
Optimal design of synchronous circuits using
software pipelining techniques

François R. Boyer

and

El Mostapha Aboulhamid

Université de Montréal

and

Yvon Savaria

École Polytechnique de Montréal

and

Michel Boyer

Université de Montréal

We present a method to optimize clocked circuits by relocating and changing the time of activation
of registers to maximize the throughput. Our method is based on a modulo scheduling algorithm
for software pipelining, instead of retiming. It optimizes the circuit without the constraint on
the clock phases that retiming has, which permits to always achieve the optimal clock period.

The two methods have the same overall time complexity, but we avoid the computation of all
pair-shortest paths, which is a heavy burden regarding both space and time. From the optimal
schedule found, registers are placed in the circuit without looking at where the original registers
were. The resulting circuit is a multi-phase clocked circuit, where all the clocks have the same

period and the phases are automatically determined by the algorithm. Edge-triggered flip-flops are
used where the combinational delays exactly match that period, whereas level-sensitive latches
are used elsewhere, improving the area occupied by the circuit. Experiments on existing and
newly developed benchmarks show a substantial performance improvement compared to previously

published work.

Categories and Subject Descriptors: B.6.1 [Logic Design]: Design Styles—Sequential circuits;
B.6.3 [Logic Design]: Design Aids—Optimization/Automatic synthesis

General Terms: Performance, Algorithms

Additional Key Words and Phrases: retiming, software pipelining, resynthesis

A shorter version (6 pages) of this paper appeared in the Proceedings of ICCD ’98, pp. 62-67.

Name: François R. Boyer
Affiliation: DIRO, Université de Montréal
Address: 2920 Ch. de la Tour, C.P. 6128, Succ. Centre-Ville, Montréal, (Qué), Canada, H3C 3J7
E-mail: boyerf@IRO.UMontreal.CA

Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must
be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, to redistribute to lists, or to use any component of this work in other works, requires prior

specific permission and/or a fee. Permissions may be requested from Publications Dept, ACM
Inc., 1515 Broadway, New York, NY 10036 USA, fax +1 (212) 869-0481, or permissions@acm.org.

2 · F. R. Boyer, E. M. Aboulhamid, Y. Savaria and M. Boyer

1. INTRODUCTION

In a synchronous circuit, clocked storage elements are used to regulate the data flow
and to provide stable inputs while functions (combinational logic) are evaluated.
The speed of the circuit is determined not only by the calculation time of these
functions, but also by the time wasted waiting for the synchronization point (clock)
to arrive. For circuits synchronized by a single periodic event (single clock), the
wasted time between two storage elements (registers) is the period duration minus
the combinational delay between these storage elements. In this paper we focus on
methods for minimizing that wasted time. The proposed method also identifies the
circuit path that limits the speed, for further optimization if necessary.

Leiserson and Saxe [1991] reduced the wasted time by moving registers to min-
imize the maximum combinational delay between two registers and changing the
clock period to that value. This register movement does a better repartition of
combinational logic, resulting in a tighter fit in the clock period. The method they
present, called retiming, is proved to give the register placement that permits the
smallest clock period under the constraints that registers are edge-triggered and
are all controlled by the same clock. However, it was found in many cases that this
solution is not optimal, because registers cannot always be moved so that no time
is wasted on the critical path. Indeed, a part of the circuit is always “retimed”
by an integral number of periods; better results could be obtained if some form of
fractional retiming was applied.

Lockyear and Ebeling [1994] presented an extension to retiming using level-
sensitive registers (latches) with multi-phase clocks, the phases being fixed by the
designer instead of being computed automatically. The use of multi-phase clocks
permits to “retime” a part of the circuit by one phase instead of a whole period,
which gives a better resolution and thus a tighter fit to reduce wasted time. That
method will give an optimal solution, with no wasted time on the critical path, but
only if the phases specified allow it and under the assumption of using a perfect
clock.

Deokar and Sapatnekar [1995] define the “equivalence between clock skew and
retiming”, which they use to minimize the clock period. They first calculate a
“skew” that should be applied to the clock input of each flip-flop in order to have
the desired period. Then they apply that equivalence to retime the circuit to bring
down the “skews” to zero (or as close as possible). If the “skews” are not zero,
they can be forced to zero (increasing slightly the clock period) or circuitry can be
added to implement that skew on the clock. It is not clear that the circuit with the
skews on the clock will be correct because they ignore the short path constraints.

Maheshwari and Sapatnekar [1997, 1998] use retiming to reduce the area (number
of registers) for a given clock period. They use a longest path algorithm to find
ASAP and ALAP locations of the registers, which permit to reduce the computation
time by reducing the size of the linear programming problem to be solved.

Ishii, Leiserson, and Papaefthymiou [1997] present methods to minimize the clock
period on a multi-phase level sensitive clocked circuit. They also show how to con-
vert an edge-triggered clocked circuit into a faster level-sensitive one. The method
is in two steps: retiming and clock tuning. For a k-phase simple circuit, minimizing
the clock period using clock tuning is O(k |V |2) and retiming to achieve a given

Optimal design of synchronous circuits using software pipelining techniques · 3

clock period for fixed duty-ratios is O(k |V |3), where |V | is the number of comput-
ing elements in the circuit. Approximation schemes for solving the two steps at
once, to achieve the minimum clock period, are given. For simultaneous retiming
and clock tuning, with no conditions on the duty cycles of a two-phase circuit, an
approximation, with a period at most (1 + ε) times the optimal, can be found in
O
(
|V |3 1

ε log 1
ε +

(
|V ||E|+ |V |2 log |V |

)
log |V |ε

)
, where |E| is the number of con-

nections between elements. For k-phase, the running time for that approximation
contains a factor of ε−k, which is impractically large for small values of ε.

An optimal solution to the clock tuning problem, on multi-phases level-sensitive
circuits, with fixed register placement, is presented by Sakallah, Mudge and Oluko-
tun [1990]. The algorithm uses linear-programming, but no running time or upper
bound is given.

Legl, Vanbekbergen, and Wang [1997] extend retiming to handle circuits where
not all the registers are enabled at the same time. The idea is that registers can be
moved across a logic block only if they are enabled by the same signal. They do
not change the enable time of registers.

Work has also been done to speedup loops on parallel processors. The software
pipelining method discussed in Van Dongen, Gao, and Ning [1992] gives an optimal
schedule of the operations (with no wasted time on the critical cycle) if there are
no constraints on the resources (number of operative units). Also, some methods
use retiming as a heuristic to find schedules under resource constraints [Bennour
and Aboulhamid 1995].

We present a method that uses software pipelining, instead of retiming, to find
an optimal schedule of the operations in a circuit, and then a way to reconstruct
the circuit from that schedule. Scheduling is much like calculating the clock skews
[Deokar and Sapatnekar 1995; Maheshwari and Sapatnekar 1997; Maheshwari and
Sapatnekar 1998], but then we do not apply retiming according to that schedule.
As said previously, not taking into account the short path problem can cause un-
predictable circuit behavior when the skews are not forced to be zero. However,
reducing the skews to zero results in a single-phase circuit, the same limitation as
the original retiming [Leiserson and Saxe 1991]; we are considering the worst case
length for short paths. Once the schedule is done, we place registers with an O(|E|)
algorithm, independently of their original placement. Our method produces a cir-
cuit with a multi-phase clock; neither the phases nor their count is fixed a priori
like in some previous work [Ishii et al. 1997; Lockyear and Ebeling 1994]. Our
method is not an approximation, and the running time is low even for circuits with
many phases, unlike the work of Ishii et al. [1997]. We do not handle the problem
of finding a solution with constraints on the clock phases, which is done in Ishii’s
work by having a fixed number of phases and permitting to do retiming with fixed
duty ratios.

The main contributions of this paper are the following:

—The method is not limited to edge-triggered flip-flops or level-sensitive latches on-
ly, but our proposed solution can use a mixture of the two, which is automatically
found by a linear algorithm.

—The overall complexity of our method isO(|V ||E| log(|V |dmax)), orO(|V ||E|dmax)
for small integral delays [Hartmann and Orlin 1993] where |V | is the number of

4 · F. R. Boyer, E. M. Aboulhamid, Y. Savaria and M. Boyer

computing elements in the circuit, |E| is the number of connections between these
elements and dmax is the maximum duration of the computations done by the
elements. The complexity of the retiming method is O(|V ||E| log |V |) [Leiserson
and Saxe 1991]. Even if the overall complexity of the two approaches is similar,
we avoid the computation of all pair-shortest paths, which is a heavy burden re-
garding both space and time. Our method has an upper bound not higher than
any clock minimization method described in previous work cited in this paper.

—The optimal solution to the clock period minimization problem is always achieved.
—Some combinational functions may have a delay greater than the clock period.

In this case, the optimal throughput can be reached by increasing the number of
functional units realizing the function.

This paper is organized as follows. Section 2 introduces the notations and defini-
tions used in this work. Section 3 presents the main algorithm used as a replacement
to the retiming approach. It gives also the main theorems concerning the validity
of our approach. Section 4 gives the algorithms for register placement and the au-
tomatic selection of edge-triggered or level-sensitive storage. Section 5 extends the
method to non-integer clock periods and combinational logic with delays greater
than the clock period. Section 6 presents the implementation and experimental
results. Section 7 concludes the paper and points to some future work.

2. PRELIMINARIES

In this section, we define the graph representation of a sequential circuit, the “retim-
ing” transformation of an edge-weighted graph, the short and long path constraints,
and the basic notion of schedule.

2.1 Input Circuit Definition

As in the original retiming article [Leiserson and Saxe 1991] the input circuit is
formed by combinational computing elements separated by registers. We model
that circuit as a finite, vertex-weighted, edge-weighted, directed multigraph1 G =
〈V,E, d, w〉. The vertices V represent the functional elements of the circuit, and
they are interconnected by edges E. Each vertex v ∈ V has a non-negative rational
propagation delay d(v) ∈ Q which is the maximum delay before its outputs stabilize;
no minimum delay is assumed (we use zero as lower bound on the short path, which
is a common conservative approach). Each edge e ∈ E is weighted with a register
count w(e) ∈ N representing the number of registers separating two functional
elements. We extend the functions d and w to paths in the graph. For any path
v0

p
; vk = v0

e0→ v1
e1→ . . .

ek−1→ vk we define

d−(p) =
k−1∑
i=0

d(vi) w(p) =
k−1∑
i=0

w(ei)

Note that, unlike Leiserson and Saxe’s definition of d(p) [1991], d−(p) does not take
into account the weight of the last vertex (d(p) = d−(p) + d(vk)).

1Strictly speaking, G should also include the two functions h : E → V (head of edge) and

t : E → V (tail of edge) such that if v
e→ v′ then h(e) = v′ and t(e) = v. There may be many

edges e with same head and tail.

Optimal design of synchronous circuits using software pipelining techniques · 5

Fig. 1 shows the graph for the correlator example of Leiserson and Saxe [1991].

7

3 3 3 3

77

0

1 1 1 1

0

00
0

0 0 0

v1 v2 v3

v5v6v7

v8

v4

Fig. 1. A simple correlator circuit.

This circuit performs an iterative task: at each clock cycle, the circuit calculates new
values from the previously calculated ones. The register count w(e) for v e→ v′ can
be thought of as the number of iterations between the time the value is calculated
by v and the time it is used by v′ (e.g. in Fig. 1, the element v2 uses the result
of the previous iteration of element v1). By thinking of the graph as an inter
and intra-iteration dependency graph, instead of number of registers, we can use
an algorithm for optimal loop scheduling [Van Dongen et al. 1992] to have the
maximal throughput, which is limited only by data dependencies and propagation
delays. This schedule is not limited by the clock period or the position of the
registers (proved in Lemma 5). Register placement is performed at a subsequent
step that takes the results of the scheduling step as input.

2.2 Retiming

Retiming [Leiserson and Saxe 1991] can be viewed as a displacement assigned to
each vertex, which affects the length (weights) of the edges, taking weight from one
side and putting it on the other. More formally, a retiming on an edge-weighted
graph 〈V,E,w〉 is a function r : V −→ Z (or V −→ Q when edge weights w(e) can
be fractional, which gives a more general graph transformation) that transforms it
into a new retimed graph Gr = 〈V,E,wr〉, where the weights wr(e) for v e→ v′ are
defined by:

wr(e) = w(e) + r(v′)− r(v)

which directly implies that, for any path v
p
; v′,

wr(p) = w(p) + r(v′)− r(v) (1)

2.3 Short and long paths

When you change the inputs of a circuit, after some time the outputs start to change
and may oscillate before stabilizing to the appropriate result. The short path is the
least time the circuit takes before the output is affected by some input variation.
Similarly, the long path is the longest time possible between the inputs change and
the outputs stabilize. When designing a sequential circuit, we must have bounds
on the short and long paths to know when the result is valid and when registers
can be activated. These times are always positive (the outputs change after the
inputs), so we can use zero as a lower bound. Using some tighter bounds could

6 · F. R. Boyer, E. M. Aboulhamid, Y. Savaria and M. Boyer

permit more optimizations. The delays in our circuit graph are the upper bounds
on the long paths.

2.4 Scheduling and software-pipelining

A schedule s [Bennour and Aboulhamid 1995; Van Dongen et al. 1992; Hanen
1994; Hwang et al. 1991; De Micheli 1994] is a function s : N × V −→ Q, where
sn(v) ≡ s(n, v) denotes the time at which the nth iteration of operation v is starting.
A schedule s is said to be periodic with period P (all iterations having the same
schedule), if:

∀n ∈ N, ∀v ∈ V sn+1(v) = sn(v) + P

A schedule is said k-periodic if there exist integers n0, k and a positive rational
number P such that:

∀n ≥ n0,∀v ∈ V sn+k(v) = sn(v) + P k

Both periodic and k-periodic schedules have the same throughput ω = 1/P (also
called “frequency” in some papers, causing some confusion with the clock frequen-
cy), but k-periodic schedules have a period of Pk. A schedule is said to be valid iff
the operations terminate before their results are needed (whilst respecting resource
constraints if any). If the only constraints come from data dependency, s is valid
iff for all edges v e→ v′,

sn(v) + d(v) ≤ sn+w(e)(v′).

3. SCHEDULING OPERATIONS

In this section, we show how to find the theoretical maximum throughput of a
circuit (due to data dependency), and then, how to make a schedule that has a
specified throughput. The scheduling is based on a loop-acceleration technique
used in software pipelining.

3.1 Maximum throughput

First we must find the critical cycle in the circuit, i.e. the cycle v c
; v that limits

the throughput. The maximum throughput is [Van Dongen et al. 1992]:

ω = min
c∈C

{
w(c)
d−(c)

}
where C is the set of directed cycles in G.

If there is no cycle (if C = ∅), then ω is infinite; this means that we can compute
all the iterations at the same time, if we have enough resources to do so. Computing
the maximal throughput is a minimal cost-to-time ratio cycle problem [Lawler
1976], which can be solved in the general case in O(|V ||E| log(|V |dmax)) where
dmax = maxv∈V d(v). The method is based on iteratively applying Bellman-Ford’s
algorithm for longest paths on the graph Gl = 〈V,E,wl〉 derived from G by letting

wl(e) = d(v)− Pw(e) ∈ Q

where v
e→ · ∈ E and P = 1/ω is the period. A binary search is used to find

the minimal value of P for which there is no positive cycle in Gl [Bennour and

Optimal design of synchronous circuits using software pipelining techniques · 7

Aboulhamid 1995; Van Dongen et al. 1992]. For small integral delays, we can
compute the maximal throughput in O(|V ||E|dmax) [Hartmann and Orlin 1993].
For the circuit of Fig. 1, the minimal period P is equal to 10, which is interesting
compared to retiming [Leiserson and Saxe 1991] that gave a minimal period of
13. This value that we obtain using loop scheduling is the same as that Lockyear
and Ebeling [1994] obtained using retiming on a modified graph; their approach,
though, may fail to give the optimal throughput if it is not given the right set of
phases.

3.2 Schedule of a specified throughput

The graph Gl (whose weight function wl is described above) is used to find a valid
schedule with the specified throughput. Fig. 2 shows the graph for ω = 1/10 (P =
10), where the vertices are labeled by the length of their longest paths from/to v1.

3
-3

0
0

-7
7

-14
14

-21
14

-11
11

-4
4

10
-10

-10 -7 -7 -7

3

77
7

3 3 3

v1 v2 v3

v5v6v7

v8

v4

Fig. 2. Gl with the longest paths from/to v1 in the vertices.

The weights denote the minimum distance between the schedule of two vertices.
For example the -7 between v1 and v2 means that v1 must be scheduled at most 7
units of time after v2, the 3 between v1 and v7 means that v7 must be scheduled
at least 3 units of time after v1, etc. Finding the longest paths in this graph
gives a possible schedule with a period of P . A cycle with a positive length gives
constraints that cannot be satisfied; the graph will have no positive cycle iff the
period is feasible. The longest paths can be found in time O(|V ||E|) with Bellman-
Ford’s algorithm. The ASAP and ALAP schedules can be obtained by finding the
longest paths to and from a chosen vertex. To find the longest paths to a vertex,
Bellman-Ford’s algorithm can be applied on the transposed graph G>l of Gl where
all the edges in Gl are made to point in the opposite direction, i.e. what was the
head of an edge becomes its tail and conversely. Given a specific vertex v, the ASAP
(resp. ALAP) schedule of any other vertex v′ is the longest path (resp. minus the
longest path) from v to v′ in Gl (resp. G>l). The longest path from a vertex to itself
gives us its mobility. The mobility can also be obtained as the difference between
the ALAP and ASAP schedule times or vice-versa. Let l(v, v′) be the length of the
longest path from v to v′ in Gl. Table 1 gives l for the graph in Fig. 2.

The length l(v, v′) gives the relative schedule of vertices for the same iteration,
that is we have sn(v′)−sn(v) ≥ l(v, v′). This permits to determine intervals in which
an operation must be scheduled relatively to another operation. Also, because we
want a periodic schedule with a period of P , we have that:

l(v, v′) + Pm ≤ sn+m(v′)− sn(v) ≤ −l(v′, v) + Pm (2)

8 · F. R. Boyer, E. M. Aboulhamid, Y. Savaria and M. Boyer

1 2 3 4 5 6 7 8

1 0 -7 -14 -21 -11 -4 3 10

2 7 0 -7 -14 -4 3 10 17
3 14 7 0 -7 3 10 17 24
4 14 7 0 -7 3 10 17 24
5 11 4 -3 -10 0 7 14 21

6 4 -3 -10 -17 -7 0 7 14
7 -3 -10 -17 -24 -14 -7 0 7
8 -10 -17 -24 -31 -21 -14 -7 0

Table 1. Longest paths in graph Gl; only the values in bold are calculated.

For example, looking at Table 1 we know that sn(v2)− sn(v1) ≥ −7 and sn(v1)−
sn(v2) ≥ 7 which means that sn(v2)− sn(v1) = −7. Keeping only one line, and the
corresponding column, for a vertex that is on the critical cycle, we find the intervals
where we can schedule the vertices. This means that we do not need to compute
all-pairs longest paths but only the longest path from and to that vertex. Table 2
presents the schedule intervals relative to vertex v1.

3.3 Schedule (multi)graphs

We represent a periodic schedule of operations (vertices), with period P , by a
schedule graph Gs = 〈V,E, d, ws, P 〉, where d is as usual a delay function on vertices,
and ws : E → Q is a weight function which associates to each v

e→ v′ the time
distance between the start of operation v and that of operation v′ using v’s output
as input. Schedule graphs are required to satisfy the following condition:

If v
p
; v′ and v

p′

; v′ then ws(p)− ws(p′) = P k for some integer k.

i.e. all paths between two fixed vertices have the same length modulo the (possibly
fractional) period. To every multigraph G = 〈V,E, d, w〉 specifying a synchronous
circuit and every P periodic schedule s on G (valid or not), there is an associated
schedule graph Gs = 〈V,E, d, ws, P 〉 where ws(e) for v e→ v′ is defined by

ws(e) = sw(e)(v′)− s0(v)

Indeed, ws(e) = s0(v′)−s0(v)+Pw(e); if v
p
; v′ and v

p′

; v′, then ws(p)−ws(p′) =
P k for k = w(p)− w(p′).

Definition 1. The graph Gs is consistent iff for all v e→ · ∈ E, ws(e) ≥ d(v)

Fig. 3 shows a consistent Gs for our example, using the ALAP schedule from Table 2
as s. The following lemma shows that the longest path from v to v′ in Gl is
independent of the placement of the registers in G.

1 2 3 4 5 6 7 8

ASAP 0 -7 -14 -21 -11 -4 3 10
ALAP 0 -7 -14 -14 -11 -4 3 10

Mobility 0 0 0 7 0 0 0 0
Interval 0 -7 -14 [-21,-14] -11 -4 3 10

Table 2. Schedules and mobility relative to v1.

Optimal design of synchronous circuits using software pipelining techniques · 9

7

3 3 3 3

77

0

0 3 3 10

3

77
7

3 3 3

v1 v2 v3

v5v6v7

v8

v4

Fig. 3. Schedule graph Gs with P = 10.

Lemma 1. For all possible retimings r of G, p is a path of maximum length
between v and v′ in G iff it has the same property in the retimed graph Gr. Moreover
lr(v, v′) = l(v, v′)− [r(v′)− r(v)]P , where lr(v, v′) is the maximum length of a path
between v and v′ in (Gr)l.

Proof. From wl(e) = d(v) − w(e)P for v e→ ·, we deduce that for any path
v

p
; v′, wl(p) = d−(p) − w(p)P ; moreover, if r is a retiming of G, then wr(p) =

w(p)+r(v′)−r(v) and so wrl(p) = d−(p)−wr(p)P = d−(p)−[w(p)+r(v′)−r(v)]P =
wl(p) − [r(v′) − r(v)]P . The result follows from the definitions of lr(v, v′) and
l(v, v′).

Lemma 2. The graph Gs is the retimed graph derived from 〈V,E, d, Pw〉 where
the retiming function r(v) is s0(v) i.e. the schedule of iteration 0.

Proof. By definition of Gs, ws(e) = sw(e)(v′) − s0(v) for v e→ v′. Since s is
periodic, sw(e)(v′) = s0(v′) + w(e)P and so ws(e) = Pw(e) + s0(v′)− s0(v).

The graph with the edge-weights all multiplied by a constant c is called a c-slow
circuit. The circuit has been slowed down by a factor of c, so that it does the
same computation but it takes c times as many clock cycles [Leiserson and Saxe
1991]. Therefore, the graph Gs could be interpreted as a circuit that does the
same computations as G. A c-slow circuit can be retimed to have a shorter clock
period but the throughput is not higher if we are doing only one computation at a
time; multiple interleaved computations can improve the efficiency. This is not our
interpretation of that graph and our final circuit is not c-slow, it produces results
every clock cycle like the original circuit.

Lemma 3. For all periodic schedules s, Gs is consistent iff s is valid.

Proof. A schedule s is valid iff the operations terminate before their results are
needed, i.e. for all v e→ v′, sn(v) + d(v) ≤ sn+w(e)(v′); since s is periodic, this is
equivalent to s0(v) + d(v) ≤ sw(e)(v′) i.e. ws(e) ≥ d(v) by definition of ws.

Notice that retiming a schedule graph always gives a schedule graph. Consequently:

Lemma 4. A retiming r of a consistent schedule graph Gs is legal iff it preserves
consistency (i.e. (Gs)r is consistent).

A consequence of Lemma 4 is that we can explore different schedules (all with
the same period) by retiming the graph Gs to find one that is easier/smaller to
implement.

10 · F. R. Boyer, E. M. Aboulhamid, Y. Savaria and M. Boyer

The following result shows that retiming G has no influence on the schedule
graphs provided we adjust the schedules accordingly.

Lemma 5. For any valid periodic schedule s and any legal retiming r of G,
s′n(v) = sn(v)− r(v)P is a valid periodic schedule of Gr such that (Gr)s′ = Gs.

Proof. If s is valid then for any v e→ v′, s0(v) + l(v, v′) ≤ s0(v′). By Lemma 1
lr(v, v′) = l(v, v′)− [r(v′)−r(v)]P and so s0(v)− r(v)P + lr(v, v′) ≤ s0(v′)− r(v′)P
i.e. s′n(v) = sn(v)− r(v)P is a valid schedule of Gr. Moreover, wrs′(e) = wr(e)P +
s′0(v′)− s′0(v) = w(e) + r(v′)− r(v) + s0(v′)− r(v′)− s0(v) + r(v) = ws(e)

4. PLACEMENT OF STORAGE ELEMENTS

In this section, we show how the register types (edge-triggered or level-sensitive)
and placements are obtained from the schedule graph in order to produce a circuit
with the right functionality.

4.1 Register placement

Register placement is derived from a schedule graph Gs. In this section it will be
assumed that for every vertex v ∈ V , d(v) ≤ P . This assumption will be removed in
section 5. The easy way to place registers is to place them before each operation and
activate them according to the given schedule but this results in a waste of space
and works only if ws(e) ≤ P . Instead of registering every input of every function
we shall chain operations and, as a consequence, reduce the number of registers and
controlling signals needed. In fact, we only need a register at each P units of time,
considering that in the worst case a short path could be of length zero. Therefore,
we must break every path, in the graph, which is longer than P ; we can put more
than one register on an edge. We use a greedy algorithm called BreakPath (Fig. 4),
not necessarily optimal, for placing the registers. This algorithm is O(|E|) :

v.max out ≡ max{w(e) : v
e→ ·}

proc BreakPath(v, dist, tim) ≡
if (v.visited) then exit fi;
v.visited = true;

v.distance = dist;
foreach (v

e→ v′) do
if ((v′.visited ∧ (dist+ ws(e) > v′.distance))
∨ (dist+ ws(e) + v′.max out > P))

then do
if (ws(e) > P)

then put dws(e)/P − 1e registers on edge e
scheduled at time tim; fi

put one register on edge e
scheduled at time (tim+ ws(e)) mod P ;

BreakPath(v′, 0, (tim+ ws(e)) mod P); od
else BreakPath(v′, dist+ ws(e), (tim+ ws(e)) mod P)

fi od.

Fig. 4. Algorithm to place registers

Table 3 gives the register placement and schedule starting BreakPath with (v1, 0, 0).
Fig. 5 shows the placement of registers in the final circuit, according to table 3.

Optimal design of synchronous circuits using software pipelining techniques · 11

Name edge Schedule enable time

a 1 → 3 6 [6, 0[
b 3 → 4 6 6

c 5 → 6 6 6
d 6 → 7 3 [0, 6[
e 8 → 1 0 0
f 2 → 6 6 [6, 0[

Table 3. Register placement and schedule.

0 3 3 10

3

77
7

3 3 3

v1 v2 v3

v5v6v7

v8

v4

e a b

cd

f

a) register placement.

d

e a b

c

6 10

10

7

7

7

6

10f

10

b) delay graph for the placement in a).

Fig. 5. Register placement and delay between them.

4.2 Latch selection

The selection of latch-type registers and their activation time are derived from
the delay graph. The idea is the same as above, there must be no path longer
than P ; that is, there must be no more than P units of time between the enable
of a register and the disable of its successors (which is equivalent to the phase
non-overlap constraint presented by Sakallah et al. [1990]). Also, a register must
be enabled at the time it is scheduled. For example, register a must be enabled at
time 6. This means that the maximum time a register can be enabled after (before)
its scheduled time is P minus the maximum of the lengths of the edges that go to
(exit from) that register. In our example, register e must be enabled exactly at time
0 because there is an edge of length 10 from and to e, so it will be edge-triggered,
but register f can stay enabled 4 units of time after 6 and can be enabled 3 units
of time before, so it can be level-sensitive, enabled at time 3 and disabled at time
10 ≡ 0 mod P . Table 3 gives a feasible solution for registers’ activation time, the
intervals being the enable period of the latches (single values are for edge-triggered
registers). The implementation of the circuit can be done with a two-phase clock,
e and d being clocked by the first phase and a, b, c and f being clocked by the
second one; b, c and e are edge-triggered and a, d and f are level-sensitive. This
solution has the same period as the one presented by Lockyear and Ebeling [1994],
but assuming that the cost of an edge-triggered register is R and that of a latch

12 · F. R. Boyer, E. M. Aboulhamid, Y. Savaria and M. Boyer

is R/2, the storage element cost for their circuit is 5R whilst ours is 4.5R. This
represents a 10% improvement in the area occupied by the registers. Also, we
can use a two-phase clock with an underlap between phases without changing the
period.

The algorithm PlaceLatches (Fig. 6) checks each register in the delay graph to
see if its flip-flops can be replaced by latches and it gives the enable and disable
time for each latch.

PlaceLatches:

foreach (v ∈ V) do

v.max out = max{w(e) : v
e→ ·}

v.max in = max{w(e) : · e→ v} od
foreach (v ∈ V) do
after = P − v.max in
before = P − v.max out
if ((after 6= 0) ∨ (before 6= 0)) then do

set v as a latch
v.enable time = (v.scheduled time− before) mod P
v.disable time = (v.scheduled time+ after) mod P

foreach (v′
e→ v) v′.max out = max{v′.max out, w(e) += after}

foreach (v
e→ v′) v′.max in = max{v′.max in,w(e) += before} od

fi od

Fig. 6. Algorithm to place latches.

Each vertex contains its schedule time, which has been given by BreakPath.
This algorithm is O(|E|). It is an efficient but not necessarily optimal way to place
latches and changing the order in which the vertices are processed may give better
results.

Lemma 6. The circuit resulting from the algorithm PlaceLatches stores valid
values in its registers, and will thus have a correct behaviour.

Proof. In a delay graph with period P , let B be any register and A1, . . . , An be
all those registers with a vertex to B and let d1, . . . , dn be their respective delays.
Register Ai is enabled on the interval [ai, bi[and was originally scheduled at time
ti. Register B is enabled on the interval [aB , bB [and was originally scheduled at
time tB. An edge-triggered register is modeled with ai = bi, which means that
there is no time where the value passes through the register but we still consider
that the input value just before time ai is stored at time ai.

We want to prove that if for all i, Ai is valid and stable on time intervals [ti, ai+P [,
then B will be valid and stable on time interval [tB , aB + P [. This will prove that
the latches store valid values if we start with valid values.

By definition, we have that ai ≤ ti ≤ bi and aB ≤ tB ≤ bB . Also, since there is
no path longer than P , bB ≤ ai + P . The validity of the schedule guarantees that
ti + di ≤ tB , and so ai ≤ ti ≤ ti + di ≤ tB ≤ bB ≤ ai +P . Because Ai are valid and
stable on time interval [ti, tB [(by hypothesis), all inputs of B are valid at time tB .
On time interval [tB, bB[, B is enabled and its inputs are valid and stable because
Ai is valid and stable on time interval [ti, bB[(by hypothesis). On time interval
[bB , aB +P [, B is disabled so that it stays stable and was valid at the disable time,

Optimal design of synchronous circuits using software pipelining techniques · 13

which means that it is still valid. So, register B will be valid and stable on time
interval [tB , aB + P [.

5. EXTENSIONS

5.1 Functional elements of duration greater than the clock period

Suppose we want to do a scalar product. We can do this using a simple multiply
and accumulate circuit as shown in Fig. 7 (additions taking one time unit and
multiplications taking two). We should notice that the multiplication (v1) is longer
than the period (P). If d(v) > P , we have that sn(v) + d(v) > sn+1(v), which
means that we must start the next calculation in vertex v before the current one
finishes. There are two ways to accomplish this: pipeline v (Fig. 7b) or put multiple
instances of v (Fig. 7c). To be able to pipeline v, we must ask the designer (or a
synthesis tool) to split the calculations in v so that each part has a delay ≤ P .

+

×v1

v2

1

1

2
0

v1

v2

1
2

1 1 1

1

2 12
a

a

bb

c

c d e f

b) pipelining c) duplicating
G Gs with P=1

Fig. 7. Scalar product example

To put multiple instances of v, we can modify BreakPath so that when d(v) > P

it places dd(v)
P e functional elements like v, each one with registered inputs and

multiplexing the outputs. At each period, the input registers from the next unit
are enabled and the multiplexor chooses the right unit for output. We must adjust
d(v) to include the delay of the multiplexor and find a new valid schedule and then
restart BreakPath. In our example, the input registers and output are scheduled
as shown in Table 4.

Cycle enable reg. Output

Even c, d e× f
Odd e, f c× d

Table 4. Schedule of duplicated unit in the scalar product example.

5.2 Fractional clock duration and k-periodic scheduling

Suppose we want to find an optimal circuit for the circuit graph G in Fig. 8; P = 5/2
is fractional and the figure shows the register placement obtained from BreakPath.
A consistent schedule is to be found in the left part of Table 5. Notice that c1 and c2

are but one register c: both have same input and schedule. This first solution may
be acceptable but it requires a clock resolution smaller than the time unit used. If
all the d(v) are integers then there exists an optimal valid schedule with sn(v) being
all integers. In fact, if all the d(v) are integers, a theorem [Bennour and Aboulhamid

14 · F. R. Boyer, E. M. Aboulhamid, Y. Savaria and M. Boyer

1

2

2

1

1

0

0

2

1

2

1/2

0

0

3

2

1

2

2

ab

c

d e

c1

a

b

ed

c2

o0

o1

o3o2

2 2

1

2 2

1

G Gs with P=5/2 registers and delays

Fig. 8. k-periodic example

1995; Van Dongen et al. 1992] says that if we have a valid periodic schedule s then
the schedule s∗ defined as s∗n(v) = bsn(v)c is a valid k-periodic schedule with the
same throughput. Applying this result to our first schedule gives the 2-periodic
schedule with period 2P = 5 shown in Table 5: during each period, two output
values are calculated, so giving the same throughput as the first schedule.

periodic (P = 5/2) k-periodic (k = 2)
name enable time schedule1 schedule2 enable times

a [1/2, 2[2 4 [3, 2[

b 1/2 3 0 {0, 3}
c [2, 1/2[0 2 {0, 2}
d [1/2, 2[2 4 [3, 2[
e 1/2 3 0 {0, 3}

Table 5. A schedule for the solution of Fig. 8, and a corresponding k-periodic schedule.

6. EXPERIMENTATION AND IMPLEMENTATION

For our experimentation, we have used a tool that we developed primarily for loop
acceleration, called L.A. It accepts a description in standard C and produces an
internal format where cyclic behaviors are explicit. This intermediate format can be
used as input to different algorithms and CAD tools that we intend to develop in the
future. To facilitate the development we started from a retargetable C Compiler
meant to be modified and retargeted easily [Fraser and Hanson 1995]. The first
benchmark is the one presented in [Leiserson and Saxe 1991; Lockyear and Ebeling
1994]. In order to compare our results we also implemented the original retiming
method of Leiserson and Saxe [1991]. From Table 6 we see that the acceleration is
zero for examples where only one clock phase is needed to have an optimal schedule,
but varies from 9% to 100% when more pipelining is possible with multiple phases.
We developed the scalar product example and translated from VHDL to C some
examples from the HLSynth92 benchmark suite [Benchmarks 1996]. It is interesting
to note that the elliptic filter specification in the suite cannot be accelerated, but by
re-writing the specification, we obtain an acceleration of 150% using retiming and
an additional 9% using our method. The original description used only additions,
but after flattening the expressions, we see that the same variable is added multiple
times, which could be replaced by a multiplication by a constant. The multiplication

Optimal design of synchronous circuits using software pipelining techniques · 15

can then be divided in shifts and additions, shifts taking no time as it is only a
different interconnection. Then, tree balancing of the expressions was used, to
reduce the length of the critical path.

To compare the running time of our algorithm to that of retiming, we ran them on
benchmarks from ISCAS89 [Benchmarks 1996]. These circuits are at gate level and
have up to 16K gates. We see, in Table 7, that we are around 10 times faster than
SIS, except for the larger circuit on which we are 185 times faster. The algorithm
used to find maximum throughput has a running time lower than the binary search
approach presented in Section 3.1, although the upper bound is not clear.

Period Registers∗ Phases Acceleration
Retiming L.A. Retiming L.A.

correlator 13 10 5 4.5 2 30%
scalar product 2 1 2 4 2 100%
k-periodic 3 5/2 4 3.5 or 4 2 or 3 20%

diffeq 6 6 7 7 1 0%
ellipf 10 10 13 13 1 0%
modified ellipf 4 11/3 50 25.5 7 9%

Table 6. Benchmarks.
∗Register count is the number of edge-triggered plus 1/2 the number of level-sensitive storage.

Period Computation time
Original Retiming L.A. Retiming L.A.

s344 18.8 14.2 14.2 0.8 0.12
s641 30.4 - - 5.8 0.29

s713 41.6 - - 7.9 0.38
s1238 28.4 - - 49.8 1.81
s1423 82.6 73.4 73.4 34.4 2.02
s1488 34.8 32.4 31.9 22.9 3.09

s1494 34.8 32.8 32.8 32.5 4.16
s5378 19.2 14.6 14.6 89.8 15.37
s9234 44.0 - - 81.7 13.98
s13207 58.4 37.6 36.5 735.8 85.67

s15850 80.4 44.8 44.8 772.4 103.46
s35932 25.0 - - 3.8 days 30 minutes

Table 7. Computation time (in seconds) of retiming by SIS (retime -ni) vs. scheduling by L.A.,
on a UltraSPARC-10 with 128MB. A dash says that no optimizations have been made.

7. CONCLUSION AND FUTURE WORK

In this work, we showed that software pipelining techniques are an excellent alterna-
tive to retiming techniques in sequential circuit optimization. The resulting circuit
has an optimal throughput using multi-phase clocked circuits with a combination
of edge-triggered and level sensitive storage. The proved computing complexity is
similar to previously published methods but on the benchmarks we are much faster
and we have a guarantee of always obtaining the optimal solution regarding the
throughput, according to the precision of the graph representation of the circuit.
The phases are automatically computed and the registers are placed by a greedy

16 · F. R. Boyer, E. M. Aboulhamid, Y. Savaria and M. Boyer

algorithm. Future work includes the design of an optimal algorithm to maximize
chaining and minimize the number of clock phases and of registers. Benchmarks
have shown that rewriting of the initial specification using algebraic transforma-
tions (like associativity and commutativity) can have a tremendous impact on the
final result; we intend to augment our tool using such capabilities. Our work has to
be extended to take into account clock skews and to minimize the impact of such
phenomena on the overall performances. In addition, the circuit graph could have
minimum delays on its edges, which is the time before the output of combinational
logic start to change when the inputs are changed. This would allow paths longer
than P between registers, which could reduce the number of registers. Tradeoffs
between the number of phases, space and throughput have to be explored.

REFERENCES

Benchmarks. 1996. North Carolina State University, Dep. of Comp. Science, Collab. Bench-
mark Lab., http://www.cbl.ncsu.edu/benchmarks/Benchmarks-upto-1996.html.

Bennour, I. E. and Aboulhamid, E. M. 1995. Les problèmes d’ordonnancement cycliques
dans la synthèse de systèmes numériques. Technical Report 996 (Oct.), DIRO, Université
de Montréal. http://www.iro.umontreal.ca/~aboulham/pipeline.pdf.

Deokar, R. B. and Sapatnekar, S. 1995. A fresh look at retiming via clock skew opti-

mization. In DAC’95 (1995), pp. 304–309.

Van Dongen, V. H., Gao, G. R., and Ning, Q. 1992. A polynomial time method for

optimal software pipelining. In CONPAR’92, Lecture Notes in Computer Sciences, Vol
634 (1992), pp. 613–624.

Fraser, C. W. and Hanson, D. R. 1995. A Retargetable C Compiler: Design and Imple-
mentation. Benjamin Cummings.

Hanen, C. 1994. Study of a NP-hard cyclic scheduling problem: the recurrent job-shop.
European Journal of Operation Research 72, 1, 82–101.

Hartmann, M. and Orlin, J. 1993. Finding minimum cost to time ratio cycles with small
integral transit times. Networks; an international journal 23, 1, 82–101.

Hwang, C.-T., Hsu, Y.-C., and Lin, Y.-L. 1991. Scheduling for functional pipelining and

loop winding. In DAC’91 (1991), pp. 764–769.

Ishii, A. T., Leiserson, C. E., and Papaefthymiou, M. C. 1997. Optimizing two-phase,

level-clocked circuitry. Journal of the ACM 44, 1 (Jan.), 148–199.

Lawler, E. 1976. Combinatorial Optimization: Networks and Matroids. Saunders College
Publishing.

Legl, C., Vanbekbergen, P., and Wang, A. 1997. Retiming of edge-triggered circuits
with multiple clocks and load enables. In IWLS’97 (1997).

Leiserson, C. E. and Saxe, J. B. 1991. Retiming synchronous circuitry. Algorithmica 6, 1,
3–35.

Lockyear, B. and Ebeling, C. 1994. Optimal retiming of level-clocked circuits using sym-
metric clock schedules. IEEE Transactions on Computer-Aided Design of Integrated Cir-

cuits and Systems 13, 9 (Sept.), 1097–1109.

Maheshwari, N. and Sapatnekar, S. 1997. An improved algorithm for minimum-area

retiming. In DAC’97 (1997), pp. 2–6.

Maheshwari, N. and Sapatnekar, S. 1998. Efficient retiming of large circuits. IEEE
Transactions on VLSI Systems 6, 1 (March), 74–83.

De Micheli, G. 1994. Synthesis and optimization of digital circuits. McGraw-Hill.

Sakallah, K. A., Mudge, T. N., and Oluktun, O. A. 1990. Analysis and design of
latch-controlled synchronous digital circuits. In DAC’90 (1990), pp. 111–117.

	Introduction
	Preliminaries
	Input Circuit Definition
	Retiming
	Short and long paths
	Scheduling and software-pipelining

	Scheduling operations
	Maximum throughput
	Schedule of a specified throughput
	Schedule (multi)graphs

	Placement of storage elements
	Register placement
	Latch selection

	Extensions
	Functional elements of duration greater than the clock period
	Fractional clock duration and k-periodic scheduling

	Experimentation and implementation
	Conclusion and future work

