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Net Scheduling in High-Level Synthesis

ANATOLY PRIHOZHY

State University of Informatics and Radioelectronics of Belarus

A new net scheduling and allocation model generates net schedules that minimize either execution time or resources.
The author tested the model within a VHDL-based high-level synthesis system called Ahiles.
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Test Synthesis with Alternative Graphs

RAIMUND UBAR

Tallinn Technical University

Alternative graphs provide an efficient, uniform model describing the structure, functions, and faults in a wide class
of digital circuits and for different representation levels. For test pattern generation, they provide a general
theoretical basis for combining high-level approaches, symbolic techniques based on binary decision diagrams, and
traditional topological algorithms.
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Fast Power Estimation of Large Circuits

PETER H. SCHNEIDER

Siemens AG Technical University of Munich

ULF SCHLICHTMANN

Siemens AG

BERND WURTH

Siemens AG Technical University of Munich

Our new technique for estimating transition probabilities of internal signals in combinational circuits uses Markov
chains and reconvergence regions. To efficiently implement the computation, we use ROBDDs (reduced, ordered
binary decision diagrams). Accounting for temporal dependence of signals, multiple concurrent transitions, and
mutual dependence of internal signals, the technique provides an exact computation for small circuits and an
approximate estimate for large circuits. Experimental results show the estimation technique is fast with only small
inaccuracies.
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FPGA and CPLD Architectures: A Tutorial

STEPHEN BROWN

University of Toronto

JONATHAN ROSE

University of Toronto

This tutorial surveys commercially available, high-capacity field-programmable devices. The authors describe the
three main categories of FPDs: simple and complex programmable logic devices, and field-programmable gate
arrays. They then give architectural details of the most important chips and example applications of each type of
device.
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Optimizing Power in ASIC Behavioral Synthesis

RAUL SAN MARTIN

Nortel Technology

JOHN P. KNIGHT

Carleton University

Attacking power consumption at the behavioral level exploits an application’s inherent parallelism to maintain
performance while compensating for slower, less power-hungry operators. The authors’ method and tool optimize
and evaluate the effects of power-saving strategies on performance and silicon area.
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An Integrated CAD Environment for Low-Power Design

PAUL LANDMAN

Texas Instruments

RENU MEHRA

University of California, Berkeley

JAN M. RABAEY

University of California, Berkeley

This CAD environment supports a high-level approach to power reduction, emphasizing optimizations at the
algorithm and architecture levels of abstraction. An integrated set of analysis and optimization tools spans the design
hierarchy, allowing the designer to make a systematic, top-down exploration and refinement of solutions in the area-
time-power design space. In a case study¥sa low-power implementation of a digital bandpass filter¥%the CAD
environment and tools yield more than an order of magnitude savings in power.
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Rapid Digital System Prototyping: Current Practice, Future Challenges

VIJAY K. MADISETTI

Georgia Institute of Technology VP Technologies

A top-down methodology that emphasizes modular, upgradable designs solves some problems with the current
design process for application-specific signal processors. Virtual prototyping, model year architectures, and reuse-
based design form the pillars of this new approach, which promises to raise industrial design productivity and
competitiveness.
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Hardware-Software Codesign Using Processor Synthesis

CAROLYN KUTTNER

TRW Space and Electronics Group

A new tool aids concurrent hardware-software development of processors for embedded systems. Pilot programs
using ProcSyn achieved significant cost and time savings and, in some cases, improved the quality of the final
product.
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Conceptual Prototyping of Scalable Embedded DSP Systems

LAN-RONG DUNG

Georgia Institute of Technology

VIJAY K. MADISETTI

Georgia Institute of Technology

This systematic process uses model -based architectural synthesis and verification to ensure that early stages of the
design are efficient, economical, and meet user requirements. Using a scalable, plug-and-play, model year
methodology, designers can conceptually prototype complex, embedded digital systemsin weeksinstead of months.
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Using VHDL for Board Level Simulation

SANDI HABINC

European Space Agency

PETER SINANDER

European Space Agency

Prototyping is necessary for successful development of printed circuit boards built with complex components such as
microprocessors, ASICs, and ASSPs. The European Space Agency uses VHDL models for board level simulation,
optimizing such models for high functional accuracy and simulation performance
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Computer-Aided Design of Fault-Tolerant VLSI Systems

RAMESH KARRI

University of Massachusetts at Amherst

KARIN HOGSTEDT

University of California, San Diego

ALEX ORAILOGLU

University of California, San Diego

The authors present a flexible methodology for compiling an algorithmic description into an equivalent fault-tolerant
VLSI circuit and a CAD framework embodying this methodology. Experimental designs illustrate and validate
algorithms for automated synthesis of ICs featuring either self-recovery capability or enhanced reliability
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Minimizing FPGA Interconnect Delays

STEPHEN BROWN

University of Toronto

MUHAMMAD KHELLAH

University of Toronto

ZVONKO VRANESIC

University of Toronto

Optimizing FPGA routing architectures for speed performance also involves improving the CAD tools for mapping
circuits. Although their results are sensitive to the tools used, the authors draw several basic conclusions about both
FPGA routing architectures and CAD tools.
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A Fault Injection Technique for VHDL Behavioral-Level Models

TODD A. DELONG

University of Virginia

BARRY W. JOHNSON

University of Virginia

JOSEPH A. PROFETA 11

Union Switch and Signal, Inc.

Designers are realizing the advantages of performing fault injection early, using simulation to inject faultsinto a
model of the design rather than the actual system. The authors describe their technique for injecting faultsinto a
system’s VHDL behavioral-level model. To demonstrate the technique, they evaluate an embedded control system
providing fail-safe operation in the railway industry.
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Performance Modeling Using PDL

Ranga Vemuri

University of Cincinnati

Ram Mandayam

Motorola

Vijay Meduri

LSI Logic

Designers can write generic performance models in PDL. For individual designs, these models can be compiled into
specific, executable models that yield valuable performance data.
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Retiming-Based Partial Scan*

Dimitrios Kagaris, Member, IEEE

Spyros Tragoudas, Member, IEEE

Abstract¥A generally effective criterion for the selection of flip-flops in the partial scan problem for sequential

circuit testability is to select flip-flops that break the cyclic structure of the circuit and reduce its sequential depth.
The selection of flip-flops may also be subject to a prescribed bound on the clock period of the modified circuit
(timing-driven partial scan). In this paper we propose two techniques (for non-timing-driven and timing-driven

partial scan) which address the above criterion based on a transformation of sequential circuits known as retiming.
For non-timing-driven partial scan, we employ retiming to rearrange the flip-flops of the circuit, so that its
functionality is preserved, while the number of flip-flops that are needed to break all cycles and bound the sequential
depth is significantly reduced. For timing-driven partial scan, we propose a retiming-based technique that reduces the
overall area overhead required to achieve the clock period bound. Experimental results on the ISCAS'89 circuits
show the benefit of our approach in both timing-driven and non-timing-driven partial scan.
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Automatic Synthesis of Self-Recovering VLSI Systems*

Alex Orailoglu

Ramesh Karri

Abstract¥zln this paper, we will describe an integrated system for synthesizing self-recovering microarchitectures
called ${\cal SYNCERE}$. In the ${\cal SYNCERE}$model for self-recovery, transient faults are detected using
duplication and comparison, while recovery from transient faults is accomplished via checkpointing and rollback.



${\cal SYNCERE} $initially inserts checkpoints subject to designer specified recovery time constraints.
Subsequently, ${\cal SYNCERE} $incorporates detection constraints by ensuring that two copies of the computation
are executed on digoint hardware. Towards ameliorating the dedicated hardware required for the original and
duplicate computations, ${\ca SY NCERE} $imposes intercopy hardware digjointness at a sub-computation level
instead of at the overall computation level. The overhead is further moderated by restructuring the pliable input
representation of the computation. ${\cal SY NCERE} $has successfully derived numerous self-recovering
microarchitectures. Towards validating the methodology for designing fault-tolerant VLS| ICs, we carried out a
physical design of a self-recovering 16-point FIR filter.

IEEE TRANSACTIONS ON COMPUTERS 0018-9340/96$05.00 © 1996 IEEE

Vol. 45, No. 3: MARCH 1996, pp. 294-306

A Method for Speed Optimized Partial Product Reduction and Generation of Fast Parallel Multipliers Using an
Algorithmic Approach*

Vojin G. Oklobdzija, Fellow, IEEE

David Villeger

Simon S. Liu

Abstract This paper presents a method and an algorithm for generation of a parallel multiplier, which is optimized for
speed. This method is applicable to any multiplier size and adaptable to any technology for which speed parameters
are known. Most importantly, it is easy to incorporate this method in silicon compilation or logic synthesis tools. The
parallel multiplier produced by the proposed method outperforms other schemes used for comparison in our
experiment. It uses the minimal number of cells in the partial product reduction tree. These findings are tested on
design examples simulated in 1m CMOS ASIC technology.
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The Differential CORDIC Algorithm: Constant Scale Factor Redundant Implementation without Correcting
Iterations*

Herbert Dawid, Student Member, IEEE

Heinrich Meyr, Fellow, IEEE

Abstract¥The CORDIC algorithm is a well-known iterative method for the efficient computation of vector rotations,
and trigonometric and hyperbolic functions. Basically, CORDIC performs a vector rotation which is not a perfect
rotation, since the vector is also scaled by a constant factor. This scaling has to be compensated for following the
CORDIC iteration.

Since CORDIC implementations using conventional number systems are relatively slow, current research has
focused on solutions employing redundant number systems which make a much faster implementation possible. The
problem with these methods is that either the scale factor becomes variable, making additional operations necessary
to compensate for the scaling, or additional iterations are necessary compared to the original algorithm.

In contrast we developed transformations of the usual CORDIC algorithm which result in a constant scale factor
redundant implementation without additional operations. The resulting "Differential CORDIC Algorithm"
(DCORDIC) makes use of on-line (most significant digit first redundant) computation. We derive parallel
architectures for the radix-2 redundant number systems and present some implementation results based on logic
synthesis of VHDL descriptions produced by a DCORDIC VHDL generator. We finally prove that, due to the lack
of additional operations, DCORDIC compares favorably with the previously known redundant methods in terms of
latency and computational complexity.

Index Terms¥.CORDIC, carry save, signed digit, redundant number systems, radix-2, VLSI architecture, computer
arithmetic.
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Algorithm-Based Fault Tolerant Synthesis for Linear Operations*

Jan-Lung Sung

G. Robert Redinbo

Abstract¥High-level synthesis is becoming more important in practical design environments to meet new system
requirements and, increasingly, fault tolerance is one especially because of high-speed and low power demands. This
paper explores several basic aspects of low-cost fault tolerant synthesis for practical linear systems. It deals with
practical design constraints that require basic operations to be only performed by a limited processing resources and



do not normally assign each operation a separate processing resource. Two core issues, partitioning and allocation,

for fault tolerant synthesis are examined. Results demonstrate a high-level abstraction and framework for fault

tolerant synthesis which is almost totally independent of the physical hardware implementation. 1ssues in designing

1-fault detectable FFT system are considered in detail to illustrate the significance and effects of fault tolerant

synthesis schemes. Our ultimate goal is to incorporate these techniques in future automated design tools so that fault
tolerance features can be part of the design options.

Index Terms¥al-fault detectable (1-FD) system, algorithm-based fault tolerant (ABFT) synthesis, data flow graph
(DFG), fast Fourier transform (FFT), gain matrix and error space
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Theory and Application of Nongroup Cellular Automata for Synthesis of Easily Testable Finite State Machines*
Supratik Chakraborty

Dipanwita Roy Chowdhury

Parimal Pal Chaudhuri

Abstract¥This paper reports some of the interesting properties and relationships of a nongroup Cellular Automata
(CA) and its dual. A special class of nongroup Cellular Automata denoted as D1*CA is analytically investigated.
Based on such analysis, D1*CA has been proposed as an ideal test machine which can be efficiently embedded in a
finite state machine to enhance the testability of the synthesized design. A state encoding algorithm has been
formulated to embed the D1*CA based test machine in the synthesized FSM while minimizing the hardware
overhead. The unique state transition properties of D1*CA are then used in designing an easy testing scheme for the
FSM. Experiments on FSM benchmarks have shown that the scheme achieves 100% coverage of all single stuck-at
faults at the cost of hardware overhead and circuit delay that are comparable, if not better, to that incurred for scan
path based designs. However, the major advantage of the scheme is the significant reduction of test time overhead
due to integration of an embedded test machine in the design at the synthesis phase.

Index Terms%Cellular automata, synthesis for testability (SFT), testable sequential machines
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On Uniformization of Affine Dependence Algorithms*

Weijia Shang, Member, IEEE

Edin Hodzic

Zhigang Chen

Abstract¥This paper deals with the problem of transforming irregular data dependence structures of algorithms with
nested loops into more regular ones. Algorithms under consideration are n-dimensional algorithms (algorithms with
n nested loops) with affine dependences where dependences are affine functions of index variables of the loop.
Methods are proposed to uniformize affine dependence algorithms, i.e., to transform affine dependence algorithms
into uniform dependence algorithms where dependences are independent of the index variables (constant).
Objectives are considered to guide the selection of feasible uniformizations. The first one is to reduce the number of
dependences after uniformization. The second one is to maximize parallelism preserved by the uniformization. Some
parallelism might be lost due to the uniformization. The parallelism preserved by the uniformization is measured by
1) the total execution time by the optimal linear schedule which assigns each computation in the algorithm an
execution time according to a linear function of the index of the computation, and 2) the size of the cone spanned by
the dependence vectors after uniformization.
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Phased Logic: Supporting the Synchronous Design Paradigm with Delay-Insensitive Circuitry*

Daniel H. Linder, Member, IEEE Computer Society

James C. Harden

Abstract¥sPhased logic is proposed as a solution to the increasing problem of timing complexity in digital design. It
is a delay-insensitive design methodology that seeks to restore the separation between logical and physical design by
eliminating the need to distribute low-skew clock signals and carefully balance propagation delays. However, unlike
other methodologies that avoid clocks, phased logic supports the cyclic, deterministic behavior of the synchronous
design paradigm. This permits the designer to rely chiefly on current experience and CAD tools to create phased
logic systems. Marked graph theory is used as a framework for governing the interaction of phased logic gates that
operate directly on Level-Encoded two-phase Dual-Rail (LEDR) signals. A synthesis algorithm is developed for
converting clocked systems to phased logic systems and is applied to benchmark examples. Performance results
indicate that phased logic tends to be tolerant of logic delay imbalances and has predictable worst-case timing
behavior. Although phased logic requires additional circuitry, it has the potential to shorten the design cycle by
reducing timing complexities.



Index Terms¥sAsynchronous circuitry, data flow, delay-insensitive circuitry, dual-rail encoding, LEDR, marked
graphs, phased logic, synchronous circuitry.
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Optimal Data Scheduling for Uniform Multidimensional Applications*

Qingyan Wang

Nelson Luiz Passos, Member, IEEE

Edwin Hsing-Mean Sha, Member, IEEE

Abstract¥Uniform nested loops are broadly used in scientific and multidimensional digital signal processing
applications. Due to the amount of data handled by such applications, on-chip memory is required to improve the
data access and overall system performance. In this study a static data scheduling method, carrot-hole data
scheduling, is proposed for multidimensional applications, in order to control the data traffic between different levels
of memory. Based on this data schedule, optimal partitioning and scheduling are selected. Experiments show that by
using this technique, on-chip memory misses are significantly reduced as compared to results obtained from
traditional methods. The carrot-hole data scheduling method is proven to obtain smallest on-chip memory misses
compared with other linear scheduling and partitioning schemes.

Index Terms¥%Execution scheduling, data scheduling, nested loops, memory management, memory hierarchy,
partitioning, digital signal processing, multidimensional application.
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Optimal Synthesis of Algorithm-Specific Lower-Dimensional Processor Arrays*

Kumar N. Ganapathy

Benjamin W. Wah, Fellow, IEEE

Abstract¥sProcessor arrays are frequently used to deliver high performance in many applications with
computationally intensive operations. This paper presents the General Parameter Method (GPM), a systematic
parameter-based approach for synthesizing such algorithm-specific architectures. GPM can synthesize processor
arrays of any lower dimension from a uniform-recurrence description of the algorithm. The design objective is a
general nonlinear and nonmonotonic user-specified function, and depends on attributes such as computation time of
the recurrence on the processor array, completion time, load time, and drain time. In addition, bounds on some or all
of these attributes can be specified. GPM performs an efficient search of polynomial complexity to find the optimal
design satisfying the user-specified design constraints. As an illustration, we show how GPM can be used to find
optimal linear processor arrays for computing transitive closures. We consider design objectives that minimize
computation time, or processor count, or completion time (including load and drain times), and user-specified
constraints on number of processing elements and/or computation/completion times. We show that GPM can be used
to obtain optimal designs that trade between number of processing elements and completion time, thereby allowing
the designer to choose a design that best meets the specified design objectives. We also show the equivalence
between the model assumed in GPM and that in the popular dependence-based methods [1], [2]. Consequently, GPM
can be used to find optimal designs for both models.

Index Terms¥Design constraints, objective function, optimal design, polynomial-time search, processor arrays,
transitive closure, uniform recurrence equations.
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Valid Transformations: A New Class of Loop Transformations for High-Level Synthesis and Pipelined Scheduling
Applications*

Minjoong Rim

Rajiv Jain

Abstract3zln this paper we present a new class of loop optimizing transformations called valid transformations,
which are suitable for fine-grain parallelization applications such as high-level synthesis of VLSI designs or
compilers for super-scalar or VLIW machines. This class of transformations are different from existing ones in that
valid transformations can be illegal. Nevertheless, if a transformation is valid, the transformed loop has a feasible
pipeline schedule. We present an example valid transformation called loop expansion which can help produce cost-
performance efficient designs and explore a larger design space for a satisfactory design. Several examples are used
to demonstrate the efficacy of the proposed technique.

Index Terms¥aHigh-level synthesis, super-scalar, VLIW, loop compilation, loop optimization, loop transformations,
pipeline scheduling.
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A Modular Systolic Linearization of the Warshall-Floyd Algorithm*

Jean Frédéric Myoupo, Member, IEEE Computer Society

Anne Cécile Fabret

Abstract¥aln this paper, we use a variant of the geometric method to derive efficient modular linear systolic
algorithms for the transitive closure and shortest path problems. Furthermore, we show that partially-pipelined
modular linear systolic algorithms with an output operation, for matrix multiplication, can be as fast as the fully-
pipelined existing ones and, moreover, they need less cells.

Index Terms¥Modular linear systolic algorithms, transitive closure, shortest path, matrix multiplication.
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A Unified Framework for Optimizing Communication in Data-Parallel Programs*

Manish Gupta

Edith Schonberg

Harini Srinivasan

Abstract¥This paper presents a framework, based on global array data-flow analysis, to reduce communication costs
in a program being compiled for a distributed memory machine. We introduce available section descriptor, a novel
representation of communication involving array sections. This representation allows us to apply techniques for
partial redundancy elimination to obtain powerful communication optimizations. With a single framework, we are
able to capture optimizations like 1) vectorizing communication, 2) eliminating communication that is redundant on
any control flow path, 3) reducing the amount of data being communicated, 4) reducing the number of processors to
which data must be communicated, and (5) moving communication earlier to hide latency, and to subsume previous
communication. We show that the bidirectional problem of eliminating partial redundancies can be decomposed into
simpler unidirectional problems even in the context of an array section representation, which makes the analysis
procedure more efficient. We present results from a preliminary implementation of this framework, which are
extremely encouraging, and demonstrate the effectiveness of this analysis in improving the performance of
programs.



Index Terms¥%sArray section descriptors, communication optimizations, data availability, data-flow analysis, data-
parallelism, High Performance Fortran, partial redundancy elimination.
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The Block Distributed Memory Model*

Joseph F. J4J&

Kwan Woo Ryu

Abstract¥aWe introduce a computation model for developing and analyzing parallel algorithms on distributed
memory machines. The model allows the design of algorithms using a single address space and does not assume any
particular interconnection topology. We capture performance by incorporating a cost measure for interprocessor
communication induced by remote memory accesses. The cost measure includes parameters reflecting memory
latency, communication bandwidth, and spatial locality. Our model allows the initial placement of the input data and
pipelined prefetching.

We use our model to develop parallel algorithms for various data rearrangement problems, load balancing, sorting,
FFT, and matrix multiplication. We show that most of these algorithms achieve optimal or near optimal
communication complexity while simultaneously guaranteeing an optimal speed-up in computational complexity.
Ongoing experimental work in testing and evaluating these algorithms has thus far shown very promising results.
Index Terms¥sParallel algorithms, parallel model, personalized communication, broadcasting, load balancing,
sorting, Fast Fourier Transform, matrix multiplication.
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A Framework for Resource-Constrained Rate-Optimal Software Pipelining*

R. Govindarajan, Member, IEEE Computer Society

Erik R. Altman

Guang R. Gao, Senior Member, IEEE

Abstract¥The rapid advances in high-performance computer architecture and compilation techniques provide both
challenges and opportunities to exploit the rich solution space of software pipelined loop schedules. In this paper, we
develop a framework to construct a software pipelined loop schedule which runs on the given architecture (with a
fixed number of processor resources) at the maximum possible iteration rate (& la rate-optimal) while minimizing the
number of buffers¥a close approximation to minimizing the number of registers.

The main contributions of this paper are: First, we demonstrate that such problem can be described by a simple
mathematical formulation with precise optimization objectives under a periodic linear scheduling framework. The
mathematical formulation provides a clear picture which permits one to visualize the overall solution space (for rate-
optimal schedules) under different sets of constraints. Secondly, we show that a precise mathematical formulation
and its solution does make a significant performance difference. We evaluated the performance of our method
against three leading contemporary heuristic methods. Experimental results show that the method described in this
paper performed significantly better than these methods.

The techniques proposed in this paper are useful in two different ways: 1) As a compiler option which can be used in
generating faster schedules for performance-critical loops (if the interested users are willing to trade the cost of
longer compile time with faster runtime). 2) As a framework for compiler writers to evaluate and improve other
heuristics-based approaches by providing quantitative information as to where and how much their heuristic methods
could be further improved.

Index Terms¥alnstruction-level parallelism, instruction scheduling, integer linear programming, software pipelining,
superscalar and VLIW architectures.
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Abstract¥Most scientific and Digital Signal Processing (DSP) applications are recursive or iterative. Transformation
techniques are usually applied to get optimal execution rates in parallel and/or pipeline systems. The retiming
technique is a common and valuable transformation tool in one-dimensional problems, when loops are represented
by data flow graphs (DFGSs). In this paper, uniform nested loops are modeled as multidimensional data flow graphs
(MDFGs). Full parallelism of the loop body, i.e., all nodes in the MDFG executed in parallel, substantially decreases
the overall computation time. It is well known that, for one-dimensional DFGs, retiming can not always achieve full
parallelism. Other existing optimization techniques for nested loops also can not always achieve full parallelism.
This paper shows an important and counter-intuitive result, which proves that we can always obtain full-parallelism
for MDFGs with more than one dimension. This result is obtained by transforming the MDFG into a new structure.
The restructuring process is based on a multidimensional retiming technique. The theory and two algorithms to



obtain full parallelism are presented in this paper. Examples of optimization of nested loops and digital signal

processing designs are shown to demonstrate the effectiveness of the algorithms.

Index Terms¥Retiming, multidimensional data-flow graphs, instruction level parallelism, loop transformation,
nested loops, VLIW, superscalar.
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Abstract¥sDecomposition abstraction is the process of organizing and specifying decomposition strategies for the
exploitation of parallelism available in an application. In this paper we develop and evaluate declarative primitives
for rule-based programs that expand opportunities for parallel execution. These primitives make explicit, implicit
relations among the data and similarly among the rules. The semantics of the primitives are presented in a general
object-based framework such that they may be applied to most rule-based programming languages.

We show how the additional information provided by the decomposition primitives can be incorporated into a
semantic-based dependency analysis technique. The resulting analysis reveals parallelism at compile time that is very
difficult, if not impossible, to discover by traditional syntactic analysis techniques. Simulation results demonstrate
scalable and broadly available parallelism.

Index Terms¥Decomposition abstraction, parallel production systems, multiple rule firing systems, parallel
decomposition, explicit parallel languages, decomposition mechanisms, set-oriented constructs, semantic-based
dependency analysis, functional dependency.



