
1

Adder Based Residue to Binary Number Converters for (2n −1,2n ,2n +1)

Yuke Wang, Xiaoyu Song, Mostapha Aboulhamid, Hong Shen

Abstract

Based on an algorithm derived from the New Chinese Remainder

Theorem I, we present three new residue-to-binary converters for the

residue number system (2n −1,2n ,2n +1), designed using 2n- bit or n-bit

adders with improvements on speed, area, or dynamic range compared to

various previous converters. The 2n- bit adder based converter is faster and

requires about half the hardware required by previous methods. For n-bit

adder based implementations, one new converter is twice as fast as the

previous method using similar amount of hardware; while another new

converter achieves improvement in either speed, area, or dynamic range

compared to previous converters.

Keywords residue number system, arithmetic, circuit, algorithm, adders.

2

Footnotes

Manuscript received______________

Affiliation of authors

Yuke Wang

Department of Computer Science

Erik Jonsson School of Engineering and Computer Science

Box 830688, MS EC 31

University of Texas at Dallas

Richardson, TX 75083-0688

Email Yuke@utdallas.edu

Xiaoyu SONG

Department of Electrical and Computer Engineering

Portland State University

P.O. Box 751

Portland, OR 97207-0751

USA

Mostapha Aboulhamid

Departement d'informatique et de recherche operationnelle

Universite de Montreal

Montreal, Quebec

Canada H3C 3J7

Hong Shen

 School of Information Science

Japan Advanced Institute of Science & Technology

1-1 Asahidai, Tatsunokuchi, Ishikawa 923-1292

JAPAN

3

I Introduction

There has been interest in Residue Number System (RNS) arithmetic as a basis for

computational hardware since the 1950’s [1] [2]. During the past decade, the RNS has

received considerable attention in arithmetic computation and signal processing

applications, such as fast Fourier transforms, digital filtering and image processing [2][3].

The main reasons for the interests are the inherent properties of RNS such as parallelism,

modularity, fault tolerance and carry free operations [3]. The technology advantages

offered by VLSI have added a new dimension in the implementation of RNS-based

architectures. Several high-speed VLSI special purpose digital signal processors have been

successfully implemented.

Two most important issues for the residue arithmetic are the choice of moduli sets and

the conversion of the residue to binary numbers. The residue number system based on the

set of moduli (2n −1,2n ,2n +1) has gained popularity and is expected to play an increasing

role in RNS digital signal processing [5]. For general moduli sets, the residue to binary

conversions are traditionally based on the Chinese Remainder Theorem (CRT) or Mixed-

Radix Conversion. Some new general conversion algorithms called New Chinese

Remainder Theorems have been recently proposed with smaller size modulo operations

[13][14].

Several conversion methods for (2n −1,2n ,2n +1) have been reported [6] [7] [8] [9]

[10] [11] [15] [16][17][18]. Early converters [17] for such moduli sets use ROM, which

can be limited by the size n. In recent years, converters using 2n-bit or n- bit adders have

been proposed. These converters are designed using special formulas rather than the

general CRT algorithm, and improvement in terms of hardware complexity has been

reported. Detailed comparisons of all those converters are presented in Table 1 and 2 in this

paper.

4

In this paper, for the moduli set (2n −1,2n ,2n +1), we present new and uniform

algorithms designed using the New Chinese Remainder Theorems for the RNS to binary

conversion. Three different converters using either 2n- bit or n- bit adders are proposed.

The 2n-bit adder based converter is faster and requires about half the hardware required by

the previous methods [7][8][9]. For n-bit adder based implementations, one new converter

is twice as fast as the previous method [6] using a similar amount of hardware; while

another new converter achieves improvement in both speed and area. The amount of

hardware for the new converters is similar for n-bit adder based converter compared to the

one in [9]. However, in [9], not the entire dynamic range of numbers are used.

In the following, we first introduce background material and derive the formulas; then

we show an example and propose three different hardware implementations.

II Background

For any two numbers X and Pi , x X Pi i= mod is defined as X x bPi i= + for some

integer b such that 0 ≤ <x Pi i . X Pimod can be written as XPi
 or | |X Pi

.

A Residue Number System is defined in terms of a set of relatively prime moduli

(, ,...,)P P Pk1 2 , where GCD P Pi j(,) = 1 for i j≠ . A binary number X can be represented as

X x x xk= (, ,...,)1 2 , where x X Pi i= mod , 0 ≤ <x Pi i . Such a representation is unique for

any integer X M∈ [,)0 , M Pi
i k

=
≤ ≤
∏

1

.

For the residue number system defined on the moduli set (2n −1,2n ,2n +1), a binary

number X ∈ [0,2n (2n −1)(2n +1)) = [0,23n − 2n) can be represented as a tuple (x1, x2 , x3) ,

where x1 and x2 are two n-bit binary numbers; x3 is a n+1-bit binary number, denoted as

follows.

X
2n −1

=X mod(2n −1)= x1 = x x x xn n1 1 1 2 11 10() ()...− − (1)

5

X X x x x x xn

n
n n2 2 2 1 2 2 21 202= = = − −mod ...() () (2)

X X x x x x x xn

n
n n n2 1 3 3 3 1 3 2 31 302 1

+ − −= + = =mod() ...() () (3)

To convert a residue number (, ,...,)x x xn1 2 into its binary number X , Chinese

Remainder Theorem and Mixed-Radix Conversion method are traditionally used. We

define Pi Pj

−1 to be the multiplicative inverse of P Pi jmod , i.e., P P Pi P i j
j

− =1 1* mod .

Chinese Remainder Theorem The binary number X is computed by

X N N xi i
i

n

P
i

Mi

= −

=
∑ 1

1

 , where N
M

Pi
i

= , and Ni Pi

−1 is the multiplicative inverse of

N Pi imod .

The CRT requires a modulo M (large-valued) operation, which is not very efficient.

Therefore the converters proposed in [6]-[11] [15][16][18] use specially designed

algorithms to remove the modulo M operation or to reduce the size of the modulo

operation. For example, the converters in [6][14] are based on the formula

X D D xn n= + +2
2

1 22 2* * , and methods are required to compute the coefficients D1 and

D2 . In [7][9][15], the converters are based on the formula X Y xn= +
−()2 1 22 and methods

for computing Y are needed in each paper. In [7], the number Y is calculated as

| |A B C Z n+ + −
−2 12 where A B C Z, , , are 2n bit numbers obtained from (x1, x2 , x3) . On the

other hand, the third formula in [15] reduces the size of the modulo operation from M to

Ni at the expense that some part of the dynamic range X M∈ [,)0 will not be useable.

Recently, some alternative general conversion algorithms, the New Chinese Remainder

Theorems (New CRT-I, II and III) [13] [14], have been proposed, which reduce the size

of the modulo operation required by the CRT.

New Chinese Remainder Theorem I (New CRT-I) Given the residue number

(, ,...,)x x xn1 2 , the binary number X can be computed by

6

X x k P x x k PP x x k PP P x xn n n n P P P Pn n
= + − + − + + −− − − −

| () () () |() ...1 1 1 2 1 2 1 2 3 2 1 1 2 1 1 1 2 1
 (4)

which can be easily simplified as the following:

X x P k x x k P x x k P P x xn n n n P P Pn n
= + − + − + + −− − −

−
1 1 1 2 1 2 2 3 2 1 2 1 1

2 1
() () ()

...
(5)

where k P P P k PP P P k P P Pn n n n n1 1 2 2 1 2 3 1 1 11 1 1= = =− −mod .. , mod .. , ..., .. mod .

Based on the New CRT-I, we have the following theorem for n = 3.

Theorem 1 For a three moduli set (, ,)P P P1 2 3 , the binary number X x x x= (, ,)1 2 3 can be

calculated as

X x k x x k P x x P
P P

= + − + −1 1 2 1 2 2 3 2 1
2 3

() () , (6)

where k P P P1 1 2 31= mod and k PP P2 1 2 31= mod .

In the next section, we apply the formula (6) to the moduli set (2n −1,2n ,2n +1)to

design the residue to binary converters.

III Basic Formulas

The following Theorem 2 is a direct application of Theorem 1.

Theorem 2 For the moduli set (2n −1,2n ,2n +1), the number X can be computed

from (x1, x2 , x3) by the formula:

X x x x x x xn n n
n= + − + − + +−

−2 2 3 1 2 3
1

2 1
2 2 2 2 1 2* | () () () |

()
(7)

Proof Using Theorem 1 and assuming that P n
1 2= , P n

2 2 1= + , and P n
3 2 1= − , we

have k n
1 2= and k n

2
12= − such that k n n

1
22 1 2 1= −mod() and

k n n n
2 2 2 1 1 2 1() mod()+ = − . Therefore, we have the following

7

X x x x x x

x x x x x x x

x x x x x

n n n n

n n n n n

n n n

n

n

= + − + + −

= + − + − − + + −

= + − + + −

−
−

−
−

2 3 2
1

1 3 2 1

2 3 2
2

3 2
1

1 3 2 1

2 2 3
2

3 2

2 2 2 2 1

2 2 2 1 2 2 1

2 2 2

2

2

() ()()

() ()() ()()

() ()() ++ + −

= + − + + − +

−
−

−
−

2 2 1

2 2 2 1 2

1
1 3 2 1

2 2 3
1

1 2 3 2 1

2

2

n n

n n n

x x

x x x x x x

n

n

()()

() ()()

Proposition 1 For any integers a and b, we have
a

b
a b

2
2

2






+ = +





.

Proof Let a a0 2= mod , then we have that

a
a

a= 





+2
2 0* , a + 2b = 2 *

a

2






+ a0 + 2b = 2 * (
a

2






+ b) + a0,

therefore we have the proposition.

Proposition 2 X can be computed by the following formula

X x Yn= +2 2 * (8-1)

where Y A Bn
n= +

−
| * |

()
2

2 12 (8-2)

A
x x x xn n n

= + ⊕ + − − + −





(() *) () ()1 10 30 32 2 1 2 1
2

(8-3)

B
x x x x xn n

= + ⊕ + + − −





(() *) ()1 10 30 3 22 2 2 1
2

(8-4)

x10 and x30 are the least significant bits of x1 and x3 respectively;

 x x10 30⊕ denotes the XOR operation, i.e., x x x XOR x10 30 10 30⊕ = .

Proof Let Y x x x x x n n
n= − + − + +−

−
| () () () |

()2 3 1 2 3
1

2 1
2 2 2 1 2 in (7), then we have

X x Yn= +2 2 * , and Y x x x x x x x xn n
n= − + − + + − +− −

−
| () () () |

()2 3 1 2 3
1

1 2 3
2 1

2 1
2 2 2 2 2 .

Since () * () / ()x x x x x x x x x1 2 3 1 2 3 1 2 3 22 2 2 2 2− + = − +  + − + ; we denote

z0 = ()x x x1 2 3 22− + = ()x x10 30⊕ , z x x x= − + () /1 2 32 2 , therefore we have

Y x x z x x z x x

x x z x x z x x

n n n n

n n n

n

n

= − + + ⊕ + + ⊕

= − + + ⊕ + + ⊕

− −
−

− −
−

| [() * () * * () *] |

| [() () * * () *] |

()

()

2 3 10 30
1 2

10 30
2 1

2 1

2 3 10 30
1

10 30
2 1

2 1

2 2 2 2

2 2 2

2

2

8

= −  + ⊕ + − +  + ⊕− −
−

| { () / () * * () / () * } |
()

x x x x x x x x xn n n
n1 3 10 30

1
1 2 3 10 30

2 1

2 1
2 2 2 2 2 2 2

= −  + + − +  +

= − +





+ − + +





− −
−

| {[() / *] [() / *]} |

| {(
() *

) (
() *

)} |

()

(

x x z x x x z

x x z x x x z

n n n

n
n

n

n

n

1 3 0
1

1 2 3 0
1

2 1

1 3 0 1 2 3 0
2

2 2 2 2 2 2

2
2

2
2 2

2

2

2 −−

+ +

−

+

= − + +





− + − + + +





−

= − + +





− +

1

1 3 0
1

1 2 3
1

0
2 1

1 3 0
1

2 2
2

2 2
2 2 2

2
2

2 2
2

1 2

2

)

()
| {(

() *
) (

() *
)} |

| {(
() *

) (
(

x x z x x x z

x x z

n n
n n

n n
n

n n
n

n

xx x x z

x x z x x x z

n n

n n
n

n n

n

n

1 2 3
1

0
2 1

1 3 0
1

1 2 3
1

0
2 1

2 2 2
2

1

2 2 2
2

2
2 2 2 2

2

2

2

− + + +





−

= − + + −





+ − + + + −





=

+

−

+ +

−

) *
)} |

| {(
() *

) (
() *

)} |

|

()

()

{({(
(*) () ()

) (
(*) ()

)} |
()

x z x x z x xn n n
n

n n

n
1 0 3 1 0 3 2

2 1

2 2 1 2 1
2

2
2 2 2 1

2
2

+ + − − + −





+ + + + − −



 −

i.e., we have Y = {A + 2n * B}
(22n −1)

. Q. E. D.

Next we present an example using the above formulas.

Example Consider the example shown in [6]. Let (, ,) (, ,)2 1 2 2 1 7 8 9n n n− + = and an

number 407, which can be represented as (1, 7, 2) in the moduli set (7, 8, 9).

Now given (1, 7, 2)=(001, 111, 0010), we have

 z x x0 10 30 1= ⊕ =

(*) () ()x z xn n n
1 0 32 2 1 2 1 1001 101 111 10101 21+ + − − + − = + + = =

A
x z xn n n

= + + − − + −





=(*) () ()1 0 32 2 1 2 1
2

1010=10

(*) ()x z x xn n
1 0 3 22 2 2 1 1001 0010 0 1011+ + + − − = + + = =11

B
x z x xn n

= + + + − −





=(*) ()1 0 3 22 2 2 1
2

101=5

Y = + = + =
−

{ * } **10 8 5 2 8 6 50
2 12 3

X Y= + =7 8 407*

Compared with the long calculation in page 56 in [6], the above process is much

simpler.

9

IV New Converters

In Section III, we presented the necessary formulas for residue to binary conversion. In

this section, we propose new converters using 2n-bit or n-bit adders based on the formulas

(8-1), (8-2), (8-3) and (8-4).

(1) Basic Operations to Compute A and B

We have to compute the numbers (*) () ()x z xn n n
1 0 32 2 1 2 1+ + − − + − and

(*) ()x z x xn n
1 0 3 22 2 2 1+ + + − − in order to obtain the values of

A
x z xn n n

= + + − − + −





(*) () ()1 0 32 2 1 2 1
2

 and B
x z x xn n

= + + + − −





(*) ()1 0 3 22 2 2 1
2

.

Let t xn n= − − + −() ()2 1 2 13 .

If x n
3 2= , then x n3 1= , x x xn3 1 31 30 0() ...− = = = = ; t n= −()2 2 ; which implies that

t t x x tn n− −= = = = = = =1 1 3 1 31 01 0... ... ,() . Therefore we have

t t t t x x x xn n n n= + = +− −1 1 0 3 1 31 3 30 0 0...() (9)

If x n
3 2< , i.e., x n3 0= , we have

t x x x x x x x x xn n
n

n
n n n

n

= − − + − = + = + + +− −
−

() () ()() ()2 1 2 1 1 1 0 0 13 3 1 31 30 3 1 31 3 3
1

30

i.e., we have

t x x x x x xn n
n n n

n

= − − + − = + + +−
−

() () ()()2 1 2 1 0 0 13 3 1 31 3 3
1

30 (10)

Therefore we have

if x n3 1=

(*) () () (*)()x z x x z x x x xn n n n
n n n1 0 3 1 0 3 1 31 3 32 2 1 2 1 2 0 0+ + − − + − = + + +− ,

else

(*) () () (*) ()()x z x x z x x x x xn n n n
n n n1 0 3 1 0 3 1 31 3 3 302 2 1 2 1 2 0 0 1+ + − − + − = + + + + +−

10

The addition of (*) () ()x z xn n n
1 0 32 2 1 2 1+ + − − + − is shown in Figure 1(a) and (b).

Figure 1(b) shows the block diagram of the unit. It consists of n FAs, 2 MUXs, 1 XOR

gate, and n+1 inverters. The delay of this unit is the delay of the FA plus the delay of an

inverter and the delay of an MUX. The circuit produces two numbers S S S S Sn n n− −1 2 1 0... and

C C C Cn n− −1 2 1 0 0... . We denote A S S S Sn n n1 1 2 1= − − ... and A C C C Cn n2 1 2 1 0= − − ... , then

A A A1 2+ = .

Next we perform the addition (*) ()x z x xn n
1 0 3 22 2 2 1+ + + − − using FAs. The signal

z0 is connected to the carry-in bit of the full adder at the last FA in Figure 2 (a). Figure 2

(b) shows the block diagram of the unit. It consists of n inverters, 1 HA, and n FAs. The

delay of this unit (nFA2) is the delay of a full adder plus the delay of an inverter. The

circuit produces two numbers S S S S Sn n n n n n n n+ − + − + + +1 2 1 0... , C C C C Cn n n n n n n n+ − + − + + +1 2 1 0... . We

denote B S S S Sn n n n n n n1 1 2 1= + − + − + +... and B C C C Cn n n n n n2 1 2 1 0= − + − + + +... , then

B B C Bn n
n

1 2 2+ + =+ *

FA

1−nC

nX 3

)1(3 −nX

1−nS

)1(1 −nX

FA

2−nC

n
X

3

)2(3 −nX

2−nS

)2(1 −nX

0Z

nS 1C

nX 3

31X

1S

11X

FA FA

10X
MU MUnX 3

30X 0 1 0

0C 0S

1X
3X

1A 2A

nFA1

(a) (b)

Figure 1 Compute A Using n FAs

11

nnC +

0Z

)1(2 −nX

nnS +

nnC +−1

nnS +−1

)2(1 −nX 11X

FA

nX 3

FA FA

)1(1 −nX

)1(3 −nX

)2(2 −nX

FA

)2(3 −nX

)3(2 −nX

nnC +−2

nnS +−2

31X

20X

nC +1

nS +1

HA

nC +0

nS +0

10X

30X

nFA2

1X 2X
3X

1B 2B nnC +

(a) (b)

Figure 2 Compute B Using n FAs

Therefore Y as defined in (8.2) now becomes:

Y A B A A B B C A A C B Bn n
n n

n
n n

n
n n n= + = + + + + = + + + +

− + − + −
| * | | () * (*) | | () * () |2 2 2 2

2 1 1 2 1 2 2 1 1 2 1 2 2 12 2 2

i.e.,

Y A A C B Bn n
n

n= + + + ++ −
| () * () |1 2 1 2 2 1

2 2 (11)

where A A B B1 2 1 2, , , are all n- bit numbers; Cn n+ is a one bit number.

The addition in (11) can be done in many different ways using 2n- bit or n- bit adders.

These different implementations will be shown below.

(2) 2n-bit Adder Based Converter - Converter I

In the following, we present the new Converter I implementing the addition in formula

(11) using a 2n- bit adder.

Y A A C B B C A B A B

C S S S S S S S S C C

n n
n

n n
n n

n n n n n n n n n n n n n n n

n n= + + + + = + + + +

= + +
+ − + −

+ + − + − + + − − − + − +

| () * () | | () () |

|

1 2 1 2 2 1 1 1 2 2 2 1

1 2 1 1 2 1 1 2

2 2 22 2

nn n n n nC C C C C C n... ... |
()1 0 1 2 1 0 2 12+ + − − −

where S S S S S S S Sn n n n n n n n n n+ − + − + + − −1 2 1 1 2 1... ... and C C C C C C C Cn n n n n n n n− + − + + + − −1 2 1 0 1 2 1 0... ... are

two 2n- bit numbers, and Cn+n is a 1-bit number.

12

In the following Figure 3 (a), the units nFA1 and nFA2, used to produce A A B B1 2 1 2, , ,

are connected to a 2n-bit 1’s complement adder. The 2n-bit adder produces the value Y,

which forms the 2n MSB’s of the number X, while x2 forms the n LSB’s of X.

2n-bit CSA with EAC

2n-bit CSA with EAC

2n-bit 1’s complement adder

(b) Converter in [7]

2X

nFA1 nFA2

2n-bit 1’s complement adder

2X

2A1A

1X
3X 1X 2X

3X

nnC +

Y Y

(a) Converter I

Figure 3 2n -bit Adder Based Converters

The hardware required in the new Converter I shown in Figure 3(a) is as follows: 2n

FAs, 1 HA, 2 MUXs, 1 XOR gate, 2n+1 inverters and one 2n-bit 1’s complement adder.

The delay of the converter tconv is the sum of the delay of the FA tFA , the delay of an

inverter tinv , the delay of MUX tMUX , and the delay of the 2n-bit 1’s complement adder

t tCA n CPA n1 2 22() ()= [7], i.e., t t t tconv FA inv CPA n= + +2 2() + tMUX .

In the literature, one of the best converters using 2n- bit adders is presented in [7]. In

order to compare the performance, we show the main components used in the converter

proposed in [7] as Figure 3(b). The delay in [7] is 2 2 32t t t tFA inv CPA n MUX+ + +() . For

simplicity reason, we only compare one version of the implementation in [7]. The second

implementation has the same result. From the side by side comparison, it is easy to see that

we save one 2n-bit CSA with End Around Carry (EAC).

Detailed comparison of the related other converters are summarized in the following

Table 1, where the data for references [8] [9] [11] are from Table I in [7]. In summary,

13

Converter I is the best converter using 2n-bit adders, using about half of the hardware used

in [7]. The reason for such improvement is that the converters in [8][9][11][18] are using

the formula | |A B C Z n+ + −
−2 12 where A B C Z, , , are 2n bit numbers obtained from

(x1, x2 , x3) , while the new ConverterI is derived based on the New Chinese Remainder

Theorem I and is computed by Y A A C B Bn n
n

n= + + + ++ −
| () * () |1 2 1 2 2 1

2 2 which reduces

the 4 numbers operation into 2 numbers.

Table 1 Performance Comparison of 2n- bit Adder Based Converters

Converter FAs AND
/OR

XOR/
XNOR

CLAs
-2n

other Delay

[8][11] 6n - n+1 2 - 2 2 22t t tCPA n CPA n XOR() ()+ +
[9] 6n 4n-2 2n 1 - 3 22t t n tCPA n XOR AND() log()+ +  
[18] 6n n+3 n+1 1 2 2t t t tFA inv CPA n MUX+ + +()

[7]-CE 4n 2n-1 2n 1 2n+1 inverter 2 2 32t t t tFA inv CPA n MUX+ + +()

ConverterI 2n - 1 1 1HA, 2MUX
2n+1 inverter

t t t tinv MUX FA CPA n+ + +2 2()

(3) n-bit Adder Based Converters - Converter II and III

The addition in formula (11) can also be done by n-bit adders. In this section, we

propose two such converters. The performance is to be compared with the performance of

the converter in [6][15][18], which use n- bit adders as well. Since we can only generate n-

bit numbers using n- bit adders, therefore we obtain the value Y in the form

Y Y Yn= +1 22 * where Y1 and Y2 are both n- bit binary numbers.

Recall that Y A A C B Bn n
n

n= + + + ++ −
| () * () |1 2 1 2 2 1

2 2 , where A A B B1 2 1 2, , , are all n-bit

numbers; Cn n+ is an one bit number. Using an n-bit adders, we can add A1 and A2

together with Cn n+ which generates a sum D1 and a carry r1 . Similarly we can add B1

and B2 using an n- bit adder which generates a sum D2 and a carry r2 . Since the addition is

module 2 12n − addition, the carry r2 represents a number which should be added to the

number A1+ A2 + Cn n+ . For the case where the carry r2 is 0, the sum D1 is the value Y1 . For

14

the case where the carry r1 is 0, the sum D2 is the value Y2 such that Y Y Yn= +1 22 * .

However, when the carries r1 and r2 are not 0, the value D1 and D2 must be modified to

obtain the correct value of Y1 and Y2 . In the following, we propose Converter II and III for

the operation. Compared to Converter II, Converter III achieves faster speed while using

more hardware.

Converter II

In Figure 4, we use two Carry Look Ahead adders (CLA) to perform the operation

A A1 2+ and A A1 2 1+ + in parallel. The results are denoted as D11 and D12 with carry r11

and r12 respectively. If r r11 12≠ , we have D n
11 2 1= − and D D n

12 11 1 2= + = . Similarly

two CLAs are used to perform B B1 2+ and B B1 2+ +1 while the results are denoted as D21

and D22 with carry r21 and r22. If r r21 22≠ , we have D n
21 2 1= − and D D n

22 21 1 2= + = .

The selector module selects the correct carry and the correct sum for the number Y1 and

Y2 . The function of the selector is described below.

If r r11 12≠ and r r21 22≠ , then r r1 2 0= =

Else if r r11 12= , then r r1 11=

if r1 0= , r r2 21=

else r r2 22=

Else if r r21 22= , then r r2 21=

if r2 0= , r r1 11=

else r r1 12=

Therefore the carry r1 1= if (r r11 12 1= =) or (r r21 22 0= = and r11 1=) or (r r21 22 1= =

and r12 1=), i.e., r r r r r r r r r1 11 12 21 22 11 21 22 12= + + . Similarly r r r r r r r r r2 21 22 11 12 21 11 12 22= + + .

The selector implements these two functions. Note here the selector does not introduce

any extra delay since CLAs are used and the carries r r r r11 12 21 22, , , are generated during the

15

carry generation phase of the CLAs and available for evaluation to the selector while the

CLAs perform the summation.

Selector

12r11r 21r 22r

1r 2r

nFA2

1
CLA4CLA3

21r 22r21D 22D

1B 1B2B 2B

1X 2X 3X

nnC +

2r MUXs

2Y

nFA1

CLA2CLA1

11D 12D

1A 2A

1X 3X

nnC +

MUXs

1Y

1

nnC +

11r 12r

1r

2X

1A 2A

Figure 4 Converter II - Using 4 n-bit Adders

The hardware required in Figure 4 includes: 2n FAs, 1 HA, 2+2n MUXs, 1 XOR

gate, 2n+5 inverters (including 4 inverters for the selector), 2 AND gates for the selector,

and 4 n- bit CLAs. The delay of the converter is t t t t tconv inv FA CLA n MUX= + + +() .

Converter III

Considering the fact that D D12 11 1= + and D D22 21 1= + , we can replace the CLA2 and

CLA4 in Figure 4 by other combinational circuits that perform the operation D D12 11 1= +

and D D22 21 1= + . The following Figure 5 shows such a converter.

The circuit plus1 performs the function of adding 1 to an n- bit input numbers.

Consider D d d d dn n= − −1 2 1 0... , D d d d d e e e e en n n n n+ = + =− − − −1 11 2 1 0 1 2 1 0... We have the

following equations, which imply that the circuit plus1 requires n-1 XOR gates and n

AND gates plus 1 inverter.

e d e d d d e d d d e d d d e d d di i i n n n n n n0 0 1 1 1 0 1 0 1 1 2 0 1 2 0= = ⊕ = ⊕ = ⊕ =− − − − − −; ; ... ; ... ; ...

The hardware required in Figure 5 includes: 2n FAs, 2+2n MUXs, 1+2(n-1) XOR

gate, 2n+5 +2 inverters (including 4 inverters for the selector, 2 for the plus1 circuit),

16

2+2n AND gates for the selector and the plus1 circuit, 1 HA, and 2 n- bit CLAs. The

delay of the converter is t t t t t t tconv inv FA XOR CLA n AND MUX= + + + + +() .

Selector

12r11r 21r 22r

1r 2r

nFA2

CLA3

21r

22r

21D

22D

1B 2B

1X 2X 3X

nnC +

2r MUXs

2Y

nFA1

11D

1A 2A

1X 3X

nnC +

1Y

11r

12r

1r
2X

plus1

CLA1

MUXs

plus1
11D21D

12D

Figure 5 Converter III - Using 2 n-bit Adders

In order to make clear comparison, the following Figure 6 shows the main components

for the converter proposed in [6]. No detailed implementation is given for each module in

[6]. We evaluate the performance based on [4]. Recently the results in [4] are also used to

evaluate the performance in [7]. Modules M1 and M2 require 2 CLAs, 1 CSA, all are n- bit

adders; 1 XOR for generating C1, 2n inverters for 2’s complement operation. M3 and M4

require two additional CPAs and 2n inverters for 2’s complement operation. Module M6

uses 9 AND gates, 1 OR gates, 8 inverters, and 1 XOR gate. M5 uses 8*n bit memory to

store the value. The delay is t t t t t t tinv CPA n FA XOR inv AND> + + + + +()()2 2

= + + + +3 2t t t t tinv FA XOR AND CPA n() .

17

2mod)31(1

22/)31(2

AAC

AAAX

+=
−+=

2/)31(1 AAX −=M1 M2

2/)12(2/)12(2

2/)12(2/)12(1

++−=

+−−=
kk

kk

nmL

nmL

evaluator

nm),(
M6M5

222 LXD += 111 LXD +=M3 M4

Figure 6 Converter proposed in [6]

Two more recent converters using n-bit adders have also been proposed in [15] and

[18]. The one in [18] is based on the approach in [7] and therefore has high hardware cost,

while the one in [15] has similar hardware cost as the new converters proposed here.

However, the converter in [15] has some unused dynamic range.

The following Table 2 summarizes the comparison of the two converters proposed in

this paper and the converter in [6][15][18], where CII stands for Converter II while CIII

for Converter III.

Table 2 Performance Comparison of n- bit Adder Based Converters

FA MUX XOR AND
/OR

INV HA Mem CLA Delay

CII 2n 2n+2 1 2 2n+5 1 0 4 t t t tinv FA MUX CLA n+ + + ()

CIII 2n 2n+2 2n-1 2+2n 2n+7 1 0 2 t t t t t tinv FA XOR AND MUX CLA n+ + + + + ()

[6] n 0 2 10 4n+8 0 8n 4 3 2t t t t tinv FA XOR AND CLA n+ + + + ()

[18] 6n 2n n+1 n+3 0 0 0 4 2 2t t t tFA NAND CPA n MUX+ + +()

[15] 2n 2n 0 0 2n 0 0 4 t t t t t tOR ANDOR inv MUX FA CPA n+ + + + +2 ()

Assume tMUX = 2 , tFA = 2 , t tinv AND= =1 , t nCLA n() log= , tXOR = 2, then the delay of

Converter II is t t t tinv FA MUX CLA n+ + + () = 5 + logn . The delay of Converter III is

t t t t t t ninv FA XOR AND MUX CLA n+ + + + + = +() log8 . The delay of the converter in [6] is

3 2 8 2t t t t t ninv FA XOR AND CLA n+ + + + = +() log . The delay of Converter II is almost half of

the delay of the converter in [6].

18

Assume the straightforward implementation of the CLA which consists of carry look-

ahead unit and a summation unit which in total require 2
1
2

1n n n+ +() AND gates, 2n

XOR gates, and n OR gates. The hardware requirement in [6] is even higher than the

hardware required in Converter III while its delay is longer.

V Conclusion

Three different residue-to-binary converters for the special moduli (, ,)2 1 2 2 1n n n− +

have been presented in this paper. Compared to various previous proposed converters, the

new converters proposed here have better performance in terms of speed and area. The new

converters are designed based on the recently introduced New Chinese Remainder

Theorems. It is expected that for other moduli sets, the New Chinese Remainder Theorems

will also improve the design of residue-to-binary converters.

Acknowledgement

The authors kindly acknowledge detailed comments from referees that have improved

the quality of the manuscript.

References

[1] H. L. Garner, “The residue number system”, IRE Trans. Electronic Computers, Vol.

EC-8, pp. 140-147, June 1959.

[2] N. Szabo and R. Tanaka, “Residue arithmetic and its applications to computer

technology, New York, McGraw-Hill, 1967.

[3] M. A. Soderstrand, et al., Eds, “Residue number system arithmetic: modern

applications in digital signal processing”, New York, IEEE Press, 1986.

[4] Hwang, “Computer arithmetic principles, architecture, and design”, John Wiley and

Sons. 1979

19

[5] A. Ashur, M. K. Ibrahim, and A. Aggoun, “Novel RNS structures for the moduli set

(, ,)2 1 2 2 1n n n− + and their application to digital filter implementation”, Signal processing

46 (1995) 331-343.

[6] D. Gallaher, F. Petry, and Padmini Srinivasan, “ The digital parallel method for fast

RNS to weighted number system conversion for specific moduli (, ,)2 1 2 2 1k k k− + ”, IEEE

Transactions on Circuits and Systems -II, Vol. 44, No. 1, January 1997, pp. 53-57.

[7] S. Piestrak, “A high-speed realization of a residue to binary number system converter”,

IEEE Transactions on Circuits and Systems -II, Vol. 42, No. 10, October 1995.

[8] K. Ibrahim and S. Saloum, “An efficient residue to binary converter design”, IEEE

Transactions on Circuits and Systems, Vol. 35, No. 9, September 1988.

[9] S. Andraos and H. Ahmad, “A new efficient memoryless residue to binary converter”,

IEEE Transactions on Circuits and Systems , Vol. 35, No. 11, November 1988.

[10] F. Taylor and A. S. Ramnarynan, “An efficient residue-to-decimal converter”, IEEE

Transactions on Circuits and Systems, Vol. CAS-28, NO. 12, December 1981.

[11] A. Dhurkadas, comments on “An efficient residue to binary converter design”, IEEE

Transactions. on Circuits and Systems, Vol. 37, June 1990, pp. 849-850.

[12] Y. Wang and M. Abd-el-Barr, “A New Algorithm for RNS Decoding”, IEEE

Transactions on Circuits and Systems - I, Vol. 43, No. 12, December 1996.

[13] Yuke Wang, “Residue-to-binary converters based on New Chinese remainder

theorems”, IEEE Transactions on Circuits and Systems - II ., March, 2000, pp. 197-

206.

[14] Yuke Wang, “New Chinese remainder theorems”, Proceeding of 32th Asilomar

Conference on Signals, Systems & Computers, 1998. Vol. 1, pp. 165 -171 vol.1

[15] R. Conway, J. Nelson, “Fast converter for 3 moduli RNS using new property of

CRT”, IEEE Trans. on Computers, Vol. 48, NO. 8, August 1999, pp. 852-860.

20

[16] B. Vinnakota and V. V. B. Rao, “Fast conversion techniques for binary-residue

number systems”, IEEE Trans. on CAS -I, Vol. 41, No. 12, December 1994, pp. 927-

929.

[17] W. J. Jenkins, “Techniques for residue-to-analog conversion for residue-encoded

digital filters”, IEEE Trans. Circuits and Systems, Vol. CAS-25, pp. 555-562, July 1978.

[18] M. Bhardwaj, A. B. Premkumar, and T. Srikanthan, “Breaking the 2n-bit carry

propagation barrier in residue to binary conversion for the (, ,)2 1 2 2 1n n n− + module set”,

IEEE Trans. on Circuits and Systems – II, Vol. 45, No. 9, September 1998, pp. 998-

1002.

