circuits. Instead, we use a more meaningful definition of MSF 
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coverage (an unconditional measure) as in [10] : The ratio of the number of dropped faults to the total 
number of faults.  

 Note, that this coverage is a lower bound for the measures defined in [4, 20, 22, 28] , since it is 
more pessimistic: Even though some MSFs involving a particular line in the circuit are detected, the 
fault on that line is not dropped unless all MSFs involving this line can be detected. For example, in 
the circuit of Fig. 10, the total number of faults is 18, but only 17 faults are declared as detected, 
leading to 94.4% fault coverage. If we had used the measure from [22], the coverage would have been 
≈ 100%! 

 Table IV presents some statistical data on the benchmark circuits. The table gives the circuit 
name; the number of primary inputs and outputs, the number of gates, the number of faults remaining 
after collapsing, the number of redundant single stuck-at faults [32] , the number of learned 
implications during preprocessing, and the CPU time of the preprocessing phase. In all tables, the 
CPU time is given in seconds (on a SPARC-Station 2), and the fault coverage in percent (%) as 
defined above. 

TABLE IV 
STATISTICS ON BENCHMARK CIRCUITS  

Circuit PIs POs Gates Faults Redundant Implic. CPU Time 
c432 36 7 160 346 4 57 1.2 
c499 41 32 202 640 8 40 2.8 
c880 60 26 383 692 0 85 2.4 
c1355 41 32 546 1056 8 208 20.2 
c1908 33 25 880 1109 9 498 12.4 
c2670 233 140 1193 1839 117 843 11.1 
c3540 50 22 1669 2270 137 3920 65.9 
c5315 178 123 2307 3738 59 1371 22.9 
c6288 32 32 2406 4832 34 619 120.2 
c7552 207 108 3512 4950 131 3356 51.0 

5.2. MSF Detection by SSF Test Sets 

 In the first experiment, we determined a lower bound on MSF detection by test sets developed 
for SSFs. We analyzed two test sets for each circuit: (1) compressed sets [30]  and (2) non-
compressed sets [31] . The coverage analysis was performed using the multiple fault analysis method 
of [24] . Table V summarizes the fault coverage and the CPU times. Columns "(1)" and "(2)" identify 
the two test sets. Due to fault masking that occurs when assuming the presence of all faults, the 
analysis of a test set was repeated as long as faults could be dropped (the number of repetitions is 
given in column "Repeat"). 
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TABLE V 
MSF COVERAGE BY TEST SETS FOR SSFs  

Circuit Vectors 
       (1)                 (2) 

Repeat 
   (1)           (2) 

Coverage (%) 
       (1)                   (2) 

CPU Time (sec.) 
        (1)                   (2) 

c432 44 520 8 2 81.2 99.4 1.7 4.3 
c499 60 750 1 1 47.2 91.7 0.4 3.9 
c880 30 942 1 2 69.2 98.2 0.6 16.2 
c1355 95 1566 2 2 56.4 70.8 2.1 31.1 
c1908 142 1863 2 2 85.5 97.2 15.7 58.2 
c2670 67 2621 2 1 78.8 88.7 7.6 61.5 
c3540 111 227 2 2 67.2 69.6 15.5 32.5 
c5315 34 5261 2 1 81.5 93.1 15.7 259.8 
c6288 16 49 2 2 56.3 54.2 20.9 23.3 
c7552 87 375 2 4 72.5 75.1 47.4 84.9 

The MSF coverage is far from acceptable for the majority of the circuits (e.g., c1355, c2670, c3540, 
c6288 and c7552), especially in the case of compressed test sets. Therefore, MSF detection using test 
sets developed for SSFs may not achieve a good MSF coverage. In particular, compressed test sets 
may activate several faults and a high degree of fault masking can occur. Consequently, this seems to 
indicate that a TPG for MSFs is necessary. 

5.3. Multiple Fault TPG Experiments 

 We performed two experiments on the benchmarks. The first one applies Random TPG 
(RTPG) as the first step, while in the second one RTPG was omitted. The results are summarized in 
Tables VI and VII, respectively. RTPG applies random vectors and is stopped when 64 consecutive 
vectors do not detect any additional fault, using the fault analysis method of [24] . The backtracking 
limit in TPG is set to 10. A target fault is aborted when the number of backtracks exceeds the limit 
without generating a test for the fault. The number of undetected faults after TPG is shown in the 
second column. It includes redundant faults (if any). The unique sensitization procedure and the 
global implications learned during preprocessing highly contribute to the identification of 95% of 
redundant faults without backtracking; they are removed from the fault list. The number of traversals 
over the fault list is given in the third column. Recall that this list is repeatedly processed as long as 
additional faults can be dropped. 
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TABLE VI 
TPG RESULTS INCLUDING INITIAL RANDOM TPG 

Circuit Unde- Traver- Back- Vectors Fault CPU Time (sec.) 
 tected sals tracks  Coverage RTPG TPG Total 
c432 4 2 45 622 99.4% 4.5 2.0 6.5 
c499 8 5 1447 1271 99.1% 2.8 61.8 64.6 
c880 0 1 0 701 100% 8.2 3.5 11.7 
c1908 20 4 1566 1737 99.4% 10.2 203.2 213.4 
c2670 381 2 3312 2477 91.4% 26.6 387.8 414.3 
c3540 167 2 627 2300 97.2% 108.3 170.3 278.6 
c5315 614 2 5622 2567 93.2% 99.5 1464.5 1564.0 
c6288 50 3 560 2039 99.5% 416.7 541.4 958.1 
c7552 1231 2 12337 5322 90.2% 302.3 4709.6 5011.9 

TABLE VII 
TPG RESULTS WITHOUT RTPG  

Circuit Unde- 
tected 

Traver- 
sals 

Back- 
tracks 

Vectors Fault 
Coverage 

CPU Time 
(sec.) 

c432 4 2 78 532 99.4% 5.4 
c499 23 5 1658 1160 97.4% 97.2 
c880 0 1 20 977 100% 12.6 
c1908 18 4 1752 1960 99.4% 227.7 
c2670 392 2 3367 2519 91.1% 409.7 
c3540 168 3 1122 3400 97.2% 342.0 
c5315 614 2 5600 2231 93.2% 1493.1 
c6288 63 3 2142 6056 99.3% 1247.5 
c7552 1229 2 12557 6954 90.2% 4936.5 

 The use of the sophisticated heuristics from FAN and SOCRATES considerably reduce 
backtracking, however, the conditions for propagating the target fault effect and for detecting the fault 
are more strict than under the SSF model. For instance, even if the target fault effect on a line for 
which no normal path has been yet found is propagated to the primary outputs, it is not declared 
detected unless it can be propagated through all paths. Hence, the high number of backtracking 
required on some benchmarks is mainly due to the TPG trying other assignments with the objective to 
propagate the fault effect through all paths. The test sets shown in the fifth column are not 
compressed. 

 As expected, TPG for MSFs requires more CPU time than for SSFs, but achieves a fault 
coverage which is quite high or even complete (e.g., c880). The generated test sets guarantee the 
detection of at least all the multiple faults containing the dropped faults. Compared to the time 
required by SOCRATES to derive tests for SSFs, our system is about 8 times slower on the average 
with a standard deviation of 9. If we consider the complexity of deriving tests for MSFs, this CPU 
time is quite acceptable, especially if we assume that the SSF model is not adequate.  
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 The c1908 circuit contains 9 redundant SSFs [32, 35] . Under the MSF model, the TPG 
identifies these redundant faults without backtracking. The undetected faults that are not redundant 
are masked by the redundant ones. For instance, consider a small part of the c1908 circuit shown in 
Fig. 13. The faults s112

1 , s420
1  and s421

1  are redundant. 
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Fig. 13. A part of the c1908 circuit. 

 In addition to the redundant faults, s2384
0  remains undetected. The TPG attempts to detect this 

fault by performing the following steps:  
(1) To activate the fault s2384

0 , line 2279 is assigned 1/0 and the primary inputs 99 and 104 are 

assigned 0/0. 
(2) To propagate the effect of s2384

0  to the primary output 2811, line 2800 should be assigned 0/0. 

Since all inputs of the AND gate feeding line 2800 have been justified, no assignments can be 
made to satisfy the objective 0/0 on line 2800. The target fault may be masked at the output 2811.  

The unique alternative to detect s2384
0  is to confirm the absence of s112

1 . Since it is redundant, no 
algorithmic way can confirm the absence or presence of this fault. Therefore, s2384

0  remains undetected 
because it can be masked by s112

1  (under the SSF model it is testable, however). The multiple fault 
(s112

1 , s2384
0 ) is then redundant. This kind of information can be extracted from the list of undetected 

faults after TPG, and can be helpful in determining the possible fault masking relations. 

 A final note about the c1355 circuit: This circuit is functionally equivalent to c499 in which 
the XOR gates are expanded into their NAND gate equivalents. This expansion introduces a high 
degree of ambiguity into the analysis of MSFs for TPG. Since our method is conservative in nature, 
the target fault effect is lost (i.e., sensibility) each time it is propagated into a possibly faulty NAND 
structure of a XOR gate. Fault masking cycles are thus created and the target fault is aborted, which 
has a great impact on the fault coverage. To break such cycles, one should perhaps explicitly consider 
the masking relations as presented in [8] . 
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6. Conclusions 

 The test pattern generation method presented in this paper is, to our knowledge, the first 
practical attempt at generating tests for multiple stuck-at faults. The method assumes the presence of 
all multiple faults of all multiplicities without resorting to their explicit enumeration. New line and 
gate models were introduced to handle multiple fault propagation. Test conditions were defined so 
that all multiple faults containing a detected target fault as a component are also detected. The search 
for test vectors is guided using several techniques from earlier TPG systems for SSFs which were 
adapted for MSFs. The method thus achieves high multiple fault coverage at reasonable cost. No 
previous work reported results in MSF TPG on the ISCAS'85 benchmark circuits due to the 
complexity of the problem. 

 As seen in the experimental results, MSF detection using test sets developed for SSFs may not 
achieve a good MSF coverage. In particular, compressed test sets may activate several faults and a 
high degree of fault masking can occur. The test sets developed using our TPG method guarantee the 
detection of all multiple faults containing one or more of the detected faults, and are valid even in the 
presence of redundancy. Due to the conservatism of the method, the fault coverage obtained is a lower 
bound on the actual coverage that can be really achieved for the circuit under test. 

 The implementation of the TPG method can be further improved using some recently 
developed techniques [32] . New heuristics can also be added to improve the performance, namely, 
the order in which target faults are selected, fault dependencies and masking relations, and a deeper 
analysis of the circuit structure to reduce backtracking when the target fault site may be hidden. Also, 
since the method does not explicitly enumerate multiple faults and due to its conservatism, it is not a 
complete algorithm, i.e., a test may exist for a MSF, but the method will not find it. We could 
envisage generating tests for each remaining multiple faults (by enumerating them), however, this is 
feasible if the number of such faults is relatively small. 
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APPENDIX I 
TPG EQUATIONS 

 In this appendix, we present the equations used in TPG for the propagation of fault effects, the propagation of 
sensibility and the inclusion of the gate in the S-frontier for all gate types. We assume an m-input gate G with the output 
out, except XOR and XNOR gates which have two inputs only. 

A. Fault effect propagation 
 P and Q are predicates; P is true if pout can be equal to 0; Q is true if pout can be equal to 1. 

 AND / NAND: 

 • P = [(∃i, (ni=0,X ∧ pi=0,X ∧ si
1=0)) ∨ (∀i, (ni=0,X ∧ pi=0,X))] ∨ [∀i, (ni=1 ∧ pi=0,X)] 
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 • Q = [(∃i, ni=1,X ∨ pi=1,X) ∧ (∀i, ni=0,X ⇒ (pi=1,X ∨ si
1=1))] ∨ [(∀i, ni=1) ∧ (∃i, pi=1,X)] 

 • pout = 0 ⇔ (P ∧ Q);  pout = 1 ⇔ (P ∧ Q);  pout = X ⇔ (P ∧ Q); 

 OR / NOR: 

 • P = [(∃i, (ni=1,X ∧ pi=0,X ∧ si
0=0)) ∨ (∀i, (ni=1,X ∧ pi=0,X))] ∨ [∀i, (ni=0 ∧ pi=0,X)] 

 • Q = [(∃i, ni=0,X ∨ pi=1,X) ∧ (∀i, ni=1,X ⇒ (pi=1,X ∨ si
0=1))] ∨ [(∀i, ni=0) ∧ (∃i, pi=1,X)] 

 • pout = 0 ⇔ (P ∧ Q);  pout = 1 ⇔ (P ∧ Q);  pout = X ⇔ (P ∧ Q); 

 XOR / XNOR: 

 • P = [∀i,  pi=0,X ∧ ((ni=0,X ∧ si
1=0) ∨ (ni=1,X ∧ si

0=0))] 

 • Q = (∃i,  pi=1,X) ∨ (∃i, (ni=0,X ∧ si
1=1) ∨ (ni=1,X ∧ si

0=1)) 

 • pout = 0 ⇔ (P ∧ Q);  pout = 1 ⇔ (P ∧ Q);  pout = X ⇔ (P ∧ Q); 

B. Sensibility propagation 

 AND / NAND: wout = 1 ⇔ (∃i, wi=1) ∧ [(∀i, ni=1) ∨ (∀i, (ni=0 ∧ wi=1) ∨ (wi=0 ∧ ni=1 ∧ pi=0))] 

 OR / NOR: wout = 1 ⇔ (∃i, wi=1) ∧ [(∀i, ni=0)] ∨ (∀i, (ni=1 ∧ wi=1) ∨ (wi=0 ∧ ni=0 ∧ pi=0))] 

 XOR / XNOR: wout = 1 ⇔ (∃i, wi=1) ∧ [pj=0 ∧ wj=0 ∧ ((nj=1 ∧ sj
0=0) ∨ (nj=0 ∧ sj

1=0))], j≠i   

C. Inclusion in the S-frontier 

 AND / NAND: G � S-frontier � (∃i, wi=1) �  

    [(∀i, ni=1,X) ∧ (∃i, ni=X)] ∨ [(∀i, (ni=0 ∧ wi=1) ∨ (wi=0 ∧ ni=1,X ∧ pi=0,X)) ∧ (∃i, ni=X ∨ pi=X)] 

 OR / NOR: G � S-frontier � (∃i, wi=1) �  

   [(∀i, ni=0,X) ∧ (∃i, ni=X)] ∨ [(∀i, (ni=1 ∧ wi=1) ∨ (wi=0 ∧ ni=0,X ∧ pi=0,X)) ∧ (∃i, ni=X ∨ pi=X)] 

 XOR / XNOR: G � S-frontier � (∃i, wi=1) �  

  [pj=0,X ∧ wj=0 ∧ ((nj=1,X ∧ sj
0=0) ∨ (nj=0,X ∧ sj

1=0)) ∧ (nj=X ∨ pj=X)], j≠i   
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APPENDIX II 
DEDUCTION LEMMAS 

 For each gate type, the backward deduction phase applies the corresponding Lemma to deduce the propagation bit 
and the status on the inputs of the gate. 

Lemma 1: If the propagation bit pg on the output g of an AND/NAND gate is reset to 0, then the following are sufficient 

conditions for dropping the fault effect and the fault on each input i: 
 - pi = 0 �  pi=1 � [(ni=0 � (∀j≠i, nj=1 � pj=0)) ∆ (∀j, nj=1)] 

 - si1 = 0 �  ni=0 � (∀j≠i, nj=1 � pj=0) 

Lemma 2: Let s be a fanout stem. Sufficient conditions for resetting the propagation bit ps to 0 are: 

 - ∀ fanout branch b of s, pb=0, or 

- ∃ fanout branch b of s such that pb=0 and b is normal. 

Lemma 3: If the propagation bit pg on the output g of an OR/NOR gate is reset to 0, then the following are sufficient 

conditions for dropping the fault effect and the fault on each input i: 
 - pi = 0 �  pi=1 � [(ni=1 � (∀j≠i, nj=0 � pj=0)) ∆ (∀j, nj=0)] 

 - si0 = 0 �  ni=1 � (∀j≠i, nj=0 � pj=0) 

Lemma 4: If the propagation bit pg on the output g of an XOR/XNOR gate is reset to 0, then the following are sufficient 

conditions for dropping the fault effect and the fault on each input i: 
 - pi = 0 �  pi=1 � pj=0 � [(nj=0 � sj

1=0) ∆ (nj=1 � sj
0=0)], j ≠ i 

 - si1 = 0 �  ni=0 � pj=0, j ≠ i 

 - si0 = 0 �  ni=1 � pj=0, j ≠ i 
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APPENDIX III 
BACKWARD DEDUCTION PROCEDURE 

 

The variables associated with each line are the following: 
ni : normal value; 
pi : propagation bit; 
hi = 1 if there is no normal path from line i to a primary output;  
hi = 0 if there is a normal path from line i to a primay output 
si

α = 1 if the fault s-a-α is still possible on line i. 
si

α = 0 if the fault s-a-α is dropped on line i. 
 
The following procedure performs the backward deduction phase of the TPG: 

procedure Backward_Deduction(); 
begin 
 for each line g in reverse topological order do 
  if (ng ≠ X) and (pg ≠ X) then begin 

   if g is a PO then begin 
    pg := 0;       /* Fault free value is observed on the PO */ 
    if (sg

1
 = 0) and (sg

0
 = 0) then hg := 0;  /* PO is normal if all its faults are dropped */ 

   end 
   else if g is a fanout stem then begin 
    Apply_Stem_Lemma( g ); 
    if (∃ branch j of g such that hj = 0) then hg := 0; 

   end 
   else begin 
    Apply_Gate_Lemma( Gate feeding g ); 
    if hg = 0 then 

     for each input i of the gate feeding g do 
      if (si

1
 = 0) and (si

0
 = 0) then hi := 0  

   end; 
  end; 
end; 
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APPENDIX IV 
MULTIPLE BACKTRACE PROCEDURE 

 
  In this appendix, we present the multiple backtrace procedure that traces more than one path to satisfy a set of 
objectives. The procedure uses 3 sets of objectives: Head_Objectives for head lines, Stem_Objectives for fanout stems, 
and Current_Objectives which contains the unjustified bound lines during the Imply_and_Check, the non-sensible inputs 
(if any) that propagate the target fault effect and the new generated objectives at each iteration of the procedure. An 
objective is a 3-tuple (i, val, prop), where i is the line number, val is the chosen value for ni and prop is the requested 
value for pi.  

 As in FAN algorithm, we associate to each line two counters n0 and n1 that indicate the number of times the values 0 

and 1, respectively, are requested for the normal value of this line. These counters are updated using the procedure 
Increment_Request( Line, Value ); 
 
 
procedure Multiple_Backtrace( Current_Objectives ) : return (i, val, prop); 
begin 
 
 while Current_Objectives ≠ � do 
 begin 
  remove one tuple (i, val, prop) from Current_Objectives; 
  if i is a head line then 
   add (i, val, prop) to Head_Objectives; 
  else if i is a fanout branch then begin 
    s := stem( i ); 
    Increment_Request (s, val); 
    add (s, val, prop) to Stem_Objectives; 
  end 
  else Determine_Gate_Objectives (i, val, prop, Current_Objectives); 
 end; 
 
 if Stem_Objectives ≠ � then begin 
  (s, val, prop) := Choose_Highest_Level_Stem( Stem_Objectives ); 
  val := most requested normal value on s; 
  if prop = 0 was requested on s with val then  
   prop := 0  
  else prop := X; 
  if (s has contradictory requirements) and  
   (s is not reachable from the target fault site) then 
   return (s, val, prop); 
  add (s, val, prop) to Current_Objectives; 
  return( Multiple_Backtrace( Current_Objectives ) ); 
 end; 
 
 remove on tuple (i, val, prop) from Head_Objectives; 
 return (i, val, prop); 
 
end; 
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procedure Choose_Gates_Objectives (gate, gate_val, gate_prop, Current_Objectives); 
begin 
 
 if gate is an inverter or a buffer gate then begin 
  i := input of gate; 
  val := gate_val ⊕  (inversion of gate); 
  add (i, val, gate_prop) to Current_Objectives; 
 end 
 
 else if gate is an AND, NAND, OR or NOR gate then begin 
   c := controlling normal value of gate;     /* AND/NAND: c = 0;  OR/NOR: c = 1 */ 
   if gate_val ⊕  (inversion of gate) ≠ c then begin 
    for every input i of gate do 
     if (ni = X) or (pi = X and gate_prop = 0) then begin 
      Increment_Request (i, c ); 
      add (i, c , gate_prop) to Current_objectives; 
     end 
   end 
   else if gate_prop ≠ 0 then begin /* Consider normal values only on the inputs of gate */ 
     Select an input i of gate with the lowest cost for c;     /* Selected according to its controllability value */ 
     Increment_Request (i, c); 
     add (i, c, X) to Current_objectives; 
    end 
   else begin   /* The propagation bit on the output of gate is requested to be 0 */ 
     Select an input i of gate with the lowest cost for c with si

c  = 0; 
     if i ≠ 0 then begin  /* This is the input when set to c/0 disables fault effect on the gate output */ 
      Increment_Request (i, c); 
      add (i, c, 0) to Current_objectives; 
     end 
     else for every input i of gate do         /* All inputs have si

c  = 1 � all of them must be equal to c/0 */ 
       if ni = X or pi = X then begin 
        Increment_Request (i, c); 
        add (i, c, 0) to Current_Objectives; 
       end; 
    end 
 end 
 
 else Choose_XOR_Gates (gate, gate_val, gate_prop, Current_Objectives); 
 
end; 
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procedure Choose_XOR_Gates (gate, gate_val, gate_prop, Current_Objectives); 
begin 
 i := First input of gate;  j := Second input of gate; 
  
 C00 := i.C0 + j.C0; C11 := i.C1 + j.C1;   /* C0 and C1: Values of the controllability to 0 and 1 */ 
 C01 := i.C0 + j.C1; C10 := i.C1 + j.C0; 
 
 if gate_prop ≠ 0 then begin 
  if gate_val = 0 then begin   /* if gate_val = 1 ... for XNOR gate */ 
   if ni = X and nj = X then 
    if C00 < C11 then begin i_val := 0;  j_val := 0 end else begin i_val := 1;  j_val := 1; end 
   else if ni ≠ X and nj = X then j_val := ni  
   else if ni = X and nj ≠ X then i_val := nj  

  end 
  else begin 
   if ni = X and nj = X then 
    if C01 < C10 then begin i_val := 0;  j_val := 1 end else begin i_val := 1;  j_val := 0; end 
   else if ni ≠ X and nj = X then j_val := ni  
   else if ni = X and nj ≠ X then i_val := n j  

  end 
 end 
 else begin   /* 0 is requested for the propagation bit on the gate output */ 
  if gate_val = 0 then begin   /* if gate_val = 1 ... for XNOR gate */ 
   if C00 < C11 then begin  i_val := 0; j_val := 0; 
    if ni = 1 or si

1 = 1 or nj = 1 or sj
1 = 1 then begin i_val := 1; j_val := 1; end; 

   end 
   else begin  i_val := 1; j_val := 1; 
    if ni = 0 or si

0 = 1 or nj = 0 or sj
0 = 1 then begin i_val := 0; j_val := 0; end; 

   end; 
  end 
  else begin 
   if C01 < C10 then begin  i_val := 0; j_val := 1; 
    if ni = 1 or si

1 = 1 or nj = 0 or sj
0 = 1 then begin i_val := 1; j_val := 0; end; 

   end 
   else begin  i_val := 1; j_val := 0; 
    if ni = 0 or si

0 = 1 or nj = 1 or sj
1 = 1 then begin i_val := 0; j_val := 1; end; 

   end; 
  end; 
 end; 
 
 if i_val ≠ X then begin 
  Increment_Request (i, i_val); 
  Add (i, i_val, gate_prop) to Current_Objectives; 
 end; 
 
 if j_val ≠ X then begin 
  Increment_Request (j, j_val); 
  Add (j, j_val, gate_prop) to Current_Objectives; 
 end; 
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end; 

 


