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Abstract 
Application-specific instruction-set processors (ASIP) 

are widely used in network processors. With a high 
demand from the market for faster new product 
development, retargetable compilers, and the associated 
knowledge, become essential for development. Based on 
the LCC retagetable C compiler, we added an ASIP 
target derived from the DLX instruction set, which was 
successfully used in a network platform.  Therefore, 
network processor application programs are now written 
using C instead of assembler code. 
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1. INTRODUCTION  
With the new medias, as high quality radio over IP 

and TV on demand, the need for higher bandwidth has 
become actually huge; our live trends demand more and 
more of this bandwidth. Hence, the market will require 
wider bandwidth links but also faster and higher level 
analysis of packets in routers and front-ends to server 
arrays. High performance network processors are 
needed. There are several solutions that meet the 
requirements of network processing demand:  

 
· Application Specific Integrated Circuits (ASIC)  
· Application Specific Instruction-Set Processors  (ASIP) 
· Field Programmable Gate Arrays (FPGA)  
· Co-processors (can be any of the above types) 
· General Purpose Processors (GPP)  

 
Application Specific Instruction-Set Processors 

(ASIP) − an instruction set processor typical for a 
particular application domain becomes the most popular 
solution for network processing because of its special 
characteristics. ASIP sits in between the highest 
efficiency of ASIC and the lowest development cost of 
GPP. ASIP provides good balance of hardware and 
software to meet all requirements, such as: performance, 
flexibility, fast time to market, power consumption, etc. 
As a result, networking application domain is specified 
as a software programmable device with architectural 

features and/or special circuitry for packet processing; 
therefore a network processor can be seen as an ASIP for 
the networking application domain [1]. 

Compiler support for network processors is very 
important and with great demand. The market demands 
fast response time to requests, and high reliability, for 
network processing systems. In order to meet the 
demand, embedded software requires compilers to avoid 
slow and error-prone development in assembly language. 
As a result, for the particular architecture of network 
processors, classical compiler technology is not 
sufficient. Moreover, to completely exploit the processor 
capabilities, more specialized code generation must be 
used.  For that reason, a retargetable compiler is required 
[2].  

The purpose of this paper is to show how to 
implement an efficient retargetable C compiler for a 
network processor architecture. In addition, we will 
present some functions used for basic input/output, 
mathematics and other purposes, without using standard 
C libraries. 

The remaining part of this paper is organized as 
follows. In section 2, we make a brief description of the 
network platform that we have worked on.  In section 3 
we explain how we implemented a retargetable C 
compiler based on LCC. Section 4 describes the result of 
retargetable C compiler implementation and the 
functions we used to eliminate the need of the standard C 
libraries. Section 5 contains conclusions and future 
works. 

2. WORK PLATFORM 
SystemC is an open source class library in C++. It 

permits to develop cycle-accurate or more abstract 
models of software algorithms, hardware architectures 
and system level designs. SystemC is an interoperable 
modeling platform, which allows seamless tool 
integration [3]. 

We modeled a system on chip (SoC) platform, 
including multiple processors. It was developed using 
SystemC on Linux PCs. Detailed descriptions are given 
in reference [4]. The modeled processors are DLX or 
ARM architectures (still in development), and both can 
work together. Each processor is an addressable device, 



and are connected via an interconnect device like 
ring_device [4]. Figure 1 shows the architecture of a 
DLX processor and its adjacent nodes.  

The current interconnect device is very simple, but a 
model for the AMBA bus is in development. The 
memory modules are located next to the processors, but 
we plan to have both distributed and shared memory 
mechanisms in the future version of the network 
platform. 

Our colleagues worked on the platform using 
handwritten assembler code, but this was demanding a 
lot of time in writing and debugging DLX code. For this 
reason, a suitable compiler was a necessity. In this paper, 
our target processor is based on the DLX instruction set; 
we added some special instructions to fit the network 
processing demand. We call it DLXpro in the rest of this 
paper. 

In most network formats, bit-fields are packed 
together to save bandwidth, but these fields (or bit-
packets) are not handled efficiently by normal 
instructions on GPP.  Bit-packet-oriented instructions [2] 
are needed to accelerate network packets processing, but 
are not currently implemented on our DLXpro.  From a 
compiler point of view, it is hard to add these 
instructions, since it is difficult, in the general case, to 
find which sequence of instructions could map to a bit-
packet instruction.  Another important aspect of network 
processors is parallelism.  Currently no automatic 
partitioning, or multi-threading, is done, the C code of 
each processor is written separately; a memory-mapped 
I/O mechanism is used to communicate between 
processors. 

We may also use other network processors as the 
target when necessary.  Figure 2 shows a high level 
diagram of the idealize platform. 
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Figure 1:  The architecture of nodes [4] 
 

M E M O R Y P  1 P  2 P n

In te rc o n n e c t n e tw o rk  
 

Figure 2:  The idealize platform 

(P is processor) 
 

The DLX instruction set architecture includes five 
pipeline stages:  
· Instruction Fetch (IF), the first stage, is responsible for 
getting the instructions from memory.   
· Instruction Decode (ID) stage is in charge of selecting 
the operand registers, decoding the instruction and 
evaluating the branch condition. 
· Execution (EX) stage is for arithmetic and logical 
operations, as well as memory address calculation. 
· Memory (MEM) stage is for data memory access (read 
or write). 
· Write Back (WB), the final stage, writes the results 
calculated by EX, or read by MEM, to the destination 
register when needed. 

3. RETARGETABLE COMPILER DESIGN 
LCC is a retargetable compiler for ANSI C. It has 

been ported to the VAX, SPARC, MIPS, X86 and other 
target processors. LCC is a small, fast C compiler now 
available on most popular operating system [5].  

Similar to most other compilers, the LCC compiler is 
subdivided into two parts: a frontend and a backend part. 
The frontend is in charge of source code analysis, 
generation of an Intermediate Representation (IR), and 
machine-independent optimizations. The backend maps 
the machine-independent IR into machine-dependent 
assembly code.  It is said retargetable since we can easily 
add one or more different target code generators to the 
backend.   

3.1. Target architecture 
First of all, let us take a look at the target architecture: 

the DLXpro. It is almost the same as DLX instruction 
set, except that we added some instructions. The DLX 
processor comes from a combination of ideas from other 
load/store RISC architectures [6].  

The DLX Instruction Set Architecture (ISA) contains 
32 (R0-R31) 32-bit general-purpose registers. Registers 
R1-R30 are real general-purpose registers. Registers R0 
always contains zero. Register R31 is used for saving the 
return address for the Jump And Link (JAL) instructions 
[6]. 

The DLX ISA also has 32 single-precision floating-
point (32-bit) registers (F0-F31). These registers can also 
be addressed as pairs (two consecutive registers, the first 
one being even-numbered) to form 16 double-precision 
floating-point (64-bit) registers.  

DLX ISA has three specific registers: Program 
Counter (PC), the Interrupt Address Register (IAR), and 
the Floating-Point Status Register (FPSR). 

In DLX ISA, a word is defined as 32 bits and a byte is 
8 bits. Memory is byte addressable and word storage 
adheres to the big endian byte ordering [7]. 



3.2.  Implementation of DLXpro code generator 
The LCC compiler backend can be divided into two 

parts: code selection and register allocation. The code 
selector maps the intermediate representation (trees or 
directed acyclic graphs), generated by the front-end, 
using the backend interface, into DLXpro instructions. 
The register allocator maps all the virtual registers to 
physical registers. We used the MIPS [8] code generator 
as a model, and made some changes to suit DLXpro 
instruction set. 

 
A.  Instructions selection 

 
The instruction selectors in LCC are automatically 

generated from compact specifications by the program 
lburg.  That is, you give a grammar to lburg to partition 
the IR tree, and it generates the C code for the backend. 
A tree parser accepts a subject tree of intermediate code 
and partitions it into chunks that correspond to DLXpro 
assembly instructions.  

Tree grammar is the core in lburg. Tree grammar is a 
list of rules, which have four parts. First is a non-terminal 
that replaces the part of the tree if the rule is applied. 
Then, a tree-matching expression (non-terminals and IR 
nodes) specifies where the rule can be applied. And 
finally, what assembler instructions must be added to 
make the transformation and their cost  (what the 
compiler tries to minimize; size or number of cycles).  

 
DLXpro non-terminals list as below: 

acon: address constants 
addr: address calculations from registers 
addrr: address calculations from immediate values 
con: constants 
reg: computations that result to a register 
stmt: computations done for side effects 
 
The above non-terminals give a high level overview 

of the tree grammar used for mapping to DLXpro 
assembler instructions.  Here are some actual rules, as 
example:  

 
reg: BCOMI4(reg) "  xori r%c,-1\n" 1 
reg: BCOMU4(reg) "  xori r%c,-1\n" 1 
reg: NEGI4(reg) "  sub r%c,r0,r%0\n" 1 
. 
. 
stmt: EQI4(reg,reg) "  seq r3,r%0,r%1\n  bnez r3, %a\n" 2 
stmt: GEI4(reg,reg) "  sge r3,r%0,r%1\n  bnez r3, %a\n" 2 
stmt: GTI4(reg,reg) "  sgt r3,r%0,r%1\n  bnez r3, %a\n" 2 
 
The elements in the first column, like reg and stmt, are 

non-terminals. In the second column are tree nodes that 
name in uppercase and operands types in the parentheses 
(here, operands are non-terminal reg). In the third 
column, inside double quotation marks are the assembler 
code templates. The final column’s numbers are the 
optional cost. 

 

B. Registers allocation 
 
The DLXpro instruction set only gives a few 

constraints: R0 is always 0 and R31 only contains jump 
and link instructions’ return address. The assembler 
reserves R1 for pseudo-instructions. R2, R3 are reserved 
by convention for return values. R26, R27 are reserved 
for Operating System (OS). R4-R7 are for procedure 
arguments. R8-R15, R24 and R25 are scratch registers. 
R16-R23 are for register variables.  R28 is used as global 
pointer. R29 is the stack pointer and R30 is for compiler 
temporary values. 

The register allocator is a small part written in C, 
using predefined LCC register management functions. 

4. APPLICATION RESULTS 
The LCC compiler for the DLXpro target described in 
the previous section is fully functional. The performance 
of the generated code has been tested, on the platform 
described in section 2, giving the expected results. For 
testing purposes, we added two addressable devices to 
the platform: an output device (address 0x4001) for 
outputting characters to the screen, and a data interface, 
(address 0x5001).  The output device is direct: writing to 
0x4001 a character writes it to the screen. For the data 
interface, we use two First In First Out (FIFO) files as 
data buffers to exchange data with other devices and a 
more complicated DMA interface is used. As mentioned 
before, SystemC is an object-oriented modeling language 
based on C++ [3]. It was easy to implement these two 
modules with the methods inherited from class 
Addressable_Device that is derived from SC_METHOD 
of SystemC.  

 The entire idealize platform structure is shown on 
figure 3. 
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Figure 3:  Overview of entire platform 
 

We also wrote some special pure C functions to 
implement basic I/O functions, mathematical functions 
and conversion functions without C libraries. These 
functions include getchar, string _to_integer, 
printString, sqrt, etc. All these functions are small and 
easily ported. 

By using these functions and modules, we can 
conveniently implement some library functions such as 



printf, but often we don’t need a printing function as 
complex and big as printf. 
 
The following example shows how the above-mentioned 
functions and modules work:  
Suppose we need to print “Hello” to the screen. By using 
the printString function, we could write the C code as 
follows: 
 void printString(char *p) 
{ 
  while(*p)  *((unsigned int*)0x4001) = (*(unsigned char*)p++); 
} 
void main() 
{ 
  printString("Hello"); 
} 

 
Compiling the above code, we got the corresponding 

DLX assembler code: 
 

 addi r29, r0, 1000 
 jal main 
 trap 0 
 nop 
 nop 
printString: 
 j L.3 
L.2: addi r24, r4, 0 
 addi r4, r24, 1 
 addi r15, r0, 0x4001 
 lbu r24, (r24) 
 sw (r15), r24              ; access to a addressable device using 
        ; memory mapped mechanism  
L.3: lb r24, (r4) 
 sne r3, r24, r0 
 bnez r3, L.2                  ; need optimisation  
 addi r24, r0, 0x4001 
 sw (r24), r0 
L.1: jr r31 
main: 
 addi r29, r29, -24 
 sw 16(r29), r31 
 addi r24, r0, L.6 
 sw -4+24(r29), r24 
 lw r4, -4+24(r29) 
 jal printString 
L.5: lw r31, 16(r29) 
 addi r29, r29, 24 
 jr r31 
L.6: 
 .byte 72, 101, 108, 108, 111, 0 
 
We ran the above assembler code on the network 
platform model using DLXpro processors and got the 
expected results, but the code is not optimal. The “sne” 
in printString could be removed changing the condition 
on the next line. 

5. CONCLUSION AND FUTURE WORK 
In this paper, we made a brief description of how a 

retargetable C compiler like LCC can be used to target to 
an ASIP like a modified DLX architecture. We could 
easily add other network processors as targets since DLX 
instruction set comes from many real world RISC 
processors. The compiler base on LCC, with its fast, 

small and convenient characteristics, will significantly 
improve development and debug time.  We could foresee 
the bright future of the usage for network processor in 
the real world. We also presented our tested compiler on 
our network platform with expected results. Examples 
are illustrated to show how the specific functions and 
modules are written to act as some of standard C 
libraries. These functions and modules will play an 
important role in testing and code writing in terms of 
time saving and simplified work.  

The quality of compiler-generated code is not as good 
as handwritten DLX assembly code. In the future, we 
will add some bit-packet-oriented instructions to 
DLXpro, in order to speedup network processor 
applications, which does a lot of bit extraction and 
manipulation. However, we will encounter a difficulty in 
the network compiler development to generate bit-
packet-oriented instructions from a high-level language. 
There are several approaches that have already been 
explored, for instance, Compiler-Known Functions 
(CKFs) [2]. We will optimize the quality of this 
retargetable C compiler especially in bit-packet-oriented 
instruction generation. We also plan to explore other 
retagetable compilers, like SUIF, trying to solve the 
multiple-thread problem in network processors.  
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