
Abstract

Dynamic power is the main source of power
consumption in CMOS circuits. It depends on the square of
the supply voltage. It may significantly be reduced by
scaling down the supply voltage of some computational
elements in the circuit, with the penalty of an increase of
their execution delay. To reduce the dynamic power
consumption, without degrading the performance
determined assuming that the circuit operates at the highest
available supply voltage, the supply voltage of
computational elements off critical paths can be scaled
down. Defined here as MinPdyn, the problem of minimizing
the dynamic power consumption, under performance
constraints, by scaling down the supply voltage of
computational elements on non-critical paths is NP-hard in
general. Solving MinPdyn for multi-phase clocked
sequential circuits may allow to reduce their power
consumption and the required number of registers.
Reducing the number of registers also allows to reduce the
power consumption, the number of control signals, and the
area of the circuit. In this paper, we focus on devising
methods to efficiently solve MinPdyn for designs modeled as
cyclic or acyclic graphs. More precisely, once the circuit is
optimized for timing constraints, then we look for schedules
that allow the computational elements of the circuit to
operate at the lowest possible supply voltage. We present an
integer linear programming formulation for that problem,
which we use to devise a polynomial time solvable method
and an exact algorithm based on a branch-and-bound
technique. Experimental results confirm the effectiveness of
the method and power reduction factors as high as 53,84%
were obtained. Also, they show that the exact algorithm
produces optimal results in a small number of tries, which
is due to the rules used to prune useless solutions.

1. Introduction

Design for low power has several motivations, such as
prolonging battery life in wearable electronic devices, and
reducing the cooling cost for high performance systems.
Battery life is becoming a product differentiator in many

portable electronic markets [8]. High performance systems
are characterized by large power dissipation. This
transforms to heat that can lead to system malfunction or
that may force reducing system performance.

Dynamic power, Pdyn, is the main source of power
dissipation in CMOS circuits. Pdyn depends on the square of
the supply voltage, , as expressed by the following
equation [3, 8]:

, (1)
where K is the switching activity factor, is the loading
capacitance, and f is the clock frequency.

Due to the quadratic term in equation (1), dynamic
power may significantly be reduced by scaling down the
supply voltage. Supply voltage reductions increase
execution delays. To avoid decreasing performance, we can
use performance determined assuming that the circuit
operates at the highest acceptable supply voltage as a target.
Then, the supply voltage of computational elements on non-
critical paths can be reduced. Defined in this paper as
MinPdyn, the problem of minimizing the dynamic power
consumption, under performance constraints, by scaling
down the supply voltage of computational elements on non-
critical paths is NP-hard in general [4].

Methods to obtain solutions to MinPdyn have been
proposed. In [1], a polynomial-time algorithm has been
proposed for performance-constrained non-pipelined
designs. Given a predetermined set of supply voltages, the
authors [1] schedule the acyclic datapath and assign
voltages to the computational elements in order to minimize
power. In their approach, it was assumed that the voltage
versus delay curve is identical for all computational
elements in the circuit. Under this assumption, the problem
transforms to a problem where identical computational
elements are used. Without this assumption, there is no
guarantee that the algorithm produces optimal results.

A technique to reduce power consumption has been
proposed in [2], where only two supply voltages are
allowed. A depth-first search is used to determine
computational elements which may operate at low supply
voltage, without violating the timing constraints of the
circuit. In this method, it is only after examining all its

V dd

Pdyn KClc f V dd
2=

Clc

Determining Schedules for Reducing Power Consumption Using Multiple Supply Voltages

Noureddine Chabini1, El Mostapha Aboulhamid1, Yvon Savaria2

1: LASSO, DIRO, Université de Montréal C.P.6128, Suc. Centre ville, Montréal, Qc, Canada, H3C 3J7.
Email:{chabinin, aboulham}@iro.umontreal.ca

2: GRM, DGEGI, École Polytechnique de Montréal, C.P. 6079, Suc. Centre-ville, Montréal, Qc,
Canada, H3C 3A7. Email: savaria@vlsi.polymtl.ca

successors that a computational element can be allowed to
operate at low supply voltage. Nevertheless, significant
reductions of power consumption can be obtained by
selecting a computational element without first examining
all its successors. Also, it is a question of how to choose the
node to start the depth-first search in cyclic designs.

To optimally solve MinPdyn under resource constraints,
an integer linear program approach for non-pipelined
acyclic designs has been provided in [3]. The authors [3]
also present a heuristic to solve the problem, but general
designs, such as pipelined and/or cyclic datapaths, are not
examined.

A dynamic programming technique to solve MinPdyn is
proposed in [4]. The authors [4] reported that their method
can produce optimal results for designs modeled as tree-like
data flow graphs. Suboptimal results are obtained in the
general case, such as pipelined design.

Methods based on software pipelining techniques have
been recently proposed to derive multi-phase clocked
sequential circuits operating at the optimal throughput [5,
7]. Solving MinPdyn for this class of circuits may allow to
reduce the power consumption, and to reduce the number of
registers in the circuit. Although operation chaining is
assumed to reduce the required number of registers and the
number of control signals in this class of circuits, further
reductions may be obtained by a supply voltage scaling
approach. Indeed, registers connected to computational
elements on non-critical paths may be omitted, since the
execution delay of these elements, after applying supply
voltage scaling techniques, may be increased, which may
make operation chaining possible. Control signals for these
registers will then be saved, and the circuit area will be
reduced too.

The approach we propose here is general and can be used
at any level of the design hierarchy, but we focus in this
paper on solving MinPdyn for the class of circuits mentioned
above. These circuits contain feedbacks and can be
modeled as cyclic graphs for optimization purposes. To the
best of our knowledge, no work has been explicitly
proposed yet for solving MinPdyn, when the design is
modeled as a cyclic graph. In this paper, we present an
integer linear programming formulation to MinPdyn that we
use to devise polynomial-time solvable method and an
exact algorithm based on the branch-and-bound technique.
Experimental results confirm the effectiveness of the
method and power reduction factors as high as 53,84% were
obtained. Also, they show that the exact algorithm produces
optimal results in a small number of tries, which is due to
the rules used to prune useless solutions.

The rest of the paper is organized as follows. In Section
2, we introduce the notations and definitions used in this
work. Section 3 presents the formulation of the problem we
tackle. We present a polynomial time solvable method to

determine solutions to that problem in section 4, and an
exact algorithm based on a branch-and-bound technique in
section 5. Section 6 provides experimental results and
Section 7 concludes the paper.

2. Preliminaries

2.1. The Cyclic Graph Model

A synchronous sequential circuit is modeled (as in [5, 7])
as a directed cyclic graph , where V is the
set of functional elements in the circuit, and E is the set of
edges which represent interconnections between vertices.
Each vertex v in V has a non-negative integer execution
delay . Each edge , from u to v, in E is
weighted with a register count , representing
the number of registers on the wire between u and v.

Figure 1 presents an example of a circuit and its directed
cyclic graph model. In this figure, large rectangles represent
functional elements, and small rectangles represent
registers. Wires are oriented to show the propagation
direction of the signals. The execution delay of each
functional element of this circuit is specified as a label on
the left of each large rectangle. This example will be used
through this paper, and will serve as an example of initial
specification for the problem to optimize. The initial
specification is in general a synchronous circuit with a
single-phase clock period, and it is assumed to operate at the
highest acceptable supply voltage. As an example, the clock
period of the circuit in Figure 1 is 6, which is equal to

.

G V E d w, , ,()=

d v() N∈ eu v,
w eu v,() N∈

d v4() d v1()+

Figure 1 : Sample circuit and its directed cyclic
graph model.

Circuit.

Directed Cyclic Graph.

1

2

4
0

1

12

2

3

5

1

1

1

1

1

1

 Functional
 Element#4

 Functional
 Element#5

 Functional
 Element#1

 Functional
 Element#2

 Functional
 Element#3

4
1

2

2
1

4 1

2.2. Periodic Schedules

We define a schedule s [11] as a function ,
where denotes the schedule time of the nth

iteration of operation v. In multi-phase flip-flop based
circuits, the schedule time is the start time of the operation.
A schedule s is called periodic with period P, if:

. (2)
When there is no resource constraint, a schedule s is said

to be valid if and only if the operations terminate before
their results are needed. In this case, we say that data
dependencies are satisfied, which is equivalent to the
following mathematical inequality:

. (3)

2.3. The Maximum Throughput of Synchronous
Sequential Circuits

The throughput, T, of a synchronous sequential circuit is
bounded by the inverse of the length, P, of the critical paths
in the circuit. Based on data dependencies constraints only,
the maximum throughput is [11]:

,
(4)

where C is the set of directed cycles in the directed cyclic
graph modeling the circuit. Determining the maximum
throughput is a Minimal Cost-to-Time Ratio Cycle Problem
[6, 9, 10], which can be solved in the general case in

 [6, 10], where
. A possible method to solve this

problem is to iteratively apply Bellman-Ford’s algorithm
for longest paths on the graph derived
from G by letting:

, (5)
where and . A binary search may be used
to find the minimal value of P for which there is no positive
cycle in GP [10].

For the example in Figure 1, we have that P = 4. This
value corresponds to the cycle defined by vertices v1, v2,
and v4.

2.4. Schedule for a Given Throughput

From equation (2) and inequality (3), we have that:
. (6)

In the case of periodic schedules, determining a valid
schedule of all the instances of each vertex v in V is
equivalent to determining for each v in V, which is
also equivalent to determining solutions to the system of
inequalities described by (6). To solve this system, the
graph GP, previously described, may be used. To find an
ASAP schedule, Bellman-Ford’s algorithm for longest
paths, from a chosen vertex vx to the others, may be applied
on the graph GP. Finding an ALAP schedule may be done
as follows: step 1, a graph G’ has to be derived from GP by

inverting the direction of each edge in GP; step 2, Bellman-
Ford’s algorithm for longest paths, from the vertex vx to the
others, has to be applied on the graph G’, where the weights
of its edges are defined by equation (5); finally, step 3, the
ALAP schedule is obtained by multiplying each result in
step 2 by -1. Relatively to vx = v1, the ASAP schedules of
vertices v1, v2, v3, and v4 of the circuit in Figure 1 are 0, -2,
-4, -4 and -4, respectively. The ALAP schedules of these
vertices are 0, -2, 1, -4 and -1, respectively.

2.5. Schedule Graph

As in [7], a periodic schedule, with period P, of vertices
of directed cyclic graph modeling a circuit is presented by a
schedule graph . Here V, E and d have
the same definition given for the case of the graph G
previously defined, and is a weight function,
which associates to each edge eu, v in E the time distance
between the schedule times of u and v. Mathematically,

 is defined as follows:
. (7)

Because s is periodic with period P, equation (7) may be
written as follows:

. (8)
The graph Gs is consistent if and only if for each edge eu,

v in E, . This is derived from (6) and (8).
Figure 2 shows a consistent schedule graph, where edges
are labeled with ws values, for the circuit in Figure 1 using
the ALAP schedule presented in Section 2.4.

2.6. Register Placement

In the method based on software pipelining proposed in
[7], once the optimal clock period is determined and a
schedule time of all the computational elements is
computed, then a register placement step is needed in order
to preserve the behavior of the original circuit. The
placement of registers is derived from a schedule graph Gs,
by breaking every path in Gs that is longer than the optimal
clock period P. For paths having a length less than P, no
register is required because operations chaining is assumed.

For the circuit in Figure 1, applying the algorithm in [7]
for register placement on the schedule graph Gs in Figure 2,
starting from v1, gives the placement of registers and their
schedules, as presented in Figure 3. The number of registers
is 8 and the number of phases is 4.

s : N V× Q→
sn v() s n v,()≡

n N∈∀ , v V∈∀ : sn 1+ v() sn v() P+=

n N∈∀ , eu v, E∈∀ : sn w eu v,()+ v() sn u() d u()+≥

T Minc C∈ w eu v,()
eu v, c∈
∑ 

  d u()
v V∈∀ and eu v, c∈

∑ 
 ⁄ 

 =

O V E V dmax⋅()log⋅ ⋅()
dmax Maxv V∈ d v()()=

GP V E d wP, , ,()=

wP eu v,() d u() P w eu v,()⋅–=
eu v, E∈ P 1 T⁄=

eu v, E∈∀ , s0 v() s0 u()– d u() P w eu v,()⋅–≥

s0 v()

Gs V E d ws P, , , ,()=

ws : E Q→

ws eu v,()
eu v, E∈∀ , ws eu v,() sw eu v,() v() s0 u()–=

eu v, E∈∀ , ws eu v,() s0 v() s0 u()–= P w eu v,()⋅+

ws eu v,() d u()≥

Figure 2 : Schedule graph.

1

2

4
4

2

22

2

3

5

1

6

7

1

7

4 1

1

3. Problem Formulation

Let Ph be the power consumed by the circuit, where each
computational element operates at the highest supply
voltage. The problem MinPdyn we tackle in this paper is
defined as follows. Given that acceptable multiple different
supply voltages are available, and that only one can be used
to drive a computational element, then determine the
schedule that leads to the maximum reduction of power
consumption, relatively to Ph, under the requirements R1
and R2 defined in the following. For R1, we are locking for
a solution where each computational element operates at the
lowest possible supply voltage. For R2, the schedule has the
same latency and throughput as when the circuit operates at
the highest supply voltages only. Here, latency is defined as
the time required to execute the first instance of all the
operations.

Before presenting a mathematical formulation to that
problem, let us first define some requirements. Based on the
supply voltages used, we assume that we have different
implementations for each computational element i. If
supply voltage , where , is used, then the
computational element i has an execution delay
and consumes the power . We suppose that supply
voltages are sorted from the highest value to the smallest
one, and numbered starting from 1. For each , and for
each k such that , let us denote by an integer,
which is equal to 1 if supply voltage k is used and to 0
otherwise. MinPdyn can be formalized as a mixed integer
linear programming problem, MILPMinPdyn, as presented
in Figure 4. In this formulation, the objective function
expresses the power consumed by all the computational
elements. The variables are ’s and the schedule time

 for each . P is the optimal clock period, which
is determined as mentioned in Section 2.3 assuming that the
circuit operates at the highest supply voltages. The other
parameters are as defined in Section 2. Equation (9) ensures

that only one of all the available implementations of
computational element i will be used. Equation (10) is
equivalent to (6), where the execution delay of i is

. Equation (11) is used to have a schedule
that has a latency less than or equal to that of the case where
the circuit operates at the highest supply voltages only.
Equation (12) and (13) are used to prune the solution space
and to guarantee that the schedule will have the optimal
throughput, where ASAP and ALAP schedules are
computed assuming that the circuit operates at the highest
supply voltages. Equation (14) is equivalent to the
definition of ’s.

Due to the space limitation, proofs of the following
theorems are omitted.
Theorem 1 : The problem in Figure 4 has always a
solution that is not necessarily optimal.
Theorem 2 : The optimal solution to the problem in
Figure 4 has the maximum throughput, P.

Since no efficient method is reported yet, in the
literature, for solving large and general mixed integer linear
programming problems, then devising heuristics to solve
them is of great interest. In the subsequent section, we will
present how we can transform the MILPMinPdyn to obtain
efficient methods for solving MinPdyn.

4. A Linear Programming Formulation to
Determine a Solution to MinPdyn

Scaling down the supply voltage of a computational
element reduces its power consumption, but increases its
execution delay. Based on this fact, replacing

(16)

in the formulation in Figure 4, by

Figure 3 : Register placement and their
schedules.

Register Schedule
R1 2
R2 1
R3 0
R4 2
R5 0
R6 3
R7 1
R8 0

1

2

4

2

2

3

5

1

4 1R6

R8

R2

R4

R7R3

R5

R1

ni

V dd
k 1 k ni≤ ≤

d i() di k,=
pi k,

i V∈
1 k ni≤ ≤ xi k,

xi k,
s0 u() u V∈

xi k, di k,k 1=

ni∑()

xi k,

Figure 4 : A Mixed integer linear programming
formulation to MinPdyn.

Formulation F1:

Subject to:
(9)

(10)

(11)

(12)

(13)

(14)

Minimize xi k, pi k,
k 1=

ni

∑
i V∈∀
∑

i V∈∀ , xi k,
k 1=

ni

∑ 1=

ei j, E∈∀ , s0 j() s0 i()– xi k, di k,k 1=

ni∑() P w ei j,()⋅–≥

i V∈∀ , s0 i() xi k, di k,k 1=

ni∑+ ALAPi di 1,+≤

i V∈∀ , s0 i() ASAPi≥

i V∈∀ , s0 i() ALAPi≤

i V∈∀ , k 1 ... ni, :,= xi k, 0 1,{ }∈

Minimize xi k, pi k,
k 1=

ni

∑
i V∈∀
∑

, (17)

may produce significant power saving over the power
consumed when the circuit operates at the highest supply
voltages. Let NMILPMinPdyn be the resulting formulation.

Let
. (18)

A linear programming formulation, LPMinPdyn, can be
derived from NMILPMinPdyn as presented in Figure 5. In
this formulation, (19) is derived using (17) and (18).
Inequality (20) is obtained using (10) and (18). Inequality
(21) is determined using (11) and (18). Inequalities (22) and
 (23) are equivalent to (12) and (13), respectively.
Inequalities (24) and (25) are equivalent to the fact that the
execution delay of any implementation of the
computational element i is between and , as
defined in Section 3.

Once the problem in Figure 5 is solved, the supply
voltage under which the computational element i must
operate is , where m is an integer such that

. The schedule of computational
elements may have to be recomputed using, for instance,
methods provided in [5].

Due to the space limitation, proofs of the following
theorems are omitted.
Theorem 3 : The problem in Figure 5 has always a solution.
Theorem 4 : The optimal solution to the problem in Figure
5 has the maximum throughput, P.
Theorem 5 : The problem in Figure 5 can be solved in
polynomial time.

In the case where the computational elements exhibit
significant differences in the power reduction to delay
increase tradeoff, the objective function in Figure 5 may not
provide the best power reduction. Let us first give an
example and then show how we can improve the objective
function to deal with such situation. For the example in
Figure 6, the critical path is formed by nodes 1, 2, 5 and 7.
The paths 1, 3, 6, 7, and 1, 4, 6, 7 are not critical. Indeed, the
maximum throughput is 1/4 and the ASAP schedules for
nodes 1, 2, 3, 4, 5, 6 and 7 are 0, 2, 2, 2, 4, 3 and 6,

respectively. Their ALAP schedules are 0, 2, 3, 3, 4, 4 and
6, respectively. Critical nodes have the ASAP schedules
equal to their ALAP schedules. Now, to scale down the
supply voltage of the nodes on non-critical paths, we have
two possibilities: scaling down the supply voltage of nodes
3 and 4 or of node 6. If the first case is chosen, the power
consumed will be reduced by 20 units; whereas in the
second case, it will be reduced by 50 units. However, by
examining the average power consumed per unit of time, ci,
for nodes 3, 4, and 6, we remark that for nodes 3 and 4, we
have that , and
for node 6, we have that

. Hence, injecting
these coefficients into the objective function would favor
slowing node 6 over nodes 3 and 4. Based on that fact,
formula (19) can be replaced by:

, (26)

where ci ’s are defined as follows:
. (27)

5. An Exact Algorithm to Solve MinPdyn

To solve optimally MinPdyn, we provide an exact
algorithm, ExactAlgo, based on a branch-and-bound
technique as presented in Figure 8. Let configG be the set of
supply voltages at which the computational elements of G
operate. Initially, configG holds the highest supply voltages
only. ExactAlgo has as input a graph G, an integer i that
controls the termination of the algorithm, an upper bound,
UpperBound, on the power consumed by the circuit, and the
optimal clock period, P, of the circuit. Initially, the circuit
operates at the highest supply voltages, which allows to
determine UpperBound, P and ASAP and ALAP schedules
for computational elements. These schedules are saved as
ASAP_save and ALAP_save. Example of implicit tree to be
explored by ExactAlgo is presented in Figure 7. ExactAlgo

Maximize xi k, di k,
k 1=

ni

∑
i V∈∀
∑

d i() xi k, di k,k 1=

ni∑=

di 1, di ni,

Figure 5 : A linear programming formulation to
determine a solution to MinPdyn.

Formulation F2:
(19)

Subject to:
(20)
(21)
(22)
(23)
(24)
(25)

Maximize d i()
i V∈∀
∑

ei j, E∈∀ , d i() s0 i() s0 j()–+ P w ei j,()⋅≤
i V∈∀ , s0 i() di+ ALAPi di 1,+≤

i V∈∀ , s– 0 i() AS– APi≤
i V∈∀ , s0 i() ALAPi≤
i V∈∀ , d– i() d– i 1,≤

i V∈∀ , d i() di ni,≤

V dd
m

di m, d i() di m 1+,<≤

c4 c3 p3 1, p3 2,+() d3 1, d3 2,+()⁄ 10= = =

c6 p6 1, p6 2,+() d6 1, d6 2,+()⁄ 30= =

Maximize ci d i()⋅
i V∈∀
∑

ci pi k,k 1=

ni∑() di k,k 1=

ni∑()⁄=

Figure 6 : Example to explain how Figure 5 can be
improved.

V1
dd V2

dd

Node# di,1 pi,1 di,2 pi,2

1 2 100 3 50
2 2 100 3 50
3 1 20 2 10
4 1 20 2 10
5 2 100 3 50
6 2 100 3 50
7 2 100 3 50

1

2

5

7

3 4

6

2

0 0 0

0 0 0

0 0

has to be called using . At each time ExcatAlgo is
called, one and only one computational element is switched
to the next low supply voltage, which leads to the creation
of a new node in the searching tree. In order to be accepted,
the configuration of the graph at that node must satisfy the
following conditions: (1) the graph is still working at the
maximum throughput P, (2) ASAP and ALAP schedules
are still bounded by the values of ASAP_save and
ALAP_save, and (3) each computational element i
terminates its execution no later than . If
one of these constraints is not satisfied, then the
computational element is switched back to the last
admissible supply voltage; in this case, the process of trying
another supply voltage for i is stopped, and we then
examine the next computational element of the node where
we are; if all the computational elements of that node are
examined, then ExactAlgo backtracks or it terminates if it
passed all the computational elements of the first node at
which the algorithm started to execute. If a node is
accepted, then a new node is created in the searching tree in
order to examine the next computational element. This new
node has as parent the computational element whose supply
voltage was just updated at the accepted node. In
ExactAlgo, an early check of the acceptance of switching
the supply voltage to the next one is done by verifying if

, which is derived
from inequality (11) assuming that .

6. Experimental Results

To test the effectiveness of the approach we propose, we
experimented the linear programming formulation in Figure
5 and the exact algorithm in Figure 8 on some benchmarks
used in the literature and on Figures 1 and 6. Circuits from
the ISCAS89 benchmark suite have been used to test the
efficiency, in terms of reducing power consumption and the
run-time, of the linear programming formulation. We use
four supply voltages: 5V, 3.3V, 2.4V, and 1.5V. To

determine the delay and the power consumed for
each computational element i, when the supply voltage
is used, we proceed as follows. We use the rule [2]

,
where Vth is the threshold voltage. is assumed known
and Vth is fixed at 0.7V, which is a typical value used in the
literature. ’s are determined assuming that the fanout of
the computational element i has the same loading
capacitance. By using equation (1), we have that:

. (28)
For Figure 5 with formula (26), we use the LP_Solve tool

[12] to solve the linear program for each circuit. The linear
program is automatically generated by a module we coded
in C++ and integrated in the tool we developed in [5].
Results are summarized in Table 1, where the first column
gives the circuit name, the second column gives the power
consumed (divided by KC0f) in the case of using the highest
supply voltage only (Ph) and in the case of using multiple
supply voltages (Pm), the third column presents the power
saving factor defined as , and the last
column gives the run-time in second.

ExactAlgo is coded in C++ and integrated in the tool we
developed in [5]. Table 2 reports the obtained results.
Column 1, 2 and 3 are the same as for Table 1. Column 4
presents the number of tries done divided by the size, kn, of
the searching space, where k is the number of the different
available supply voltages and n is the number of the
computational elements in the circuit.

As Table 1 reports, significant reductions of power
consumption are obtained in a short run-time using the
linear programming formulation. Indeed, saving factors
ranging from 5.3% to 53.84% are obtained in less than
166.81s using an UltraSparc 10 with 1GB RAM. As
summarized by Table 2, optimal power consumptions using
multiple supply voltages are obtained in a small number of
tries in a very large searching space. For instance, for the
circuit FOWDEF, we have that and ;
nevertheless, only 22399 possibilities are examined (in
44.01 s) to find the schedule with the minimal power
consumption.

7. Conclusions

The problem, MinPdyn, of minimizing the power
consumption, under performance constraints, by supply
voltage scaling is NP-hard in general. To the best of our
knowledge, no work has been explicitly reported yet in the
literature to tackle this problem in the case of cyclic designs.

Software pipelining has recently been used to derive
multi-phase clocked sequential circuits operating at the
maximum throughput. To preserve the functionality of the
original circuit, registers are placed after the optimal clock
period P and a schedule of the computational elements of
the circuit are determined. During registers placement, only

i 1=

di 1, ALAP_savei+

di k, di 0, ALAP_savei ASAP_savei–+≤
s0 i() ASAP_savei=

Figure 7 : Example of implicit tree to be explored
by ExactAlgo. Three supply voltages are assumed.

The first node at which
ExactAlgo starts
executing. Three
computational
elements are
there. Only
highest supply
voltages are used.

**:

di k, pi k,
V dd

k

di k, V
k

dd V
k

dd V th–()
2

⁄() V
1

dd V th–()
2

V
1

dd⁄() di 1,⋅ ⋅=
V dd

1

pi k,

pi k, KC0 f . Fanouti V
k

dd()
2

⋅()=

Ph Pm–() Ph⁄() 100×

n 34= k 4=

paths that have a length greater than P are broken since
operation chaining is assumed.

Solving MinPdyn for the class of multi-phase clocked
circuits is very interesting since it may allow to reduce the
number of registers and hence to save the power they
consume, to reduce the number of the control signals, and
to reduce the area of the circuit.

We have provided a mixed integer linear formulation to
MinPdyn, and use it to devise a polynomial time solvable
method and an exact algorithm based on a branch-and-
bound technique. Experimental results confirmed the
effectiveness of the method and showed that power
reduction factors as high as 53.84% can be obtained in short
run-times. They also confirmed the efficiency of the exact
algorithm. Indeed, optimal results are obtained in a small
number of tries in a very large searching space.

Table 1 : Results using Figure 5.

Table 2 : Results using ExactAlgo.

References
[1] S.Raje and M.Sarrafzadeh, “Variable Voltage Scheduling”, In Proc. of the

Int. Sym. on Low Power Design, Monterey, CA, Aug., 1995.
[2] K.Usami and M.Horowitz, “Clustered Voltage Scaling Technique for Low-

Power Design”, In Proc. Int. Workshop on Low Power Design, 1995.
[3] Y.-R.Lin and A.-C.-H. Wu, “Scheduling Techniques for Variable Voltage

Low Power Designs”, ACM Transactions on Design Aut. of Elec. Sys., Vol.2,
N0.2, April, 1997.

[4] J.-M.Chang and M.Pedram, “Energy Minimization Using Multiple Supply
Voltages”, IEEE Trans. on Very Large Scale Integration (VLSI) Systems,
Vol.5, No.4, Dec., 1997.

[5] N. Chabini, E.-M. Aboulhamid and Y. Savaria, “Reducing Register and
Phase Requirements for Synchronous Circuits Derived Using Software
Pipelining Techniques”, Proceedings of the IEEE Computer Society Annual
Workshop on VLSI, Orlando, Florida, April 19-20, 2001.

[6] N. Chabini, E.-M. Aboulhamid and Y. Savaria, “A Fast Method for
Determining an Efficient Bound on the Optimal Solution of the Cost-to-Time
Ratio Problem”, To appear in the Proceedings of the SCI/ISAS, Orlando,
Florida, July 22-25, 2001. http://www.iiis.org/SCI/

[7] F.-R. Boyer, E.-M. Aboulhamid, Y. Savaria and M. Boyer, “Optimal Design
of Synchronous Circuits Using Software Pipelining Techniques”, ACM
Transactions on Design Aut. of Electronic Systems, Vo. 7, Num. 2, 2002.

[8] Gary K. Yeap, Practical Low Power Digital VLSI Design, Kluwer Academic
Publishers, ISBN: 0-7923-8009-6.

[9] S.-H. Gerez, S.-M.-H. de Groot, and O.-E. Herrmann, “A Polynomial-Time
Algorithm for the Computation of the Iteration-Period Bound in Recursive
Data- Flow Graphs”, IEEE Trans. on Cir. and Syst.-1, No. 1, Vo. 39, 1992.

[10] E.-L. Lawler, Combinatorial Optimization: Networks and Matroids, Holt,
Reinhart, and Winston, New York, NY, 1976.

[11] I.-E. Bennour, Estimation de la performance et méthodes d’allocation dans
la synthèse de systèmes numériques, Thèse de doctorat, DIRO, Université
de Montréal, 1996.

[12] The LP_Solve Tool: ftp://ftp.ics.ele.tue.nl/pub/
lp_solve/

[13] L.-G. Khachian, “A Polynomial Algorithm in Linear Programming”, Soviet
Math. Doklady, Vo. 20, 1979.

[14] N. Karmakar, “A New Polynomial-Time Algorithm for Linear
Programming”, Combinatorica, Vo. 4, 1984.

[15] S. Y. Kung, H. J. Whitehouse and T. Kailath, VLSI and Modern Signal
Processing, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1985, pp. 259-60.

(Power Consumed)/
(KCof)

Gain =
(Column

#2-
Column#

3)/
Column#

2

Run-
time
(sec)

Using the
highest
supply

voltages

Using
multiple
supply

voltages

Figure 1 205 176 14.14% 0.01
Figure 6 232 202 12.93% 0.01
SOIIR Filter [11] 129 114 11.62% 0.01
Polynomial Div. [11] 309 251 18.77% 0.01
Correlator [7] 283 268 5.3% 0.01
FOWDEF [15] 1306 1181 9.57% 0.01
S344 6225 4146 33.39% 0.2
S641 8457 5980 29.28% 0.17
S731 9758 6549 32.88% 0.22
S5378 64847 47234 27.16% 14.37
S9243 46905 22712 51.57% 12.38
S1238 25017 17896 28.46% 1.81
S1423 24533 11323 53.84% 1.87
S1488 33360 28144 15.63% 3.64
S1494 33868 28431 16.05% 5.93
S13207 116500 62255 46.56% 79.76
S15850 139403 69383 50.22 166.81

(Power
Consumed)/(KCof)

Gain =
(Column

#2-
Column

#3)/
Column

#2

(Number
of tries)/

(The size of
the

searching
space)

Using
only the
highest
supply

voltages

Using
multiple
supply

voltages

Figure 1 205 176 14.14% 9/1024
Figure 6 232 202 12.93% 20/16384

SOIIR Filter [11] 129 114 11.62% 8/256
Polynomial Div. [11] 309 209 32.36% 741/262144

Correlator [7] 283 268 5.3% 13/65536
FOWDEF [15] 1306 1144 12.4% 22399/(434)

Function ExactAlgo (Graph: , integer i,
float UpperBound, rational P) {

if (i > |V|) then return;
else {

integer j;
for (j=i; j<= |V|; j++) {

for (k=2; k<=NumberOfVdd; k++) {
if (di,k >di,0 + (ALAP_savei - ASAP_savei))
then { k = NumberOfVdd + 1; break;}
else {

save_di = di;
di = di,k;
determine the optimal period, Popt, for the updated graph G;
determine the ASAP and ALAP schedules for the updated graph G;
if (Popt > P or

 or

) then
{k = NumberOfVdd + 1; break;}
else {

determine the power, power, consumed by the updated graph G;
ExactAlgo (, i+1, UpperBound, P);
if (power < UpperBound) then {

UpperBound = power;
save the present configuration of G into configG ;
// configG initialy holds the highest supply voltages

}
}
di = save_di;

}
}

}
}

}

G V E d w, , ,()=

x V∈∃ : ASAPx ALAPx[,] ASAP_savex ALAP_savex[,]⊄
x V∈∃ : ALAPx dx+ ALAP_savex dx 1,+>()

G V E d w, , ,()=

Figure 8 : An algorithm based on a branch-and-
bound technique.

