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Abstract

Based on an agorithm derived from the New Chinese Remainder
Theorem |, we present three new residue-to-binary converters for the
residue number system (2" -1,2",2" +1), designed using 2n- bit or n-hit
adders with improvements on speed, area, or dynamic range compared to
various previous converters. The 2n- bit adder based converter is faster and
requires about half the hardware required by previous methods. For n-bit
adder based implementations, one new converter is twice as fast as the
previous method using smilar amount of hardware; while another new
converter achieves improvement in either speed, area, or dynamic range

compared to previous converters.
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| Introduction

There has been interest in Residue Number System (RNS) arithmetic as a basis for
computational hardware since the 1950's [1] [2]. During the past decade, the RNS has
received considerable attention in arithmetic computation and signa  processing
applications, such asfast Fourier transforms, digital filtering and image processing [2][3].
The main reasons for the interests are the inherent properties of RNS such as parallelism,
modularity, fault tolerance and carry free operations [3]. The technology advantages
offered by VLSl have added a new dimension in the implementation of RNS-based
architectures. Several high-speed VLS special purpose digital signal processors have been
successfully implemented.

Two most important issues for the residue arithmetic are the choice of moduli sets and
the conversion of the residue to binary numbers. The residue number system based on the
set of moduli (2" -1,2",2" +1) has gained popularity and is expected to play an increasing
role in RNS digital signal processing [5]. For genera moduli sets, the residue to binary
conversions are traditionally based on the Chinese Remainder Theorem (CRT) or Mixed-
Radix Conversion. Some new general conversion algorithms caled New Chinese
Remainder Theorems have been recently proposed with smaller size modulo operations
[13][14].

Severa conversion methods for (2" -1,2",2" +1) have been reported [6] [7] [8] [9]
[10] [11] [15] [16][17][18]. Early converters [17] for such moduli sets use ROM, which
can belimited by thesizen. In recent years, converters using 2n-bit or n- bit adders have
been proposed. These converters are designed using speciad formulas rather than the
genera CRT agorithm, and improvement in terms of hardware complexity has been
reported. Detailed comparisons of all those converters are presented in Table 1 and 2 in this

paper.



In this paper, for the moduli set (2" -1,2",2" +1), we present new and uniform
algorithms designed using the New Chinese Remainder Theorems for the RNS to binary
conversion. Three different converters using either 2n- bit or n- bit adders are proposed.
The 2n-bit adder based converter is faster and requires about half the hardware required by
the previous methods [ 7][8][9]. For n-bit adder based implementations, one new converter
is twice as fast as the previous method [6] using a similar amount of hardware; while
another new converter achieves improvement in both speed and area. The amount of
hardware for the new converters issimilar for n-bit adder based converter compared to the
onein[9]. However, in [9], not the entire dynamic range of numbers are used.

In the following, we first introduce background material and derive the formulas; then

we show an example and propose three different hardware implementations.
Il Background

For any two numbers X and P, x = XmodP is defined as X =x +bPR for some
integer bsuchthat 0< x <R. XmodR canbewrittenas X; or [ X[ .

A Residue Number System is defined in terms of a set of relatively prime moduli
(R,B;--sR), where GCD(R,P) =1for i # j. A binary number X can be represented as
X = (X, X5y, %), Where x. = XmodP, 0< x <P. Such arepresentation is unique for

any integer X OJ[O,M), M = |_| P.

1<i<k

For the residue number system defined on the moduli set (2" -1,2",2" +1), a binary
number X 0[0,2"(2" —1)(2" +1)) =[0,2°" —2") can be represented as a tuple (X, X,,X,),
where x;, and X, aretwo n-bit binary numbers; X, is a n+1-bit binary number, denoted as
follows.

Xon_, =X Mod(2" =)= X= X1y Xyn-2) X1 %0 Q)
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—_ n — -
X0 = XmMod2" =X, = Xy1_1)Xo(n-2) -+ X1 X0 (2

Xy = XMOd(2" +1) =X =Xy Xgn-1)Xan-2)-+Xa1%a0 ©)

2" +1

To convert a residue number (X,X,,...,X,) into its binary number X, Chinese
Remainder Theorem and Mixed-Radix Conversion method are traditionally used. We

define [P~ to bethe multiplicativeinverseof RmodP, i.e, |[R™ * R =1modPR.

Chinese Remainder Theorem The binary number X is computed by

X = ZNi‘Ni‘l‘ x| , where N, =M and N is the multiplicative inverse of
=1 R lu R ‘
N. modP.

The CRT requires amodulo M (large-valued) operation, which is not very efficient.
Therefore the converters proposed in [6]-[11] [15][16][18] use specialy designed
algorithms to remove the modulo M operation or to reduce the size of the modulo

operation. For example, the converters in [6][14] ae based on the formula
X=D,*2*" +D,* 2" +x,, and methods are required to compute the coefficients D, and

D,. In [7][9][15], the converters are based on the formula X = Y +X, and methods

22n_1)
for computing Y are needed in each paper. In [7], the number Y is cdculated as

|A+B+C-2Z]|,, where A B,C,Z are2n bit numbers obtained from (x;,X,,X;). On the

220 -1
other hand, the third formula in [15] reduces the size of the modulo operation from M to

N, at the expense that some part of the dynamic range X [J[0, M) will not be useable.

Recently, some alternative general conversion algorithms, the New Chinese Remainder
Theorems (New CRT-I, Il and I11) [13] [14], have been proposed, which reduce the size

of the modulo operation required by the CRT.

New Chinese Remainder Theorem | (New CRT-I) Given the residue number

(X5 X5,.., X)) , the binary number X can be computed by



X =| X +k1P1(X2 _X1) +k2F?LPz(X3 _Xz) *.. +k(n—l)PlP2"'Pn—1(Xn _Xn—l) |PlP2...Pn,1Pn (4)

which can be easily simplified as the following:
X=x + Pl|k1(X2 _Xl) +k2Pz(X3 _Xz) *... +K1-1Pz---Pn—1(Xn _Xr’l-l)|p2__pn71pn (5)
where kB =1modPR,..P,, KkPRPR =1modPR,..P, ..k _R.P_ =1modP..

Based on the New CRT-I, we have the following theorem for n = 3.
Theorem 1 For athree moduli set (B, P,,P,), the binary number X = (x,, X, X;) can be

caculated as
X = %, +[k(%, =) +k,P(% %)), , B (6)
where kP, =1modPF,P, and k,BP, =1modR..
In the next section, we apply the formula (6) to the moduli set (2" -1,2",2" +1)to

design the residue to binary converters.
1l Basic Formulas

The following Theorem 2 is adirect application of Theorem 1.
Theorem 2 For the moduli set (2" -1,2",2" +1), the number X can be computed
from (x;, X,,%;) by the formula:
X=X, +2™ | (X, =X3) +(X —2X, +X;)2"(2" +1) |20y (7)
Proof Using Theorem 1 and assuming that B =2", B, =2"+1, and B, =2" -1, we
have k=2" ad k,=2"" such tha  k2"=1mod(2*"-1) and

k,2"(2" +1) =1mod(2" -1). Therefore, we have the following



X= 3%, +2"2" (X = %,) +2"H(2" +D(%, ~%5)| 0,
=X, +2712(%g =%,) (27" D) (%5 =%;) +277H(2" (X, X)|z0_,
=X, +2°|(% =Xg) (27" +27) (%5 =%;) + 272" +1)(X = X5)|0_,
=%, +27|(%, %) +27H (2" +D)(%, —2%, %) .0

Proposition 1 For any integersa and b, we have (A0, = @+ 2b0

B2H " H2 H

Proof Let a, =amod2, then we have that

(A

a=2* & a, a+2h=2" %E+ao+2b:2*(§§+b)+ao,

therefore we have the proposition.

Proposition 2 X can be computed by the following formula

X=x,+2"*Y (8-1)
where  Y=[A+2"*B| .. (8-2)
A= T+ (g O %) * 2”%2(2"— Exp @290 o
B - Hxl + (X10 D X30) * 2n)|- X3+ 2(2n_ 1_ X2) |:| (8'4)

2
X, and X,, aretheleast significant bitsof x, and X, respectively;

X0 O X4, denotes the XOR operation, i.e., X, U X7 X0 XOR Xy, .

Proof Let Y =|(X, —X,) +(X —2X, +X;)2" (2" +1) |( in (7), then we have

22n _1)

X=x,+2"*Y,and Y =| (X, = X;) +(X, —2X, +X;)2"" +(X, —2X, +X;)2°""|

(@*"-n°
Since (X, —2X, +X;) =2* [{X, —2X, +X;)/ 2]+ (X, —2X, +X;),; we  denote
Z,=(X, = 2%, + X3), = (X U Xg), 2= [{X —2X, +X;)/ 2], therefore we have

Y =[[(% =%;) +2% 2" +(x OXep) ¥ 2775 2% 2™ (X0 %) * 2771 |

(2°"-1)

=[[(x, — X, +2) + Ox.,.)* 2" 4% z* 2"+ 0 X, )* 22"
2 3 XlO 30 XlO 30

(2°"-1)



={E0, ~ %)/ 20+ (60 D) * 2% 27 [ 26+ %)/ 20+ (0 0 %) * 227 e
=|{[[%, —X)/ 2+ 2, * 2" + 2"[[{x, —2X, +X;)/ 2]+ 2, * 2" ']} |20

:H(E(xl—xs);zo* 2“§+2n(é(x1—2x2 %) +%* 2" Dl

2

—X)+z,* 2" +2™0 —2X, X, +2") 4z, * 20,
(R R E
(X X) 2% 24200 o TG = 2%, % 427 +2,%2'0
{( > H_)+ (B 5 H‘)}I(ZZH)
L L %) +Z ¥ 2" 420 -2 o X = 2%, + X, +2"7) +7,% 2" =2
SR Jrz (Rt 3 ey

X +Z,*2") +(2" -1 -x;) +(2" -1 . +7,*2") + %, +2(2" -1 -X
:|{(El ZO ) (2 3) ( )§+2(EX1 Z0 ) ; ( 2)§}|(22n_1)
i.e.,, we have Y:{A+2”*B}(22n_1). Q. E. D.

Next we present an example using the above formulas.
Example Consider the example shown in [6]. Let (2" -1,2",2" +1) =(7,8,9) and an
number 407, which can be represented as (1, 7, 2) in the moduli set (7, 8, 9).
Now given (1, 7, 2)=(001, 111, 0010), we have
Z, =X, UX5 1

(% +2,*2") +(2" =1 -x,) +(2" -1) =1001 +101 +111 =10101 =21

A= Hxl + ZO* 2 )+(2 2_1_X3) +(2 _l) D: 1010=10

(X, +2,* 2") +x, +2(2" =1 -X,) =1001 +0010 +0 =1011=11

B= Hxl + Zo* 2n) X5 +2(2n -1 _Xz) D:

101=5
2

Y={10+8*§ ,, =2+8%6 =50

X=7+8*Y =407
Compared with the long calculation in page 56 in [6], the above process is much

simpler.



IV New Converters

In Section 111, we presented the necessary formulas for residue to binary conversion. In
this section, we propose new converters using 2n-bit or n-bit adders based on the formulas
(8-1), (8-2), (8-3) and (8-4).

(1) Basic Operations to Compute A and B

We have to compute the numbers (x, +2z,*2")+(2" -1-x,) +(2" -1) and

(X, +2,*2") +x, +2(2" -1-x,) in order to obtan the vaues of

A= +7*2) +(2”2-1-><3) +(2" -1 Eand B= E(Xl t7*27) +x§ +2(2" -1 -%,)U

Let t=(2" -1-x%,) +(2" -1).

If X, =2", then X, =1, Xy = .. =Xy =Xy =0; t=(2" -2); which implies that
t = =t =1=%, =... =Xy,t, =0. Therefore we have
t=t, .4ty +0 =X, 4. X, 0 +X;,...X;,0 9

If x,<2", i.e, X, =0, wehave

t=(2" =1-%;) +(2" -1) =Ry Ky Ko Lol =Xy 1y Ky 0 +% 0%, 0 H(Kyy +)
n n-1

i.e., we have

t=(2" -1-%;) +(2" -1 =Xy1g)--X5 0 +%5,.. %5, 0 HXy, +1) (10)

n-1
Therefore we have
if x5, =1
(X +2*2") +(2" —1-%;) +(2" -1) =(x, +2,* 2") +Xy gy X5y 0 +X5,...%;,0,
ese

(X +2*2") +(2" —1-%;) +(2" —1) =(X 2% 2") Xy Xy O +%50...%5,0 H%y, 1)



The addition of (x, +z,* 2") +(2" -1 -x,) +(2" 1) is shown in Figure 1(a) and (b).
Figure 1(b) shows the block diagram of the unit. It consists of n FAs, 2 MUXs, 1 XOR
gate, and n+1 inverters. Thedelay of this unit is the delay of the FA plus the delay of an
inverter and the delay of an MUX. The circuit produces two numbers §S,_,S,_,...S§ and
C,..C._,.CC,0. We denote A=S5S5.S.,.S§ and A =C_C,,.CC, then
A+A=A.

Next we perform the addition (x, +z,* 2") +x, +2(2" -1 —x,) using FAs. The signa
z, isconnected to the carry-in bit of the full adder at the last FA in Figure 2 (a). Figure 2
(b) showsthe block diagram of the unit. It consists of n inverters, 1 HA, and n FAs. The
delay of this unit (nFA2) is the delay of a full adder plus the delay of an inverter. The
circuit produces two numbers S, S 1S oSS CoinCioiinCooin-CrinCosn- We
denote B =8,,84:S2m-Sw  and B, =Ci1inCizinCrinCownr then

B +B,+C,.,*2' =B

Z, X Xin-2) )(_31 3 0 10
v v X
Xl(n—l) X, Xl(n—2) X3,, X X, 3 -—HWH MU X, X,
X
FA FA | ~ | FA FA nFA1
Sn Cn—l Sn—l Cn—2 Sn—Z Cl Sl CO SO Al AZ

(a) (b)

Figure 1 Compute A Using n FAs
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Xz(n—l) XZ(n—Z) XZ(n—3) X20
X3, Xsn | Xy X3 Xy
Z() Xl(n—l) Xl(n—Z) Xll XIO XI XZ X3
FA FA FA | FA HA NFA2
Cn+n Cn—1+n Cn—2+n C1+n C0+n Bl BZ Cn+n
Sn+n Sn—1+n Sn—2+n Sl+n S0+n
(a) (b)

Figure 2 Compute B Using n FAs

Therefore Y asdefined in (8.2) now becomes:

Y| A+2" Bl F(A +A) +27% (B, +B, +C,, * 2") .., F(A +A, +C,) #27%(B, 1B) .

i.e.,
YE[(A+A+C ) +27% (B +B) |0, (11)
where A, A, B, B, aredl n- bit numbers; C_,  isaone bit number.

The addition in (11) can be done in many different ways using 2n- bit or n- bit adders.

These different implementations will be shown below.

(2) 2n-bit Adder Based Converter - Converter |
In the following, we present the new Converter | implementing the addition in formula

(11) using a 2n- bit adder.

Y=[(A+A +C.,) +2"* (B +B) |2, Coin H(A +2°B) HA, #2"B,) |,
TG+ SinSanS 2003 1S 2 G 1 0CG 5 0 CunCounCaa GGG | on

Where S1+n$1—1+n31—2+n"'%+n$1$1—1$1—2'"3. and Cn—1+nCn—2+n"'C1+nCO+nCn—1Cn—2'"Clco ae

two 2n- bit numbers, and C_,,, isa1-bit number.

11



In the following Figure 3 (a), the units nFA1 and nFA2, used to produce A,A,,B,B,
are connected to a 2n-bit 1's complement adder. The 2n-bit adder produces the vaue Y,

which formsthe 2n MSB’s of the number X, while x, formsthen LSB’sof X.

XX, X, X, X, 2n-bit CSA with EAC
nFA1 nFA2 2n-bit CSA with EAC
141 Az Cn+n
2n-bit 1’'s complement adder 2n-bit 1’'s complement adder
Xz X2
Y Y
(a) Converter | (b) Converter in [7]

Figure 3 2n -bit Adder Based Converters
The hardware required in the new Converter | shown in Figure 3(a) is as follows: 2n
FAs, 1 HA, 2 MUXs, 1 XOR gate, 2n+1 inverters and one 2n-bit 1's complement adder.

The delay of the converter t_,, is the sum of the delay of the FA t.,, the delay of an

\Y

inverter t

inv?

the delay of MUX t,,,x, and the delay of the 2n-bit 1's complement adder

tican = Zlepacn) [7],1.e, teon =tea +Hp +2tepacan + twux-

In the literature, one of the best converters using 2n- bit adders is presented in [7]. In
order to compare the performance, we show the main components used in the converter
proposed in [7] as Figure 3(b). The delay in [7] is 2t, +t, +2tep,,, +3tyux- FOr
simplicity reason, we only compare one version of the implementation in [7]. The second
implementation has the same result. From the side by side comparison, it is easy to see that
we save one 2n-bit CSA with End Around Carry (EAC).

Detailed comparison of the related other converters are summarized in the following

Table 1, where the data for references [8] [9] [11] are from Table | in [7]. In summary,

12



Converter | isthe best converter using 2n-bit adders, using about half of the hardware used
in[7]. The reason for such improvement is that the converters in [8][9][11][18] are using

the formula |A+B+C-Z|,, where AB,C,Z ae 2n bit numbers obtained from

22N -1

(X, %,,%;), while the new Converterl is derived based on the New Chinese Remainder

Theorem | and is computed by Y =|(A +A, +C ., ) +2"* (B, +B)| which reduces

220 -1
the 4 numbers operation into 2 numbers.

Table1l Performance Comparison of 2n- bit Adder Based Converters

Converter [FAs | AND [XOR/ | CLAs | other Dday

JOR |XNOR | -2n
[8] [11] 6n B n+ 1 2 B 2tCPA(n) + 2tCPA(Zn) + 2tXOR
[9] 6n 4n-2 2n 1 - 3tCPA(zn) +tyor T 09(2N) Ao
[18] 6n n+3 [ntl |1 2ten + by Fopacn +wux
[7]-CE 4n 2n-1 | 2n 1 2n+1 inverter 2tep + b+ 2tepaon T 3tux
Converterl | 2n - 1 1 1HA, 2MUX tow + tuux Ftea +2tepacan

2n+1inverter

(3) n-bit Adder Based Converters - Converter |l and I11

The addition in formula (11) can also be done by n-bit adders. In this section, we
propose two such converters. The performance is to be compared with the performance of
the converter in [6][15][ 18], which use n- bit adders as well. Since we can only generate n-

bit numbers using n- bit adders, therefore we obtain the vaue Y in the form
Y=Y, +2"* Y, where Y, and Y, are both n- bit binary numbers.
Recall thet Y =|(A +A, +C,,,) +2"* (B, +B))|,.._, Where A,A,,B,B, are al n-bit

numbers; C ., is an one bit number. Using an n-bit adders, we can add A and A,

together with C_,, which generates asum D, and acarry r,. Similarly we can add B,
and B, using an n- bit adder which generatesasum D, and acarry r,. Since the addition is

module 2°" -1 addition, the carry r, represents a number which should be added to the

number A+ A,+C,,, . For thecase wherethecarry r, is0O, thesum D, isthevaue Y,. For

13




the case where the carry 1, is O, the sum D, is the value Y, such that Y=Y, +2"*Y,.
However, when the carries r, and r, are not O, the value D, and D, must be modified to
obtain the correct valueof Y, and Y,. In the following, we propose Converter |1 and |11 for

the operation. Compared to Converter |1, Converter |11 achieves faster speed while using

more hardware.

Converter Il
In Figure 4, we use two Carry Look Ahead adders (CLA) to perform the operation
A +A and A + A, +1inpardlel. The results are denoted as D, and D,, with carry r,,
and r, respectively. If r, #r,, we have D, =2" -1 and D,, =D, +1=2". Similarly
two CLAs areused to perform B, + B, and B, + B,+1 while the results are denoted as D,,
and D,, withcarry r,, and r,,. If r,, #1,,, wehave D,, =2" -1and D,, = D,, +1=2".
The selector modul e selects the correct carry and the correct sum for the number Y, and
Y,. The function of the selector is described below.
If ryzr,and r, Zr1,,,thenr, =1, =0
Elseif r, =r1,, then n="ry
ifr,=0,r1,=r,
dser, =r,,
Else if r,, =r,,, then r,=ry
ifr,=0,r=r,
dser, =1,
Thereforethecarry r, =1if (r, =r, =1) or (r, =r,, =0 and r, =1) or (r, =r,, =1
and r, =1), i.e, 1 =140, 00,0, 0.0, Similarly 1, = 1,1, + 1 o0, +1l,0h,.
The selector implements these two functions. Note here the selector does not introduce

any extra delay since CLAs are used and the carries r,;,r1,,,1,,,1,, ae generated during the

14



carry generation phase of the CLAs and available for evaluation to the selector while the

CLAs perform the summation.

X, X, X, X, X,
LR
| nFA2 ﬁ | nFA1 |
selector | | % 1 A 1% Cpan AL Cran sl
Eﬁ E;If# —oLat | CLA2 |
n r, D,, " D,, - D, " D, "
— MUXs T MUXs |
| | X,
Y, Y

Figure 4 Converter Il - Using 4 n-bit Adders
The hardware required in Figure 4 includes. 2n FAs, 1 HA, 2+2n MUXs, 1 XOR
gate, 2n+5 inverters (including 4 invertersfor the selector), 2 AND gates for the selector,

and 4 n- bit CLAs. The delay of the converter is t.,,, =t,, +tea +tam Hiuux-

conv

Converter |11

Considering thefact that D,, = D,, +1 and D,, = D,, +1, we can replace the CLA2 and
CLA4 in Figure 4 by other combinational circuitsthat perform the operation D,, = D, +1
and D,, = D,, +1. Thefollowing Figure 5 shows such a converter.

The circuit plusl performs the function of adding 1 to an n- bit input numbers.
Consider D=d,_d, ,..dd,, D+1=d_d ,..dd, +1=ee e _..ee. We have the
following equations, which imply that the circuit plusl requires n-1 XOR gates and n
AND gates plus 1 inverter.

e =d,;g =d 0dd;;e= dJ d_,..d;e5 dO d_..de d._d...d

The hardwarerequired in Figure 5 includes: 2n FAs, 2+2n MUXs, 1+2(n-1) XOR

gate, 2n+5 +2 inverters (including 4 inverters for the selector, 2 for the plusl circuit),

15



2+2n AND gates for the selector and the plusl circuit, 1 HA, and 2 n- bit CLAs. The

delay of the converteris t,,, =t +tzn +tior Ttoam Haw Hyux-

Xl X2 X3 Xl X3

hy Ty 1y T | | c | |
| nFA2 " nFA1 |

B B A

Selector : *C,. 4 ?
 CLA3 " CLAT

D ‘ D D ‘ D
T e e
Dy, 65 Dy, "

Figure 5 Converter Il - Using 2 n-bit Adders

In order to make clear comparison, the following Figure 6 shows the main components
for the converter proposed in [6]. No detailed implementation is given for each module in
[6]. We evaluate the performance based on [4]. Recently the results in [4] are also used to
evaluate the performancein [7]. Modules M1 and M2 require 2 CLAS, 1 CSA, dl are n- bit
adders; 1 XOR for generating C1, 2n invertersfor 2's complement operation. M3 and M4
require two additional CPAsand 2n inverters for 2's complement operation. Module M6
uses 9 AND gates, 1 OR gates, 8 inverters, and 1 XOR gate. M5 uses 8*n bit memory to

store the value. The dday is t>(2t, +2tpny Fea) thor i Hap

= 3tinv +1ea tlhor Flan +2tCPA(n)'

16



X2 =(Al+ A3)/2-A42

M1 C1= (A1 + A3) mod2 X1=(A1-43)/2 | M2

L1=m2" =1)/2-n2* +1)/2 (m,n)
M5 M6
L2=m(2" -1)/2+n(2"* +1)/2 evaluator

M3 D2=X2+12 DI=X1+11 M4

Figure 6 Converter proposed in [6]

Two more recent converters using n-bit adders have also been proposed in [15] and
[18]. The onein [18] is based on the approach in [7] and therefore has high hardware cost,
while the one in [15] has similar hardware cost as the new converters proposed here.
However, the converter in [15] has some unused dynamic range.

The following Table 2 summarizes the comparison of the two converters proposed in
this paper and the converter in [6][15][18], where ClI stands for Converter II while ClII

for Converter 111.

Table 2 Performance Comparison of n- bit Adder Based Converters

FA [MUX [XOR [AND [INV [HA [ Mem |CLA | Deay
/OR

Cll [2n]2n+2 |1 2 2n+5 [1 [0 4 try +tea Ftyox Floam
ClI | 2n | 2n+2 | 2n-1 | 2+2n n+7 1110 2 Gy Flea Flior Tlawo Tlhaux Tlotam
[6] n 0 2 10 An+8 |0 | 8n 4 Bty T e T lyor tlawo +2tCLA(n)
[18] [6n | 2n ntl | n+3 [0 0 |oO 2tep + 2tyano +tepagn) Fimux
[15] 2n | 2n 0 0 2n 0 0 4 tor +tanpor *linv +2twux ttea Hepam)
Assume ty, =2, tea =2, t, =1=t\p, toam =10gn, t,r =2, then the delay of
Converter 1l is t,, +te, +tyx ttoam= 5+logn. The delay of Converter Il is

tiv Flea Thior Tl Thaux Hloam =8 Hlogn. The delay of the converter in [6] is

iy + e Hlior Flawp T 2tciam =8 +2logn. The delay of Converter Il is dmost half of

the delay of the converter in [6].
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Assume the straightforward implementation of the CLA which consists of carry look-

ahead unit and a summation unit which in total require 2n+%n(n +1) AND gates, 2n

XOR gates, and n  OR gates. The hardware requirement in [6] is even higher than the

hardware required in Converter 11 whileits delay islonger.

V Conclusion

Three different residue-to-binary converters for the speciad moduli (2" -1,2",2" +1)
have been presented in this paper. Compared to various previous proposed converters, the
new converters proposed here have better performance in terms of speed and area. The new
converters are designed based on the recently introduced New Chinese Remainder
Theorems. It is expected that for other moduli sets, the New Chinese Remainder Theorems

will aso improve the design of residue-to-binary converters.
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