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Abstract
We present a method for verifying the realizability of a timing
diagram, ensuring the synthesis of the underlying interface is
possible. If necessary, a heuristic is introduced to render
explicit hidden timing constraints implied by the specification.
A relative schedule of output events is computed, accepting
input events from the complete timing space defined by the
assumed constraints on the environment.
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1  Introduction
Interface design is an important aspect of the design of digital
microelectronic systems. This importance is growing with the
complexity of digital circuits. In order to manage this com-
plexity, hardware systems are designed as distributed systems
which require well defined interactions between the different
components. The communication protocol between compo-
nents is characterized by temporal constraints, hence the
proper timing of the interface controllers is crucial. Because
of their simplicity, and expressiveness, timing diagrams (TDs)
are used to specify the behavior of interfaces. Our work deals
with the realizability of TD specifications, and the subsequent
synthesis of interface controllers. Maximum separa-
tion[2,3,4,5,6,14], consistency[6], satisfiability[6], realizabil-
ity and causality[1] are among the most important concepts
developed in the literature on TDs with quantitative timing
constraints. Maximum separation determines temporal dis-
tances between events in the TD, and it constitutes the basic
computation on TDs that is used in other aspects of analysis.
Consistency ensures that the given system of constraints has at
least one solution. Compatibility verifies whether devices built
according to their TD specifications can correctly interact
when connected together. Authors of [1] define causality
property as a sufficient condition of realizability and give a
more elaborate solution to compatibility based on causality. In
this work we present a new method for determining whether a
TD is realizable. Our method can deal with concurrent con-
straints between input and output events not allowed in [1],
and no causal partition over events is necessary, thus avoiding
the complexity of determining causal partitions as in [16]. The
relative scheduling used in our method constitutes a generali-
zation of relative scheduling, since the assume constraints can
be bounded compared to unbounded only in [10]; we Also

allow intermixing of input and output events which is the case
in TD specifications.
Many previous approaches dealt with interface synthesis. The
method of Nestor and Thomas [8] is based on behavioral syn-
thesis, is limited to synchronous interfaces with linear con-
straints and might lead, for complex interfaces, to tedious
specifications. Furthermore, the method does not determine
the adequate clock rate automatically. The well known work
by Borriello [7], based on templates, has its own limitations. It
deals only with linear constraints, and may gives rise to race
conditions. Another approach is described in [9,11] using pro-
cess calculus. This method considers precedences without
quantitative temporal constraints. The recent method reported
in [12], developed for embedded systems, is limited to the der-
ivation of a combinatorial interface transducer which ensures
the connection, either by direct wires or via a combinatorial
circuit, between the ports of communicating circuits. In this
work, we present an approach to the synthesis of general inter-
face controllers from TD specifications with linear temporal
constraints. It consists of deriving a new timing diagram from
the original one, containing all the given constraints on input
events, and all the initial constraints and some new constraints
on the output events such that the schedule of each output
event depends only on its immediate parents.

2  Background
2.1  Interface specifications
An interface consists of a set of channels calledports serving
to exchange information between a system and its environ-
ment, a set of rules defining aprotocol of communication, and
timing relationships betweenevents occurring on the ports.
The interface behavior can be specified using timing diagrams
(TDs). An event graph EGcan be associated with each TD:
EG = (E,C) where the set of verticesE corresponds to the set
of events and the set of directed edges C corresponds to a set
of constraintsC = { cij = (ei, ej, [l ij , uij ])  ei, ej ∈ E}. To each
eventei, we assign anoccurrence time of ei denoted byt(ei)
such that  for all cij ∈ C. Occurrence
time as well as upper-bounds are supposed to be non-negative
reals.cij is aprecedence constraint if l ij .uij  >0. Otherwise, it is
a concurrent constraint. A constraint isexplicit if it figures in
C; it is implicit if it can be deduced by some computation (e.g.
maximum separation). For a constraintcij = (ei, ej, [l ij , uij ]), ei
is calledparent of ej. An event (node) is said to be aconver-
gence event (node) if it has more than one parent.
A direction is associated with each event: input or output.
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Denote by I the set of all input events, andO the set of all out-
put events. E = I ∪ O and I ∩ O = ∅. A timing constraint
cij = (ei, ej, [l ij , uij ]) is acommit constraint if ej ∈ O, otherwise
it is anassume constraint. We denote byA (respectivelyK) the
set of assume (commit) constraints overE, A∪ K = C. A
commit constraint is under the control of the designer, since it
concerns an output event to be produced by the system under
construction. An assume constraint is guaranteed by the envi-
ronment, and we cannot force any specific separation time
between eventsei andej. We denote byCS-G, CS-A andCS-K

the system formed by all timing constraints inC, the assume
constraints inA and the commit constraints inK, respectively.

3  Timing analysis
Analysis of the timing behavior of the interface is crucial for
two purposes. First, for interface verification, to check if the
implemented circuit satisfies all timing requirements, so that
all output events will be produced within the time interval
required and expected by the circuit’s environment. Second,
for synthesizing digital circuits, to determine delays within
which output events must be produced.

3.1  Maximum separation
A separation time is the difference between the occurrence
times of a pair of events: (sij = t(ej) - t(ei)).The computation of
the maximum separation times between events in a timing dia-
gram does not take into account the nature of events (input or
output) but only the system of constraintsCS-G. Several algo-
rithms have been developed for computing the maximum sep-
aration. The complexity of these algorithms depends on the
type of the timing constraints allowed[2][3][6,7][13][14].
An event graph is said to betight if the bounds of each con-
straint correspond exactly to the maximum separation on the
whole event graph.

3.2  Consistency
Definition 1 [6] An event graph(E, C) is consistent if and
only if the set of n-tuples (t(e1), …, t(en)) satisfyingC is not
empty.
Note that consistency does not take into account the nature of
the events. This does not guarantee that a given specification
is implementable. In the example of Figure 1, we can assign
an occurrence time to each event such that all given con-
straints are satisfied. For example, (t(i1), t(i2), t(o1), t(o2)) =

(0, 10, 10, 30) is a solution. But we cannot find any possible

Figure 1 Example of consistent but not realizable event
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assignment when the environment produces the eventi2 at
time 100 afteri1 which it is free to do.

4  Realizability
Let EG = (E, C) be an event graph,C = A ∪ K. |A| = m. Let
e= (e1, …, ek) be a tuple of events inE, and denote byt(e) the
vector of occurrence times (t(e1), …, t(ek)). Let Os be a set of
all output events which constitute the source events for con-
straints inA, Os = { ei ∈ O | cij ∈ A} , |Os| = q.For each con-
straint cij ∈ A (respectively K), we write δij = t(ej) - t(ei)
(γij = t(ej) - t(ei)). The interval [l ij , uij ] is denoted byI ij , we
haveδij ∈ I ij  for linear constraints. We denote byδ the vector
of δij corresponding to allcij in A.

Definition 2  A function f from (R+)n to R+ is a causal func-
tion if and only if it is a constant function or for each vectorx

= (x1, …, xn) ∈ (R+)n there exist a variablexi in x such that
f(x) ≥ xi.
Examples of causal functions are the functionsmin andmax.

Definition 3  A function h from Os to R+ is causal if there

exists q causal functionsfk from (R+)m to R+such that for each
eventok ∈ Os, (k = 1,…, q), we have h(ok) = fk(t(i)) wherei
= (i1, …, im).
The space of the occurrence times of the input events which
respect the assume constraints may depend on the occurrence
times chosen for the output events inOs. Hence the possible
values ofδij  depend on these choices. Given thatt(o) = h(o),
whereh(o) = (h(o1), …, h(oq)), we denote bySh the space of

all possible values of the vectorδ. Sh = { for cij ∈ A

| CS-A is consistent}.
Definition 4 An event graphEG = (E, C) is said to berealiz-
able if and only if: There exists a causal functionh from Os to

R+ such thatt(o) = h(o), o = (o1, …, oq) the vector of events
in Os with Sh ≠ ∅, and∀ δ ∈ Sh, the system (CS-K) is consis-
tent.

Example of realizable TD: Consider the event graph of Fig-
ure 2 (without dashed edges). We have:
CS-A = (10≤ δ1 ≤ 20) ∧ (10 ≤ δ2 ≤ 30)∧ (t(i2) = t(o3) + δ1) ∧
(t(i3) = t(o4) + δ2).
CS-K = (10≤ γ1 ≤ 60) ∧ (20 ≤ γ2 ≤ 50) ∧ (10≤ γ3 ≤ 30) ∧
(10 ≤ γ4 ≤ 30) ∧ (10≤ γ5 ≤ 20) ∧ (40≤ γ6 ≤ 60) ∧
(20 ≤ γ7 ≤ 70) ∧ (t(o1) = t(i 1) + γ1) ∧ (t(o2) = t(i 1) + γ2) ∧
(t(o3) = t(o1) + γ3) ∧ (t(o4) = t(o1) + γ4) ∧ (t(o4) = t(o2) + γ5)
∧ (t(o5) = t(i2) + γ6) ∧ (t(o5) = t(i3) + γ7). Os = (o3, o4).
Let us choose the functionh such that: t(o3) = t(i1) + 90 and

t(o4) = t(i1) + 70. Sh = { for cij ∈ A | CS-A is con-

δ I i j
i j
∏∈

δ I i j
i j
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sistent} = [10, 20] × [10, 30].
We must now verify if for allδ ∈ Sh we can findγij  such that
CS-K is satisfied. If we takeγ1 = 60,γ2 = 50,γ3 = 40,γ4 = 10,
γ5 = 20, we get t(o5) = t(i1) + δ1 + 100+ γ6 =

t(i1) + δ2 + 70+ γ7. We must chooseγ6 andγ7 such that γ7 -
γ6 = δ1 - δ2 + 30∈ [10, 40]. For all δ ∈ Sh, we can always
find γ7 ∈ [30, 70] andγ6 ∈ [40, 60] such thatCS-K is consis-
tent. So the event graphEG is realizable.

4.1  Verification of realizability

Firing of an eventz, by either the environment or the system,
is not possible unless all constraints affectingz are satisfied
and this is for all the possible occurrence times of past events.
Local consistency (defined in the following subsection) is ver-
ified for all convergence nodes. If it does not hold, we either
suggest corrections to the system or tighten commit con-
straints to obtain the local consistency property.

A. Local consistency
We suppose that all constraints are tight. The set of constraints
induces a partial order on the events, from which we can
obtain a total order. Let us consider the last convergence node
z according to this total order with two parentse1 ande2 and
constraints (e1 , z,[m1, M1]), (e2, z,[m2,M2]). The firing time
of z must satisfy: m1 ≤ t(z) - t(e1) ≤ M1 and m2 ≤ t(z) -

t(e2) ≤ M2. This implies the following condition on the sepa-
ration times12 betweene1 ande2:

m1 - M2 ≤ s12 = t(e2) - t(e1) ≤ M1 - m2  (1)

Definition 5 (Local consistency): Let EG = (E, C) be an
event graph. Letz be the last node ofEG, andP(z) a set of its
parents inEG. Let EG’ = (E’, C’), where E’ = E\{ z}, and
C’ = C\{( ei, z, [l, u]) ∈ C}. z is locally consistent if and only if
P(z) is a singleton or∀ e1, e2 ∈ P(z) the maximum separation
time s12 of e1, e2 (respectivelys21 of e2, e1) computed over
EG’ is less than or equal to the maximum separation times12

(s21) computed over {e1, e2, z}. EG is said to be locally con-
sistent if the last eventz and the sub-graphEG’ are locally
consistent.
Example: Consider the event graphEG of Figure 2, o5 is the
last event and is not locally consistent. The parents ofo5 are
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(i3, i2), we gets32 = 40 ands23 = 40 computed overEG’,

whereas from the equation (1) we should haves32 = 40 and
s23 = 30.

B. Realizability and local consistency relationship
In this section we study the relationship between the local
consistency of event graphs and the realizability of timing dia-
grams.
Definition 6 (Constrained Event Graph): An event graph
EG1 = (E1, A1 ∪ K1) is a constrained event graph (CEG) of an
event graph EG2 = (E2, A2 ∪ K2) if E1 = E2, A1 = A2,
K1 = {K2 with restricted intervals} ∪ {set of additional com-

mit constraints}.
Theorem: (Realizability of EGs): An event graph
EG = (E, C) is realizable if and only if there exists at least one
locally consistent constrained event graphCEG associated
with it.

C. Finding a locally consistent constrained event graph
In case when anEG does not verify local consistency, some
judicious modifications can be done to the commit constraints
to make it locally consistent. The problem is thus reduced to
determining which commit constraint to modify and/or to add,
without altering the given assume constraints nor causing any
timing inconsistency. Figure 2 illustrates the different possi-
bilities. o5 does not verify the local consistency property, we
should enforce the implicit assume constraint betweeni3, i2 to
be in [-30, 40]. To obtain this condition we look among the
events in the graph for a candidate new commit constraint
which could be in this case (i3, o3, [-40, 20]). Suppose without
loss of generality, that the implicit assume constraint to be
enforced is betweene1 and e2 with interval [m, M], and an
output event ok is a parent of e2 with a constraint
(ok, e2, [m2, M2]) such that the commit (e1, ok, [l, u]) is to be
added, then such commit should verify the following condi-
tion:

u+M2 ≤ M and m≤ l+m1  (2)
By examining recursively the different sub-graphs, we obtain
the sub-graph containing {i1, o1, o2, o4}. o4 is not locally con-
sistent, but we can add a commit constraint (o1, o2, [-10, 20])
to ensure it.

Algorithm for finding a locally consistent event graph:
Step1: tighten the event graph

 /* warnings are generated on each eventual modification of
assume constraints*/
Step2: sort the list of convergence nodes in a reverse topological order
Step3:
for each convergence node
     {determine its parents

for each pair of its parentsdo recursively    /* by a depth-first search */
           {verify the local consistency condition

if  the condition holdsthen continue
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else if a commit constraint can be addedthen {add the commit
   constraint and update the list of convergence nodes}

else {find a commit constraint satisfying equation (2)
                update the list of convergence nodes}

 }
}

5  Synthesis and Experiments
When the local consistency property holds for all convergence
nodes, the next step is to compute a relative schedule for all
output events. It can be shown that ALAP relative schedule
[10] with respect to the parents is a realizable schedule. For
the example of Figure 2 (with the dashed edges included). A
realizable schedule is derived as follows:

t(o1) ∈ [10, 60],
t(o2) = min(t(i1) + 50, t(o1) + 20),
t(o3) = min(t(o1) + 40, t(i3) + 10),
t(o4) = min(t(o2) + 20, t(o1) + 30),
t(o5) = min(t(i2) + 60, t(i3) + 80).

The algorithm for local consistency was implemented using
CLP(BNR) Prolog [15] which is a constraint logic program-
ming system. We have done experiments with a number of
interface specifications such as the interface of theZ84C0008
CPU memory write cycle (Figure 3). The clock cycle used is
of 125ns. The event graph established for the write operation,
without wait signal, have 13 vertices and 21 edges. We get a
constraints system with 5 assume and 16 commit constraints.
A commit constraint must be added between i3 and o7 with an
interval of [-∞, 55].

The following ALAP relative schedule for the output events
can be used to implement the controller:
t(o1) = t(i1) + 80, t(o2) = t(i5) + 80, t(o3) = t(i2) + 60,
t(o4) = t(i4) + 60, t(o5) = t(i3) + 60, t(o6) = t(i4) + 60,
t(o7) = min(t(i2) + 115,t(i3) + 55), andt(o8) = t(i5) + 70.
The relative scheduling is given in time units. A method simi-
lar to [16] can be used to produce schedules in terms of clock
cycles.

6  Conclusion
We presented a heuristic method to determine if a timing dia-
gram is realizable. It is based on checking the satisfaction of

Figure 3 Memory write TD for Z84C0008 CPU
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local consistency property for all events in the timing diagram.
This technique can be used to generate a proposition of modi-
fication for a non realizable timing diagrams. We derived a
synthesis method for interface controllers starting from timing
diagram specifications with linear constraints. This method is
based on a relative scheduling of output events from its imme-
diate parents. Such a method of scheduling has the advantage
of generating minimum offset delays for ALAP scheduling,
and it constitutes a generalization of relative scheduling.

References
[1] E. Cerny, K. Khordoc, “Semantics and Verification of Action Dia-

grams with Linear Timing Constraints”, Transactions on Design
Automation of Electronic Systems, Vol.3, No.1, Jan’98.

[2] K.McMillan, D.L.Dill, “ Algorithms for Interface Timing Verifica-
tion”, in Proceedings, IEEE ICCD’92, pp.48-51.

[3] T.-Y.Yen, A.Ishii, A.Casavant, W.Wolf, “Efficient Algorithms for
Interface Timing Verification”, in Proceedings, the Euro-DAC’94.

[4] H.Hulgaard, S.M.Burns, T.Amon, G.Borriello, “An Algorithm for
Exact Bounds on the Time Separation of Events in Concurrent
Systems”, IEEE Transactions on Computers. Vol.44, No.11,
Nov’95, pp.1306-1317.

[5] T.Amon, H.Hulgaard, G.Borriello, S.Burns, “Timing Analysis of
Concurrent Systems: An Algorithm for Determining Time Separa-
tion of Events”, in Proceedings, IEEE ICCD’93.

[6] J.A.Brzozowski, T.Gahlinger, F.Mavaddat, “Consistency and Sat-
isfiability of Waveform Timing Specifications”, Networks, Vol.21,
1991, pp.91-107.

[7] G. Borriello, “A New Interface Specification Methodology and its
Application to Transducer Synthesis”, Ph.D. Thesis, EECS, Uni-
versity of California,Berkeley, 1988.

[8] J.A. Nestor, D.E. Thomas, “Behavioral Synthesis with Inter-
faces”, IEEE ICCAD’86, pp.112-115.

[9] W.-D. Tiedemann, “An Approach to Multi-paradigm Controller
Synthesis from Timing Diagram Specifications”, in Proceedings,
the Euro-DAC’92, pp.522-527.

[10] D. Ku, G. De Micheli, “Relative Scheduling under Timing Con-
straints: Algorithms for High-Level Synthesis of Digital Cir-
cuits”, IEEE Transactions on Computer-Aided Design, Vol.11,
No.6, June 1993, pp.696-718.

[11] W.-D.Tiedemann, “Bus Protocol Conversion: from Timing Dia-
grams to State Machines”,EuroCAST’91, pp.365-377.

[12] K.-S.Chung, R.K.Gupta, C.L.Liu, “An Algorithm for Synthesis of
System-Level Interface Circuits”, in Proceedings, IEEE
ICCAD’96, pp.442-447.

[13] P.Vanbekbergen, G.Goossens, H. De Man, “Specification and
Analysis of Timing Constraints in Signal Transition Graphs”, in
Proceedings, the European Conference on Design Automation,
1992, pp.302-306.

[14] P. Girodias, E. Cerny and W.J. Older, “Solving Linear, Min and
Max Constraint Systems Using CLP based on Relational Interval
Arithmetic”. In Theoretical Computer Science, CP’95 Special
Issue, Volume 173. Forthcoming February 1997.

[15] W.J. Older, F. Benhamou, “Programming in CLP (BNR)”. In
PPCP’94, Newport, RI(USA), 1993.

[16] E.Cerny, Y. Wang, M.Aboulhamid, “Discrete-Time Scheduling
under Real-Time Constraints”, IWLAS’97.

Acknowledgments: The work was partially supported by a
Micronet Grant No. S.4.MCI.


