
Retargetable C Compiler for Network Processors

Jun Li *, François-R Boyer **, El Mostapha Aboulhamid *

* DIRO, Université de Montréal
2920 Chemin de la Tour
C.P. 6128 Centre-Ville

Montréal, Québec, Canada H3C 3J7
{ljun, aboulham}@iro.umontreal.ca

** DGI, École Polytechnique de Montréal
5255 Av. Decelles

C.P. 6079 Centre-Ville
Montréal, Québec, Canada H3C 3A7
Francois-R.Boyer@polymtl.ca

Abstract
Application-specific instruction-set processors (ASIP)

are widely used in network processors. With a high
demand from the market for faster new product
development, retargetable compilers, and the associated
knowledge, become essential for development. Based on
the LCC retagetable C compiler, we added an ASIP
target derived from the DLX instruction set, which was
successfully used in a network platform. Therefore,
network processor application programs are now written
using C instead of assembler code.

Keywords

 Retargetable compilers, ASIP, network processor, code
generation.

1. INTRODUCTION
With the new medias, as high quality radio over IP

and TV on demand, the need for higher bandwidth has
become actually huge; our live trends demand more and
more of this bandwidth. Hence, the market will require
wider bandwidth links but also faster and higher level
analysis of packets in routers and front-ends to server
arrays. High performance network processors are
needed. There are several solutions that meet the
requirements of network processing demand:

· Application Specific Integrated Circuits (ASIC)
· Application Specific Instruction-Set Processors (ASIP)
· Field Programmable Gate Arrays (FPGA)
· Co-processors (can be any of the above types)
· General Purpose Processors (GPP)

Application Specific Instruction-Set Processors

(ASIP) − an instruction set processor typical for a
particular application domain becomes the most popular
solution for network processing because of its special
characteristics. ASIP sits in between the highest
efficiency of ASIC and the lowest development cost of
GPP. ASIP provides good balance of hardware and
software to meet all requirements, such as: performance,
flexibility, fast time to market, power consumption, etc.
As a result, networking application domain is specified
as a software programmable device with architectural

features and/or special circuitry for packet processing;
therefore a network processor can be seen as an ASIP for
the networking application domain [1].

Compiler support for network processors is very
important and with great demand. The market demands
fast response time to requests, and high reliability, for
network processing systems. In order to meet the
demand, embedded software requires compilers to avoid
slow and error-prone development in assembly language.
As a result, for the particular architecture of network
processors, classical compiler technology is not
sufficient. Moreover, to completely exploit the processor
capabilities, more specialized code generation must be
used. For that reason, a retargetable compiler is required
[2].

The purpose of this paper is to show how to
implement an efficient retargetable C compiler for a
network processor architecture. In addition, we will
present some functions used for basic input/output,
mathematics and other purposes, without using standard
C libraries.

The remaining part of this paper is organized as
follows. In section 2, we make a brief description of the
network platform that we have worked on. In section 3
we explain how we implemented a retargetable C
compiler based on LCC. Section 4 describes the result of
retargetable C compiler implementation and the
functions we used to eliminate the need of the standard C
libraries. Section 5 contains conclusions and future
works.

2. WORK PLATFORM
SystemC is an open source class library in C++. It

permits to develop cycle-accurate or more abstract
models of software algorithms, hardware architectures
and system level designs. SystemC is an interoperable
modeling platform, which allows seamless tool
integration [3].

We modeled a system on chip (SoC) platform,
including multiple processors. It was developed using
SystemC on Linux PCs. Detailed descriptions are given
in reference [4]. The modeled processors are DLX or
ARM architectures (still in development), and both can
work together. Each processor is an addressable device,

and are connected via an interconnect device like
ring_device [4]. Figure 1 shows the architecture of a
DLX processor and its adjacent nodes.

The current interconnect device is very simple, but a
model for the AMBA bus is in development. The
memory modules are located next to the processors, but
we plan to have both distributed and shared memory
mechanisms in the future version of the network
platform.

Our colleagues worked on the platform using
handwritten assembler code, but this was demanding a
lot of time in writing and debugging DLX code. For this
reason, a suitable compiler was a necessity. In this paper,
our target processor is based on the DLX instruction set;
we added some special instructions to fit the network
processing demand. We call it DLXpro in the rest of this
paper.

In most network formats, bit-fields are packed
together to save bandwidth, but these fields (or bit-
packets) are not handled efficiently by normal
instructions on GPP. Bit-packet-oriented instructions [2]
are needed to accelerate network packets processing, but
are not currently implemented on our DLXpro. From a
compiler point of view, it is hard to add these
instructions, since it is difficult, in the general case, to
find which sequence of instructions could map to a bit-
packet instruction. Another important aspect of network
processors is parallelism. Currently no automatic
partitioning, or multi-threading, is done, the C code of
each processor is written separately; a memory-mapped
I/O mechanism is used to communicate between
processors.

We may also use other network processors as the
target when necessary. Figure 2 shows a high level
diagram of the idealize platform.

DLX_CPU mem_ROM

bridge mem_RAM

ring_device[i]

ring_device[i+1]ring_device[i-1]

connected to previous DLX bridge connected to next DLX bridge

Figure 1: The architecture of nodes [4]

M E M O R Y P 1 P 2 P n

In te rc o n n e c t n e tw o rk

Figure 2: The idealize platform

(P is processor)

The DLX instruction set architecture includes five
pipeline stages:
· Instruction Fetch (IF), the first stage, is responsible for
getting the instructions from memory.
· Instruction Decode (ID) stage is in charge of selecting
the operand registers, decoding the instruction and
evaluating the branch condition.
· Execution (EX) stage is for arithmetic and logical
operations, as well as memory address calculation.
· Memory (MEM) stage is for data memory access (read
or write).
· Write Back (WB), the final stage, writes the results
calculated by EX, or read by MEM, to the destination
register when needed.

3. RETARGETABLE COMPILER DESIGN
LCC is a retargetable compiler for ANSI C. It has

been ported to the VAX, SPARC, MIPS, X86 and other
target processors. LCC is a small, fast C compiler now
available on most popular operating system [5].

Similar to most other compilers, the LCC compiler is
subdivided into two parts: a frontend and a backend part.
The frontend is in charge of source code analysis,
generation of an Intermediate Representation (IR), and
machine-independent optimizations. The backend maps
the machine-independent IR into machine-dependent
assembly code. It is said retargetable since we can easily
add one or more different target code generators to the
backend.

3.1. Target architecture
First of all, let us take a look at the target architecture:

the DLXpro. It is almost the same as DLX instruction
set, except that we added some instructions. The DLX
processor comes from a combination of ideas from other
load/store RISC architectures [6].

The DLX Instruction Set Architecture (ISA) contains
32 (R0-R31) 32-bit general-purpose registers. Registers
R1-R30 are real general-purpose registers. Registers R0
always contains zero. Register R31 is used for saving the
return address for the Jump And Link (JAL) instructions
[6].

The DLX ISA also has 32 single-precision floating-
point (32-bit) registers (F0-F31). These registers can also
be addressed as pairs (two consecutive registers, the first
one being even-numbered) to form 16 double-precision
floating-point (64-bit) registers.

DLX ISA has three specific registers: Program
Counter (PC), the Interrupt Address Register (IAR), and
the Floating-Point Status Register (FPSR).

In DLX ISA, a word is defined as 32 bits and a byte is
8 bits. Memory is byte addressable and word storage
adheres to the big endian byte ordering [7].

3.2. Implementation of DLXpro code generator
The LCC compiler backend can be divided into two

parts: code selection and register allocation. The code
selector maps the intermediate representation (trees or
directed acyclic graphs), generated by the front-end,
using the backend interface, into DLXpro instructions.
The register allocator maps all the virtual registers to
physical registers. We used the MIPS [8] code generator
as a model, and made some changes to suit DLXpro
instruction set.

A. Instructions selection

The instruction selectors in LCC are automatically

generated from compact specifications by the program
lburg. That is, you give a grammar to lburg to partition
the IR tree, and it generates the C code for the backend.
A tree parser accepts a subject tree of intermediate code
and partitions it into chunks that correspond to DLXpro
assembly instructions.

Tree grammar is the core in lburg. Tree grammar is a
list of rules, which have four parts. First is a non-terminal
that replaces the part of the tree if the rule is applied.
Then, a tree-matching expression (non-terminals and IR
nodes) specifies where the rule can be applied. And
finally, what assembler instructions must be added to
make the transformation and their cost (what the
compiler tries to minimize; size or number of cycles).

DLXpro non-terminals list as below:

acon: address constants
addr: address calculations from registers
addrr: address calculations from immediate values
con: constants
reg: computations that result to a register
stmt: computations done for side effects

The above non-terminals give a high level overview

of the tree grammar used for mapping to DLXpro
assembler instructions. Here are some actual rules, as
example:

reg: BCOMI4(reg) " xori r%c,-1\n" 1
reg: BCOMU4(reg) " xori r%c,-1\n" 1
reg: NEGI4(reg) " sub r%c,r0,r%0\n" 1
.
.
stmt: EQI4(reg,reg) " seq r3,r%0,r%1\n bnez r3, %a\n" 2
stmt: GEI4(reg,reg) " sge r3,r%0,r%1\n bnez r3, %a\n" 2
stmt: GTI4(reg,reg) " sgt r3,r%0,r%1\n bnez r3, %a\n" 2

The elements in the first column, like reg and stmt, are

non-terminals. In the second column are tree nodes that
name in uppercase and operands types in the parentheses
(here, operands are non-terminal reg). In the third
column, inside double quotation marks are the assembler
code templates. The final column’s numbers are the
optional cost.

B. Registers allocation

The DLXpro instruction set only gives a few

constraints: R0 is always 0 and R31 only contains jump
and link instructions’ return address. The assembler
reserves R1 for pseudo-instructions. R2, R3 are reserved
by convention for return values. R26, R27 are reserved
for Operating System (OS). R4-R7 are for procedure
arguments. R8-R15, R24 and R25 are scratch registers.
R16-R23 are for register variables. R28 is used as global
pointer. R29 is the stack pointer and R30 is for compiler
temporary values.

The register allocator is a small part written in C,
using predefined LCC register management functions.

4. APPLICATION RESULTS
The LCC compiler for the DLXpro target described in
the previous section is fully functional. The performance
of the generated code has been tested, on the platform
described in section 2, giving the expected results. For
testing purposes, we added two addressable devices to
the platform: an output device (address 0x4001) for
outputting characters to the screen, and a data interface,
(address 0x5001). The output device is direct: writing to
0x4001 a character writes it to the screen. For the data
interface, we use two First In First Out (FIFO) files as
data buffers to exchange data with other devices and a
more complicated DMA interface is used. As mentioned
before, SystemC is an object-oriented modeling language
based on C++ [3]. It was easy to implement these two
modules with the methods inherited from class
Addressable_Device that is derived from SC_METHOD
of SystemC.

 The entire idealize platform structure is shown on
figure 3.

C Code
Compiler

DLX Code

Data Buffer

Data Buffer

Other Device

P1

Interface Output
Device

PnP2MEMORY

Figure 3: Overview of entire platform

We also wrote some special pure C functions to
implement basic I/O functions, mathematical functions
and conversion functions without C libraries. These
functions include getchar, string _to_integer,
printString, sqrt, etc. All these functions are small and
easily ported.

By using these functions and modules, we can
conveniently implement some library functions such as

printf, but often we don’t need a printing function as
complex and big as printf.

The following example shows how the above-mentioned
functions and modules work:
Suppose we need to print “Hello” to the screen. By using
the printString function, we could write the C code as
follows:
 void printString(char *p)
{
 while(*p) *((unsigned int*)0x4001) = (*(unsigned char*)p++);
}
void main()
{
 printString("Hello");
}

Compiling the above code, we got the corresponding

DLX assembler code:

 addi r29, r0, 1000
 jal main
 trap 0
 nop
 nop
printString:
 j L.3
L.2: addi r24, r4, 0
 addi r4, r24, 1
 addi r15, r0, 0x4001
 lbu r24, (r24)
 sw (r15), r24 ; access to a addressable device using
 ; memory mapped mechanism
L.3: lb r24, (r4)
 sne r3, r24, r0
 bnez r3, L.2 ; need optimisation
 addi r24, r0, 0x4001
 sw (r24), r0
L.1: jr r31
main:
 addi r29, r29, -24
 sw 16(r29), r31
 addi r24, r0, L.6
 sw -4+24(r29), r24
 lw r4, -4+24(r29)
 jal printString
L.5: lw r31, 16(r29)
 addi r29, r29, 24
 jr r31
L.6:
 .byte 72, 101, 108, 108, 111, 0

We ran the above assembler code on the network
platform model using DLXpro processors and got the
expected results, but the code is not optimal. The “sne”
in printString could be removed changing the condition
on the next line.

5. CONCLUSION AND FUTURE WORK
In this paper, we made a brief description of how a

retargetable C compiler like LCC can be used to target to
an ASIP like a modified DLX architecture. We could
easily add other network processors as targets since DLX
instruction set comes from many real world RISC
processors. The compiler base on LCC, with its fast,

small and convenient characteristics, will significantly
improve development and debug time. We could foresee
the bright future of the usage for network processor in
the real world. We also presented our tested compiler on
our network platform with expected results. Examples
are illustrated to show how the specific functions and
modules are written to act as some of standard C
libraries. These functions and modules will play an
important role in testing and code writing in terms of
time saving and simplified work.

The quality of compiler-generated code is not as good
as handwritten DLX assembly code. In the future, we
will add some bit-packet-oriented instructions to
DLXpro, in order to speedup network processor
applications, which does a lot of bit extraction and
manipulation. However, we will encounter a difficulty in
the network compiler development to generate bit-
packet-oriented instructions from a high-level language.
There are several approaches that have already been
explored, for instance, Compiler-Known Functions
(CKFs) [2]. We will optimize the quality of this
retargetable C compiler especially in bit-packet-oriented
instruction generation. We also plan to explore other
retagetable compilers, like SUIF, trying to solve the
multiple-thread problem in network processors.

Acknowledgements: We gratefully acknowledge Luc

Charest providing a lot of information on the initial
platform.

6. References
[1] N. Shah, Understanding Network Processors. Dept.

EECS, UC, Berkeley. September 2001
[2] J. Wagner and R. Leupers, “C Compiler Design for a

Network Processor.” IEEE transaction on computer-
aided design of integrated circuits and systems
VOL.20, NO. 11,November 2001

[3] Open SystemC Initiative (OSCI), Functional Specifi-
cation for SystemC 2.0, http://www.systemc.org,
2001

[4] L. Charest, E. M. Aboulhamid, C. Pilkington, P.
Paulin. “SystemC Performance Evaluation using a
Pipelined DLX Multiprocessor,” DATE, 2002

[5] C. W. Fraser, D. Hanson, A Retargetable C
Compiler: Design and Implementation. The
Benjamin/Cummings Publishing Company, Inc.
1994

[6] J. L. Hennessy and D. A. Patterson, Computer
Architecture: A Quantitative Approach, Second ed:
Morgan Kaufmann Publishers, 1995

[7] P. M. Sailer and D. R. Kaeli, The DLX Instruction
Set Architecture Handbook. Morgan Kaufmann
Publishers, Inc. 1996

[8] Gerry Kane, MIPS RISC Architecture. Prentice Hall,
Englewood Cliffs, NJ, 1989

