
VHDL Design Flow

BEHAVIORAL AND LOGIC SYNTHESIS

El Mostapha Aboulhamid
Dépt. IRO, Université de Montréal

CP 6128, Succ. Centre-Ville
Montréal, Qc. H3C 3J7

Phone: 514-343-6822 FAX: 514-343-5834
aboulham@iro.umontreal.ca

Acknowledgment: François Boyer (boyerf@iro.umontreal.ca) had a major
contribution in the development of the labs contents.

EMA1997 - 1 of 8

VHDL Design Flow 1
General Design Flow 1
Top-down design 2
Description paradigms and abstraction levels 3
Description paradigms and abstraction levels
(cont’d) 4
Data Flow Descriptions 5
Control Oriented Descriptions 6
Behavioral Descriptions 7
Behavioral Synthesis
(input) 8
Scheduling 9
Allocation 10
Design validation 11
Simulation and verification 12
RTL and behavioral design 13
VHDL Synthesizable Subset 14
VHDL Synthesizable Subset
(cont’d) 15
VHDL Synthesizable Subset
(cont’d) 16
Special attributes 17
Main Features of Behavioral Synthesis 18
Main Features of Behavioral Synthesis
(cont’d) 19
RTL Descriptions 20
Scheduling and allocation illustration 21
Behavioral Compiler Design Flow 22
Steps of the BC Design Flow 23
References 24

EMA1997 - 2 of 8

Design Flow Example 1
VHDL code 2
Main loop after elaboration 4
 BEHAVIORAL COMPILER 1
Objectives 2
Design flow 3
Inputs 4
Processing steps 5
Processing steps (cont’d) 6
Processing steps (cont’d) 7
BC internals
Control-dataflow graph 8
CDFG 9
CDFG nodes 10
Chaining, multicycling, and pipelining 11
Chaining, multicycling, and pipelining
(Illustration) 12
CDFG edges 13
Speculative execution 14
Templates 15
Scheduling 16
Scheduling (cont’d) 17
Scheduling (cont’d) 18
Allocation 19
Allocation (cont’d) 20
Allocation criteria 21
Netlisting 22
Control FSM 23
States and csteps 24
BC constraints on loops 25

EMA1997 - 3 of 8

Invoking the scheduler 26
HDL descriptions and semantics 1
Objectives 2
Pre-synthesis model 3
The design 4
The design (cont’d) 5
Behavioral processes 6
Behavioral processes (cont’d) 7
Clock and Reset 8
Synchronous resets 9
Synchronous resets (cont’d) 10
Asynchronous resets 11
I/O Operations 12
I/O Operations 13
I/O Operations
(cont’d) 14
Flow of Control 15
Fixed bound FOR loops 16
General loops 17
Pipelined loops 18
Pipelined loops 19
Pipelined loops and Fixed I/O mode 20
Other I/O modes 21
Memory inference 22
Memory code 23
 Memory timing 24
Memory timing (cont’d) 25
Other memory considerations 26
Synthetic components 27
DesignWare developer 28

EMA1997 - 4 of 8

Preserved functions 29
Pipelined components 30
I/O modes 1
I/O modes 2
I/O modes (cont’d) 3
Cycle-Fixed Mode 4
Cycle-Fixed Mode
(Test bench) 5
Fixed Mode rules
(Straight line code) 6
Fixed Mode rules
(Loops) 7
Loops in fixed mode 8
Nested loops and FM 9
Successive loops and FM 10
Complex loop conditions 11
Superstate-Fixed Mode 12
Superstate-Fixed Mode
(Implications) 13
Superstate Rules
(continuing superstate) 14
Superstate Rules
(separating write orders) 15
Superstate Rules
(Conditional superstate) 16
Superstate Rules
(Escaping from the loop) 17
Free-Floating Mode 18
Explicit Directives and Constraints 1
Labeling

EMA1997 - 5 of 8

(Default naming) 2
Labeling
(user naming) 3
Labeling
(improved naming) 4
Scheduling Constraints 5
Scheduling Constraints
(cont’d) 6
Shell Variables 7
Shell Variables (cont’d) 8
Shell Commands 9
RTL Design Methodology 1
RTL Design flow 2
RTL Design flow 3
Design refinement 4
HDL FF Code 5
HDL latch Code 6
HDL AND Code 7
MUX inference 8
MUX modeling 9
Synthesized gate-level netlist simulation 10
Netlist simulation (cont’d) 11
Simulation of commercial ASICs 12
Design for Testability 13
Design Re-use 14
Designing with DW Components 15
FPGA Synthesis 16
Links to layout 17
DC and DA environments 18
DC and DA environments

EMA1997 - 6 of 8

(cont’d) 19
Target, Link, and Symbol Libraries 20
Libraries generation 21
VHDL RTL SEMANTICS 1
Types, signals and variables 2
Buffer mode modeling 3
STD_LOGIC 4
Arithmetic 5
Unwanted latches 6
Asynchronous reset 7
Synchronous reset 8
VHDL specifics 9
VHDL specifics
(cont’d) 10
Finite state machines 11
State encoding 12
HDL description of a state machine 13
Recommended style 14
Enumerated types and encoding 15
General description of FSM 16
Guidelines for FSM coding 17
 fail-safe behavior 18
Memories 19
Memory behavior 20
Barrel shifter 21
Multi-bit register 22
Methodology for RTL synthesis 1
Objectives 2
Synthesis constraints 3
Design rule constraints 4

EMA1997 - 7 of 8

DRC 5
Related commands 6
Optimization constraints 7
Cost functions 8
Clock specification 9
Timing reports 10
Design after read 11
VHDL after READ 12
Basic Sequential Element 14
After compilation to lsi_10k; 16
Reports 17
Set_dont_touch 22
Flattening 23
Structuring 24
Grouping and using 25
Characterization 26
Guidelines 27
Guidelines (cont’d) 28
Guidelines (cont’d) 29
Finite State Machines 1
Extracting FSMs 2
Coding FSMs in VHDL 6
VHDL Design Flow
LAB 1 1
 Lab1 VHDL code 5
LAB 2 7
VHDL code lab 2 9
LAB 3 11
VHDL code LAB 3 13
LAB 4 15

EMA1997 - 8 of 8

VHDL code LAB 4 18
LAB 5 21
LAB 5 VHDL code 25
Protocol case study 28
 29
LAB 6 33
LAB 6 VHDL CODE 35

I. General Design Flow

EMA1997 General Design Flow I - 2 of 24

Top-down design

+: Rough outlines explored at the highest possible level

+: Fine-grained optimization at lower levels

+: Wider variety of design can be explored at the higher levels
Functionality partitioned into blocks and processes
Blocks can be mapped to software or hardware

+: At lower levels exploration limited to:
Area
Speed
Testability
Power consumption

-: Iteration between levels may be inevitable

EMA1997 General Design Flow I - 3 of 24

Description paradigms and abstraction levels

Data flow
Input data as stream of samples

Stream oriented operations

Tools: graphical or dataflow oriented languages (Silage)

Control oriented
Emphasis on states and transitions

Ex: Protocol descriptions
Graphical or languages or both: SDL

FIFOs

High level synchronization mechanisms

Non-determinism

Output can be sent either to RTL synth. or behav. synthesis
Depending on states corresponding to circuit states or not

EMA1997 General Design Flow I - 4 of 24

Description paradigms and abstraction levels
(cont’d)

Behavioral
Language based

Offers scheduling and allocation

Front-end to RTL synthesis

RTL
Language or graphical

Hierarchy

Finer optimizations

Technology independent

Gate

EMA1997 General Design Flow I - 5 of 24

Data Flow Descriptions

Data represented as streams of samples

: Two synchronized streams produce a third stream

Abstraction enables very fast simulation

Synthesis
Transform a stream oriented description into a time-oriented description

Synthesis at either RTL or behavioral level

Why considered high level?
Stream through a time-varying channel
Statistical analysis, work load ...

x axz 1– bu+=

*

* +

delay

u

a

x

b

xk axk 1– buk+=

EMA1997 General Design Flow I - 6 of 24

Control Oriented Descriptions

Emphasis on states and transitions

Input: graphical or textual or both

May be hierarchical

Synthesis
Mapping to a HDL text

RTL or behavioral synthesis depending on the level of abstraction

Differences with data flow representation
DF: Collection of streams where each element of a stream is processed in a similar

way

ST: Data and treatment less regular

Different behaviors in different states

Lab 7: Building a MAC
FIR Filter Solution

Slice Count:
(with
MULT18x18)
119 slices
Performance
~132 MHz

Slice Count:
(without
MULT18x18)
169 slices
Performance
~132 MHz

Speed files:
PRODUCTION v1.93

EMA1997 General Design Flow I - 7 of 24

Behavioral Descriptions

Backend to Dataflow or Control oriented descriptions

General purpose

Language based: VHDL, Verilog, C, ISP, Pascal, etc.

HDL advantages:
Standardized

Simulatable

Readable interchange formats

VHDL and Verilog
+ High quality simulators

+ Existing RTL and logic synthesis tools

+ Large customer base of designers

- Closed tools (academic point of view)

EMA1997 General Design Flow I - 8 of 24

Behavioral Synthesis
(input)

Input = one process

Clock edges may be added during behavioral synthesis

If many process: each process scheduled independently

Mixed descriptions allowed: glue logic, RTL processes, behav. processes

process
variable x, u: integer := 0;
begin
u := inp;
x:= a*x + b*u;
outp <= x;
wait until clock’event and clock=1;

end;

EMA1997 General Design Flow I - 9 of 24

Scheduling

Input= process ⇒ Output= FSM + datapath

Operations assigned to states

User Responsibility in RTL synthesis

States are part of an FSM

Additional states if allowed by the user

States = actual machine states

Transitions correspond to machine’s clock edge

Machine clock (10 Mhz) may be much faster than the sample clock (50KHz)

In RTL and behavioral machine clock considered

In Data Stream sample clock is considered

EMA1997 General Design Flow I - 10 of 24

Allocation

Operations assigned to functional hardware

Data values assigned to storage elements
Optimization algorithm based on variables lifetime

Broader possibilities at behavioral level / RTL
Trade-off area/latency

Register area/combinational-interconnect area

EMA1997 General Design Flow I - 11 of 24

Design validation

formal
verification

Synthesis

Simulation

Expectation

Input HDL

Output HDLformal
verification

formal
verification Simulation

Expectation

Simulation

EMA1997 General Design Flow I - 12 of 24

Simulation and verification

Simulation
Test the response of the design under a selected set of inputs

Never exhaustive

Generation and application very time-consuming

Coverage has to be defined

Present way of validating designs

Formal verification
Test mathematical properties

Proof “equality” of two designs
Equality of boolean expressions
Bissimultaion in process algebra (CCS)

Not yet the main stream

Strict methodology for specification

Alleviates simulation limitations

EMA1997 General Design Flow I - 13 of 24

RTL and behavioral design

Behavioral synthesis
A gap between domain specific tools and RTL synthesis tools

A higher level of abstraction for the designer to logic synthesis

HDL design flow
Initial model in C or C++ or “simulation VHDL”

Define and test the functional aspects of the design:
• bit widths, operation ordering, rounding strategies in a filter design
• number of operations necessary to unpack a field and store a packet in a ATM packet router

Timing, States and other properties at an abstract level: unlimited queues.

Initial model translated into an HDL model
Accurate and natural modeling of concurrency and time
Simulation of the interaction between modules
Refinement of interfaces

Synthesis
requires the use of a subset of the HDL

EMA1997 General Design Flow I - 14 of 24

VHDL Synthesizable Subset

Fully supported
Arith, log., relational operators

Entity declarations; Architecture bodies, Arrays

Attributes: RIGHT, LEFT,HIGH, LOW, BASE , RANGE, LENGTH

Component declarations and instantiations

Concurrent procedure calls; concurrent signal assignments; constant declarations

 Enumerated, integer types;

If, case, loop statements

Next, return statements

Subprograms, declarations, bodies; subprog. and operator overloading

Qualified and static expressions

Type conversions

Package declarations and bodies

EMA1997 General Design Flow I - 15 of 24

VHDL Synthesizable Subset
(cont’d)

Partially supported
Aggregates

wait and EVENT on clock edge

Exit only from local or reset loop

Transport delay in pipeline

Limited resolution functions: wired and, or, three-state

No waveforms

Ignored
Access and file type

Aliases ; Assertions

Floating point, Physical types

EMA1997 General Design Flow I - 16 of 24

VHDL Synthesizable Subset
(cont’d)

Unsupported
Allocators

Disconnection

TEXTIO

Attributes:

POS, VAL, SUCC, PRED, LEFTOF, RIGHTOF

DELAYED, TRANSACTION

RIGHT(N), LEFT(N). RANGE(N), REVERSE_RANGE(N), HIGN(N), LOW(N)

ACTIVE, LAST_ACTIVE, LAST_EVENT

EMA1997 General Design Flow I - 17 of 24

Special attributes

ARRIVAL, FALL_ARRIVAL, RISE_ARRIVAL

DRIVE, RISE_DRIVE, FALL_DRIVE

LOGIC_ONE, LOGIC_ZERO

EQUAL, OPPOSITE

DONT_TOUCH_NETWORK

LOAD

DONT_TOUCH

MAX_AREA

ENUM_ENCODING

UNCONNECTED

HOLD_CHECK, SETUP_CHECK

MAX_TRANSITION, MAX_DELAY, MIN_DELAY, MIN_RISE_DELAY,
MIN_FALL_DELAY

EMA1997 General Design Flow I - 18 of 24

Main Features of Behavioral Synthesis

Automatic assignment of non-I/O operations to states

I/O scheduling is more restricted

Automatic construction of the FSM

Operations mapped onto hardware taking into account different trade-offs
Number of functional units

Latency

Exploration time

Interconnects

Unit selection (carry lookahead vs. ripple carry): may be overridden manually

EMA1997 General Design Flow I - 19 of 24

Main Features of Behavioral Synthesis
(cont’d)

Allocation of variables to registers
Optimization algorithm

Based on life-time intervals

Easy changes
Number of states in a pipeline by changing a single constraint

May result in a change in the control FSM

Further steps
Logic optimization

Test insertion

Retiming

EMA1997 General Design Flow I - 20 of 24

RTL Descriptions

RTL descriptions 3 to 5 times longer than behavioral descriptions
More development time to get a good model

More errors

Less readable

Management of next state transition by the user

The user has to manage most of the allocation of registers

More difficult to deal with
Conditions, pipelining, multiple cycle operations

Memory and register Reads an Writes

Loops boundaries

subprograms

EMA1997 General Design Flow I - 21 of 24

Scheduling and allocation illustration

<=

a x

b
u

+

*

*

:=

S1

S3

S2

x:=a*x

R:=b*u

x:= x+R
output(x)

u:= inp

MUXMUX

+

*

x
R

b a u

M
U

X

EMA1997 General Design Flow I - 22 of 24

Behavioral Compiler Design Flow

HDL analysis and
elaboration

add user
constraints

schedule

build netlist &
control FSM

logic level
optimization

allocatesimulate

HDL

reports

reports

reportsconstraints

EDIF, etc.

constraint file

EMA1997 General Design Flow I - 23 of 24

Steps of the BC Design Flow

Analysis: parsing and preliminary semantics

Elaboration: different from simulation
Mixed control/dataflow representation
Explicit parallelism

Explicit constraints
I/O operations
Target technology
Clock cycle

Early timing analysis (allows chaining of operations)

Scheduling

Allocation

Reports on all the previous steps

If not satisfied reiterate by changing constraints

otherwise proceed with logic synthesis

EMA1997 General Design Flow I - 24 of 24

References

David W. Knapp, “Behavioral Synthesis, Digital System Design Using the Synopsys
behavioral Compiler,” Prentice Hall PTR, 231 pages, 1996.

Covers behavioral synthesis and different case studies

Pran Kurup and Taher Abbasi, “Logic Synthesis Using Synopsys,” Second Edition,

Kluwer, 322 pages, 1997.
Covers logic synthesis
Original presentation
Interesting scenarios

Giovanni De Micheli, “Synthesis and Optimization of Digital Circuits,” McGraw-Hill,
579 pages, 1994.

Best book on theory and algorithms for HLS
Pipelines not covered
Departs from Synopsys view of I/O

On-line Synopsys Documentation
Hyperlink- documentation
Complete

II. Design Flow Example

EMA1997 Design Flow Example II - 2 of 13

VHDL code

package types is
subtype small_int is integer range 0 to 255;
end types;

library ieee;
use ieee.std_logic_1164.all;

use work.types.all;
entity ex_bhv is
 port(clk,stop: in std_logic; inport,alpha,beta: in small_int;
 outport: out small_int);
end ex_bhv;

library ieee;
use ieee.std_logic_1164.all;

architecture algo of ex_bhv is
begin
 process

EMA1997 Design Flow Example II - 3 of 13

 variable a,b,u,x:small_int ;
 begin
 Reset_loop: loop
 -- Reset tail
 outport <= 0;
 u:= 0; x:=0;
 a:= alpha;
 b:= beta;
 wait until clk’event and clk=’1’;
 if stop =’1’ then exit reset_loop; end if;
 main_loop: loop
 -- normal mode behavior
 u := inport;
 x:= a*x + b*u;
 outport <= x;
 wait until clk’event and clk=’1’;
 if stop =’1’ then exit reset_loop; end if;
 end loop main_loop;
 end loop Reset_loop;
 end process;
end algo;

EMA1997 Design Flow Example II - 4 of 13

Main loop after elaboration

EMA1997 Design Flow Example II - 5 of 13

bc_analyzer> bc_time_design
Cumulative delay starting at inport_33:
 inport_33 = 0.000000
 mul_34_2 = 16.996946
 add_34 = 19.182245
 outport_35 = 19.182245
Cumulative delay starting at mul_34_2:
 mul_34_2 = 17.055845
 add_34 = 19.241144
 outport_35 = 19.241144
Cumulative delay starting at mul_34:
 mul_34 = 17.055845
 add_34 = 19.241144
 outport_35 = 19.241144
Cumulative delay starting at outport_35:
 outport_35 = 0.000000
Cumulative delay starting at add_34:
 add_34 = 13.757200
 outport_35 = 13.757200
Cumulative delay starting at beta_28:
 beta_28 = 0.000000
Cumulative delay starting at alpha_27:
 alpha_27 = 0.000000

EMA1997 Design Flow Example II - 6 of 13

bc_analyzer> create_clock -name “clk” -period 18 -waveform { “0” “9” } { “clk” }

bc_analyzer> bc_check_design
Error: Fixed IO schedule is unsatisfiable (HLS-52)

bc_analyzer> bc_check_design -io su
No errors were found.

bc_analyzer> schedule -io su -eff zero

* Operation schedule of process process_20: *

Resource types
====================================
 beta......8-bit input port
 loop......loop boundaries
 p0........8-bit input port alpha
 p1........8-bit input port inport
 p2........8-bit registered output port outport
 r29.......(8_8->8)-bit DW01_add
 r41.......(8_8->16)-bit DW02_mult
 r47.......(8_8->16)-bit DW02_mult

EMA1997 Design Flow Example II - 7 of 13

 D D
 D W W
 W 0 0
 0 2 2
 1 _ _
 p p p _ m m p
 o o o a u u o
 r r r d l l r
 t t t d t t t
-------+------+------+-----+-----+------+-------+--------+-----
 cycle | loop | beta | p0 | p1 | r29 | r47 | r41 | p2
--
 0 |..L3..|.R28..|.R27.|.....|......|.......|........|.W25.
 |..L0..|......|.....|.....|......|.......|........|.....
 1 |..L6..|......|.....|.R33.|......|.o1150.|.o1150a.|.....
 2 |......|......|.....|.....|.o841.|.......|........|.W35.
 3 |..L8..|......|.....|.....|......|.......|........|.....
 |..L7..|......|.....|.....|......|.......|........|.....
 |..L5..|......|.....|.....|......|.......|........|.....
 |..L4..|......|.....|.....|......|.......|........|.....
 |..L2..|......|.....|.....|......|.......|........|.....
 |..L1..|......|.....|.....|......|.......|........|.....

EMA1997 Design Flow Example II - 8 of 13

Operation name abbreviations
===============================
 L0..........loop boundaries process_20_design_loop_begin
 L1..........loop boundaries process_20_design_loop_end
 L2..........loop boundaries process_20_design_loop_cont
 L3..........loop boundaries Reset_loop/Reset_loop_design_loop_begin
 L4..........loop boundaries Reset_loop/Reset_loop_design_loop_end
 L5..........loop boundaries Reset_loop/Reset_loop_design_loop_cont
 L6..........loop boundaries Reset_loop/main_loop/main_loop_design_loop_begin
 L7..........loop boundaries Reset_loop/main_loop/main_loop_design_loop_end
 L8..........loop boundaries Reset_loop/main_loop/main_loop_design_loop_cont
 R27.........8-bit read Reset_loop/alpha_27
 R28.........8-bit read Reset_loop/beta_28
 R33.........8-bit read Reset_loop/main_loop/inport_33
 W25.........8-bit write Reset_loop/outport_25
 W35.........8-bit write Reset_loop/main_loop/outport_35
 o841........(8_8->8)-bit ADD_UNS_OP Reset_loop/main_loop/add_34
 o1150.......(8_8->16)-bit MULT_UNS_OP Reset_loop/main_loop/mul_34_2
 o1150a......(8_8->16)-bit MULT_UNS_OP Reset_loop/main_loop/mul_34

EMA1997 Design Flow Example II - 9 of 13

bc_analyzer> report_schedule -abstract_fsm > fsm_rpt

**
* State graph style report for process process_20: *
**
 present next
 state input state actions
--
 s_0_0 - s_1_1 a_0: Reset_loop/beta_28 (read)

 a_1: Reset_loop/alpha_27 (read)
 a_4: Reset_loop/outport_25 (write)

 s_1_1 - s_2_2 a_2: Reset_loop/main_loop/inport_33 (read)
 a_7: Reset_loop/main_loop/mul_34_2 (operation)
 a_13: Reset_loop/main_loop/mul_34 (operation)

 s_2_2 - s_2_3 a_3: Reset_loop/main_loop/outport_35 (write)
 a_22: Reset_loop/main_loop/add_34 (operation)

 s_2_3 - s_2_2 a_2: Reset_loop/main_loop/inport_33 (read)
 a_7: Reset_loop/main_loop/mul_34_2 (operation)
 a_13: Reset_loop/main_loop/mul_34 (operation)

EMA1997 Design Flow Example II - 10 of 13

FSM

s_0_0

s_1_1

s_2_2

s_2_3

read(beta, alpha)
write (0, outport)

read(u, inport),
t1:=b*u, t2:=a*x

t2:= t1+t2,
write (t2, outport)

read(u, inport),
t1:=b*u, t2:=a*x

EMA1997 Design Flow Example II - 11 of 13

bc_analyzer> remove_design -design

bc_analyzer> schedule -io su -eff zero -area
 p p p _ m p
 o o o a u o
 r r r d l r
 t t t d t t
-------+------+------+-----+-----+------+--------+-----
 cycle | loop | beta | p0 | p1 | r29 | r41 | p2
--
 0 |..L3..|.R28..|.R27.|.....|......|........|.W25.
 |..L0..|......|.....|.....|......|........|.....
 1 |..L6..|......|.....|.R33.|......|.o1150a.|.....
 2 |......|......|.....|.....|......|.o1150..|.....
 3 |......|......|.....|.....|.o841.|........|.W35.
 4 |..L8..|......|.....|.....|......|........|.....
 |..L7..|......|.....|.....|......|........|.....
 |..L5..|......|.....|.....|......|........|.....
 |..L4..|......|.....|.....|......|........|.....
 |..L2..|......|.....|.....|......|........|.....
 |..L1..|......|.....|.....|......|........|.....

EMA1997 Design Flow Example II - 12 of 13

 present next
 state input state actions
--
 s_0_0 - s_1_1 a_0: Reset_loop/beta_28 (read)

 a_1: Reset_loop/alpha_27 (read)
 a_4: Reset_loop/outport_25 (write)

 s_1_1 - s_2_2 a_2: Reset_loop/main_loop/inport_33 (read)
 a_10: Reset_loop/main_loop/mul_34 (operation)

 s_2_2 - s_2_3 a_7: Reset_loop/main_loop/mul_34_2 (operation)
 s_2_3 - s_2_4 a_3: Reset_loop/main_loop/outport_35 (write)

 a_19: Reset_loop/main_loop/add_34 (operation)
 s_2_4 - s_2_2 a_2: Reset_loop/main_loop/inport_33 (read)

 a_10: Reset_loop/main_loop/mul_34 (operation)
--

EMA1997 Design Flow Example II - 13 of 13

FSM 2

s_0_0

s_1_1

s_2_2

s_2_4

read(beta, alpha),
 write (0, outport)

read(u, inport),
t1:=a*x

t2:= t1+t2,
write (t2, outport)

read(u, inport),
t1:=a*x

s_2_3

t2:=b*u

III. BEHAVIORAL COMPILER

A CONCEPTUAL FRAMEWORK

EMA1997 BEHAVIORAL COMPILER III - 2 of 26

Objectives

BC description
Inputs and outputs, capabilities and internal structure

Provides a conceptual framework

Understand error messages, the processing of the design

Design good inputs to the BC

Interfaces
BC is a collection of function embedded in a program: bc_shell

Textual

Graphic interface: Design Analyzer (DA) tool

EMA1997 BEHAVIORAL COMPILER III - 3 of 26

Design flow

analysis and
elaboration

Explicit
constraints

scheduling
allocation
netlisting

logic optimization

VHDL

RTL
.db form

EMA1997 BEHAVIORAL COMPILER III - 4 of 26

Inputs

Input mechanisms
HDL text

bc_shell command language

Pragma directives: comments embedded in the HDL text

HDLs
VHDL and Verilog

One or more processes + logic external to processes

BC does not process any interaction between processes

Considers a process at a time without any ordering between processes

EMA1997 BEHAVIORAL COMPILER III - 5 of 26

Processing steps

bc_shell> analyze -f vhdl mydesign.vhd

Elaborate Command
bc_shell> elaborate -s mydesign

The s flag: elaborate for scheduling.

Can be overridden by the attribute rtl attached to the process

⇒ mix both behavioral and RTL processes

Elaboration mode determined for each process

User constraints
Fixing a clock period and specifying the clock signal is mandatory

bc_shell> create_clock clk -period 9

Pairs of operations can be constrained
bc_shell> set_cycles 3 -from op1 to op2

Implementation of components may be forbidden

EMA1997 BEHAVIORAL COMPILER III - 6 of 26

Processing steps (cont’d)

Timing analysis
BC is a specific technology scheduler

If long clock cycle operations may be chained

This step is invoked manually
bc_shell > bc_time_design

BC timing analysis is accurate: bit_level instead of lumped timing models

Report on combinational chains

EMA1997 BEHAVIORAL COMPILER III - 7 of 26

Processing steps (cont’d)

Poss. changes after report on timing
Change the clock cycle or technology if needed

Estimate required number of cycles

Guide for manual implementation selection

Indicate multicycle operations: costly in both area and timing

⇒ The user may decide to change the operation, the implementation or the clock cycle

Scheduling
Operations mapped to control steps

Non-concurrent operations may share the same multiplexed hardware

⇒ reduces cost while meeting performance requirements

bc_shell> schedule -effort low

EMA1997 BEHAVIORAL COMPILER III - 8 of 26

BC internals
Control-dataflow graph

j c1 b c d2

split

join

+

-

* /

* aut

4m x

a

m

if c1 then m := j*2;
else m := j/2 ; end if;
a:= b+c;
x:= a-d;

wait until clock’event and
clock=’1’;
m:= m* 4;
aut <= x;

cstep

i

i+1

EMA1997 BEHAVIORAL COMPILER III - 9 of 26

CDFG

CDFG
Abstract representation of the circuit behavior

Without bias toward any schedule

 Terminology
+, -, *, / belonging to cstep i are concurrent

BC (not DC) will allow “-” moved to next cstep

⇒ a dual unit add/sub can be shared

CDFG edges represent precedence

Latency: total number of csteps

EMA1997 BEHAVIORAL COMPILER III - 10 of 26

CDFG nodes

Data
Arith/logic operations, some function calls

Synthetic nodes share hardware, random logic not

Patch boxes: bit and field selection, constant sources

Memory R/W: memory accesses

IO R/W: R/W to ports or signals

Conditional
 split, join

Hierarchical
loops and function calls

Place holder

Loop control
loop begin, loop end, loop continue, loop exit

EMA1997 BEHAVIORAL COMPILER III - 11 of 26

Chaining, multicycling, and pipelining

Controlling chaining
use set_cycles instead of
bc_shell> bc_enable_chaining = false

Multicycling
Controls and muxes should be registered

If conditional, FSM should commit at cycle i-1 to stabilize registers ⇒ extra cstep

Forcing unicycling regardless of timing analysis, use with caution:
bc_shell> bc_enable_multi_cycle = false

Pipelining
f(x) = g(h(x)): a register isolates h for g

Pipelining either automatic or by implementation directives

More expensive than a k-cycle operation but k times faster

Multiplication and memory operations are prime candidates

EMA1997 BEHAVIORAL COMPILER III - 12 of 26

Chaining, multicycling, and pipelining
(Illustration)

+

+ *
h

g

f=g(h)

split

+

<

EMA1997 BEHAVIORAL COMPILER III - 13 of 26

CDFG edges

Data edges
Represent values

Precedence edges
Represent order and control

t and f of a split node

Constraints
bc_shell> set_min_cycles 3 -from sub1 -to add3

EMA1997 BEHAVIORAL COMPILER III - 14 of 26

Speculative execution

Pre-computed result

stored into a register

discarded if branch not taken

Default: Turned off

 ➚ search space and execution time
bc_shell> bc_enable_speculative_execution

-

split

+

<

EMA1997 BEHAVIORAL COMPILER III - 15 of 26

Templates

Precedence and data arcs cannot express maximum allowable duration

Prescheduled sub-design has to be preserved

Templates
Collection of operations allowed to move only as a group

Rigid timing relationship between its elements

Slots contain either place holders and/or other nodes

Notice them when impossible schedule

3

EMA1997 BEHAVIORAL COMPILER III - 16 of 26

Scheduling

Objective
Minimize hardware cost within user timing constraints

Ex: 2 additions on a single adder if occurring in ≠ csteps or mutually exclusive

Minimize cost of registers

Lower(nb registers)= min nb of bits crossing cstep boundaries

Algorithm

while all operations not scheduled
Choose the most important unscheduled
operation OP
Assign OP to the most cost effective step
Mark OP as scheduled

EMA1997 BEHAVIORAL COMPILER III - 17 of 26

Scheduling (cont’d)

Criteria for selecting operations op
Ready

highest implementation cost

mobility

Criteria for selecting the appropriate csetp t
op must be ready at t

consumers of op are critical

Clock cycle must be respected (regarding chaining)

Resource and/or timing constraints

Register cost

EMA1997 BEHAVIORAL COMPILER III - 18 of 26

Scheduling (cont’d)

Additional complexity
Conditional

Loops

Pipelining

Memory operations

To avoid excessive iterations use achievable constraints
Iteration are very fast compared to logic level

BC schedules bottom up
Innermost loops and functions calls first

Inline each completed level

Inlined loops encapsulated in templates

Inconsistencies may appear at higher levels due to templates

x(0)= x; y(0)= y; y’(0)= u
y’’ + 3xy’ + 3y = 0

eqdiff {
lire (x, y, u, dx, a)
répéter {

x1 = x + dx;
u1 = u – (3 * x * u * dx) – (3 * y * dx);
y1 = y + u * dx;
c = x1 > a;
x = x1; u = u1 ; y = y1;
}

jusqu’à (c);
écrire (y);

}

EMA1997 BEHAVIORAL COMPILER III - 19 of 26

Allocation

Operation should be mapped on particular hardware resources

The number of resources is supposed given from the scheduling step

Unit selection and mapping affects both speed and cost

Unallocated = operations & values
While unallocated
choose U
if not(free(R, time(U)) & Impl(R,U))
then add new resource R
assign(U, best (R))
mark U allocated

EMA1997 BEHAVIORAL COMPILER III - 20 of 26

Allocation (cont’d)

Avoid false path otherwise logic synthesis will have hard time

(a, b, c), (d, e) chained operations

Diff. csteps

a

b

c

d

e

x

y

z

w

False
path

EMA1997 BEHAVIORAL COMPILER III - 21 of 26

Allocation criteria

Cost
Allocate the most expensive operations first

Critical path
Operations and operands affecting the clock cycle first

Interconnect
Cluster operations and operands

⇒ Minimize interconnects

⇒ Avoid false paths

> set_common_resource op1 op2 op3 -mincount 2

EMA1997 BEHAVIORAL COMPILER III - 22 of 26

Netlisting

Output of BC goes to logic synthesis
Random logic required by the user is instantiated

Register, operators, memories are instantiated according to the allocation step

MUXes, nets, connectivity hardware are constructed to connect the datapath

Whole design connected to signals and ports

Status and control points recorded for later hookup to control FSM

EMA1997 BEHAVIORAL COMPILER III - 23 of 26

Control FSM

A state graph is constructed

A set of control actions is constructed

Each of these drives a control point

Actions are annotated on the transitions of the state graph

Status points are mapped from the scheduled CDFG

Netlist augmented with Control Unit (CU)

Inputs to CU are status signals

Outputs are connected to the control points

A State Table is constructed

It will serve as input to the FSM compiler

EMA1997 BEHAVIORAL COMPILER III - 24 of 26

States and csteps

One to one mapping except:
Loop has one more cstep than states

Mutually exclusive loops have disjoint states mapping to the same csteps

while cond loop
wait until clk’event
and clk=’1’;

end loop;

EMA1997 BEHAVIORAL COMPILER III - 25 of 26

BC constraints on loops

Loop-end at least one cstep after loop-begin

Loop exit at least on cstep after cond. evaluation

1+ clock edges inside a loop (O not allowed)

if cc then
L1: while cond loop

wait until clk’event and
clk=’1’;
wait until clk’event and
clk=’1’;

end loop;
else

L2: while cond loop
wait until clk’event and
clk=’1’;

EMA1997 BEHAVIORAL COMPILER III - 26 of 26

Invoking the scheduler

schedule command automatically invokes timing (if necessary), scheduling, allocation,
netlisting and control unit synthesis.

bc_shell> set_cycles 5 -from_begin loop1 -to_end loop1
bc_shell> set_common_resource op1 op2 -min_count 1
bc_shell> schedule -effort med -io_mode super
effort: zero, med, high

BC outputs
bc_shell> report_schedule -operations -variables
bc_shell> write -hierarchy -format vhdl -out mydesign.vhd
compile -map_effort medium
optimize_registers
write -format edif -hierarchy

IV. HDL descriptions and semantics

EMA1997 HDL descriptions and semantics IV - 2 of 30

Objectives

VHDL styles for synthesis

Overall structure of models for simulation

BC interpretation of constructs

Main feature of BC

Simulation and comparison of design before and after synthesis

Design should be tested thoroughly before synthesis

Pre-synthesis simulation faster than post-synth. simulation

⇒ Test as much as poss. at behav. level

Development of good test benches is very important

It is also very time-consuming

May be more than the development of the model itself

EMA1997 HDL descriptions and semantics IV - 3 of 30

Pre-synthesis model

clocking
process

reset
process

stimulation
process

stimulus
file

RTL
process

Behavioral
 process monitor

process

response
file

random
logic

Design

Test bench

EMA1997 HDL descriptions and semantics IV - 4 of 30

The design

Must be represented by
 A VHDL entity

An associated architecture

library IEEE;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;

entity design is
port (clk, reset: in std_logic;
ip: in signed (7 downto 0);
op: out signed(7 downto 0));

end design;

EMA1997 HDL descriptions and semantics IV - 5 of 30

The design (cont’d)

architecture behave of design is
-- type, signal, component, ... declarations
begin
-- component instantiations
-- concurrent statements
-- RTL processes
-- behavioral processes

end behave;

EMA1997 HDL descriptions and semantics IV - 6 of 30

Behavioral processes

BC schedules behavioral processes only

Random logic outside processes and RTL processes preserved during scheduling

Multiple behavioral processes scheduled independently

No attempt by BC to maintain synchronicity

User must maintain synchronicity by providing strobes, ready signals, etc.

Synchronization more difficult when non-cycle-fixed I/O is present

Local variables to a process are mapped to registers

Optimization based on life time

EMA1997 HDL descriptions and semantics IV - 7 of 30

Behavioral processes (cont’d)

No sensitivity list

Variables only visible within the process

P1: process
-- local variables
variable x: signed (7 downto 0);
...

begin
 -- behavioral statements;
 ...
 wait until clk’event and clk =’1’;

end process P1;

EMA1997 HDL descriptions and semantics IV - 8 of 30

Clock and Reset

BC supports
A single-phase edge-triggered clock

Synchronous or asynchronous resets

Interpretation
Each clock edge forces the process to await the next active clock edge before proceeding

An output write may be forced to fall one cycle after another operation

User may insert any number of clock edges in the model

Edge polarities cannot be mixed inside the same process

Different processes may use different edges, clock nets, and frequencies

Sensitivity lists are not allowed in a behavioral process

Inside a behavioral process only one signal and one polarity can be the argument of any
wait statement

EMA1997 HDL descriptions and semantics IV - 9 of 30

Synchronous resets

main: process
begin
reset_loop: loop
--reset tail
pc := (others => ’0’); sp:= (others =>’1’);
wait until clk’event and clk=’1’;
if reset =’1’ then exit reset_loop; end if;
main_loop: loop

-- normal mode
instr := memory(pc);
wait until clk’event and clk=’1’;
if reset =’1’ then exit reset_loop; end if;
case (instr) is
 when “00100000” => ...

end loop main_loop;
end loop reset_loop;

end process main;

EMA1997 HDL descriptions and semantics IV - 10 of 30

Synchronous resets (cont’d)

Exit statement after each clock edge

Loop encloses the entire process behavior

Loop begins with reset specific behavior

BC infers a reset if no reset branch is missing and all branches are identical

BC reports well formed resets
A global synchronous reset has been inferred

A reset can be included at bc_shell level
> set_behavioral_reset reset -active high

A reset net or port should be provided

Unused net is deleted during elaboration

⇒ add a dummy port or logic which uses the reset net

EMA1997 HDL descriptions and semantics IV - 11 of 30

Asynchronous resets

Use set_bahavioral_async_reset or

If needed for pre-synthesis simulation

Readability ➘

wait until (clk’event and clk =’1’)
 --synopsys synthesis_off
 or (reset’event and reset =’1’)
 --synopsys synthesis_on
if reset =’1’ then

exit reset_loop;
end if;

EMA1997 HDL descriptions and semantics IV - 12 of 30

I/O Operations
entity design is
port (clk, reset: in std_logic;
ip: in signed (7 downto 0);
op: out signed(7 downto 0));

end design;

architecture behave of design is
signal sig: signed(7 downto 0);

begin
P1: process
variable v1,v2: signed (7 downto 0);
begin
wait until clk’event and clk =’1’;
v1 := ip; --read
v2:= ip; -- different read
wait until clk’event and clk =’1’;
sig <= v1; -- write
wait until clk’event and clk =’1’;
op <= v2 + sig -- read and write
wait until clk’event and clk =’1’;

end process P1;
end behave;

EMA1997 HDL descriptions and semantics IV - 13 of 30

I/O Operations

I/O R/W inferred from references to architecture signals or entity ports

Note different reads in “the same cycle”

Cycle stretched in 2 I/O modes
If one read wanted then re-use v1

BC registers output ports and written signals
New value appears at the next cycle

Avoid “<=” except for communicating with outside

EMA1997 HDL descriptions and semantics IV - 14 of 30

I/O Operations
(cont’d)

R/W signals may serve as milestones in a very complex design
Constrain the schedule

Reduce the search space

Make testing easier

BC assumes registered inputs

EMA1997 HDL descriptions and semantics IV - 15 of 30

Flow of Control

Most constructs supported
For, while , infinite loops

If-then-elsif-else, case statements

Functions, procedures

Next, exit
Associated with a reset, or

Affect the immediate enclosing loop

EMA1997 HDL descriptions and semantics IV - 16 of 30

Fixed bound FOR loops

Unrolled by default at elaboration time
Eliminates hardware evaluating the conditional

Allows writing loops containing no clock statements

Allows simultaneous scheduling of operations outside the loop and operations from
different iterations

To force keeping complex loops rolled

attribute dont_unroll: boolean;
attribute dont_unroll of loop_C: label is true;
...
loop_C: for i in 0 to 1000 loop ...

EMA1997 HDL descriptions and semantics IV - 17 of 30

General loops

Not unrolled
Infinite loops

While loops and loops with “dynamic” range

Loops with explicit conditional exit

EMA1997 HDL descriptions and semantics IV - 18 of 30

Pipelined loops

loop
a:= inputport;
wait until clk’event and clk =’1’;
b:= op1(a);
wait until clk’event and clk =’1’;
c:= op2(b);
wait until clk’event and clk =’1’;
d:= op3(c)
wait until clk’event and clk =’1’;
e:= op4(d);
wait until clk’event and clk =’1’;
outputport <= op5(e);
wait until clk’event and clk =’1’;

end loop;

read
op1
op2
0p3
op4

op5,w

read
op1
op2
0p3
op4

op5,w

read
op1
op2
0p3
op4

op5,w

read
op1
op2
0p3
op4

op5,w

initiation
interval

l
a
t
e
n
c
y

latency: multiple of II
II=2; L=6
Throughput = 1/II = 0.5

EMA1997 HDL descriptions and semantics IV - 19 of 30

Pipelined loops

Previous example hypothesis
No chaining possible

Operations so diff. they cannot share the same hardware.

Before pipelining
1/6 resource utilization

1/6 throughput

After pipelining
1/2 utilization

1/2 throughput

EMA1997 HDL descriptions and semantics IV - 20 of 30

Pipelined loops and Fixed I/O mode

ppl: while (cond) loop
u := inp; --read
x := x*a + u*b;
output <= transport x after 20 ns -- 2cycles
wait until clk’event and clk =’1’;

end loop ppl;
wait until clk’event and clk =’1’; -- purge pipeline
wait until clk’event and clk =’1’;
wait until clk’event and clk =’1’;
output <= in_order_output

read read read read

writ writ writ read

EMA1997 HDL descriptions and semantics IV - 21 of 30

Other I/O modes

Implicit declaration of a pipeline (as in fixed mode) is not possible nor necessary

> pipeline_loop ppl -initiation 1 -latency 3

Regardless of I/O mode re-using the outputs cannot be too close to the end of the pipelined
loop

No exit later than II+1 to avoid explosion of states

Rolled loops cannot be nested inside pipelined loops

BC cannot determine statically the concurrency between iterations

EMA1997 HDL descriptions and semantics IV - 22 of 30

Memory inference

Memories specified using arrays

Memories consist of words

BC schedules accesses and controls ports

RAM accesses are synthetic

BC makes conservative assumptions about address conflicts

An address conflict occurs: two accesses to same mem. one access is a write

BC does not distinguish between false and true conflicts

Override BC deduction:
> ignore_memory_precedences -from op1 to op2

M(14) := 5;
x := M(14);
True conflict

M(14) := 5;
x := M(13);
False conflict

EMA1997 HDL descriptions and semantics IV - 23 of 30

Memory code

architecture beh of mem_dsg is
subtype resource is integer;
attribute variables: string;
attribute map_to_module: string;
type mem_type is array (0 to 15) of signed(7 downto
0);

begin
behavP: process
constant Mem1: resource:=0; --physical memory
attribute variables of Mem1: constant is “M”;
attribute map_to_module of Mem1: constant is
“DW03_ram1_s_d”;
variable M: mem_type; --logical memory

begin
...
M(12) := “00101100”; -- mem. w.
outport <= M(2*x); -- mem. r.

EMA1997 HDL descriptions and semantics IV - 24 of 30

 Memory timing

Normal loops
Iterations are insulated

R/W of one iteration strictly precede R/W of next iteration

Pipelined loop
Iterations co-exist
⇒ inter-iteration conflicts appear

These conflicts may be false
> ignore memory_loop_precedences {op1 op2}

EMA1997 HDL descriptions and semantics IV - 25 of 30

Memory timing (cont’d)

for (i in 0 to Msize) loop
M(i) := inport;
outport <= transport (f(M(i)) after 20 ns;
wait until clk’event and clk=’1’;

end loop;

M(i):=

f(M(i))
M(i+1):

f(M(i+1
M(i+2):

f(M(i+2
M(i+3):

f(M(i+3

II cannot 1 or 2 due to false
memory conflict, it may be 3

EMA1997 HDL descriptions and semantics IV - 26 of 30

Other memory considerations

RAM operations
 appear just as array references

but may be multi-cycle operations

 use registers if poss.

Declaration of memory forgotten or misspelled ⇒
Array of words becomes a large register

Busses used for reads

MUXes uses for writes

Area and logic optimization become impractical

If memory contains records
Accessing a single field means accessing the whole record

⇒ partition the memory in different memories

EMA1997 HDL descriptions and semantics IV - 27 of 30

Synthetic components

Component synthesized on the fly when needed
Ex: adders, multipliers ...
Encapsulated in DesignWare libraries
Sharable resources during allocation

≠ modules, each module has ≠ implementations
adder module, add/sub module, ≠ carry chain implementations

EMA1997 HDL descriptions and semantics IV - 28 of 30

DesignWare developer

Function or procedure used in more than one place

Is not in the DW lib.

Wish the hardware implementation sharable

 ex: MAC op. for DSP with ≠ implementations

 repeated random logic modules

Define a function instead of code

Then use the map_to_module pragma

 ⇒ use DW module instead of inlining the function

simplify the FSM by moving parts to Data Path

Size of the FSM exponential in number of inputs

if (cond) then
x := d1;

else
x:=d2;

end if;

EMA1997 HDL descriptions and semantics IV - 29 of 30

Preserved functions

By default, BC inlines subprograms during elaboration
To prevent inlining:
function fid (...) is
 -- synopsys preserve_function

Inlining controlled at subpgm definition

Equivalent to a DW part with some restrictions
No signal R/W

No sequential DW parts

No clock edge statements

No rolled loops

No unconstrained types

No multiple implementations

Cannot be used in an RTL process

EMA1997 HDL descriptions and semantics IV - 30 of 30

Pipelined components

Comb. logic as a synth. comp. may have excessive delay.
1. Lengthen the clock cycle

Bad solution

Increases chaining while diminishing sharing

2. Allow multi-cycle operations

Latency penalty

Registered inputs

3. Pipelining

May be obtained by retiming (optimize_registers)

Some DW components are pipelined

Use DW developer

Use a directive
> set_pipeline_stages {op1 op2} -fixed_stages 3

V. I/O modes

EMA1997 I/O modes V - 2 of 18

I/O modes

Three I/O modes
three different interpretations of HDL semantics

Modes define equivalence between the pre-synthesis and post-synthesis models

Pre and post synthesis designs perform the same operation at the same time on
their inputs

Very strict, rules out scheduling

Fixed I/O mode:
The I/O behavior is always the same

A communication protocol working with the model will work with the synthesized
design

Test bench will work with both

Strict discipline, if computation two long, BC will exit with error

EMA1997 I/O modes V - 3 of 18

I/O modes (cont’d)

Superstate mode
 I/O operations order is preserved, time may be stretched

Input and design distinguishable only by counting clock cycles

Test bench preserved if independent of number of clock edges

A good balance between optimization and verification

Free floating mode
I/O operation are freely shifted in time

Allows maximum optimization

Difficult verification

EMA1997 I/O modes V - 4 of 18

Cycle-Fixed Mode

Any scheduled mode has a fixed counterpart
A timing diagram not achievable in fixed mode

⇒ Not achievable in any mode

Source can talk correctly to its environment

⇒ Synthesized process will

Source should be written allowing BC synthesis

 Without ± any clock cycle

I/O timing preserved except for reset
Resets not needed in simulation

1+ cycles needed to startup the FSM in synthesized design

BC always registers the process outputs

⇒ 1 cycle skew with simulation

EMA1997 I/O modes V - 5 of 18

Cycle-Fixed Mode
(Test bench)

Provide two reset pulses

Reset source one cycle longer

Other signals from the test bench should not transition exactly on the clock edge

Otherwise setup hold violations

source

post-synth
reset

reset
reset process

=

EMA1997 I/O modes V - 6 of 18

Fixed Mode rules
(Straight line code)

Source should be written allowing BC synthesis without ± any clock cycle

BC fails if a series of operations cannot fit in the allocated time

Its decision takes into account

Chaining

Sequential operations

Multicycle operations

Manual constraints

A multicycle operation can only be chained with an output operation

Be careful about muticycle operations

Not obvious by simple inspection

Especially memory operations

EMA1997 I/O modes V - 7 of 18

Fixed Mode rules
(Loops)

Loop boundaries are not free to be rescheduled

A loop is mapped to 2+ csteps

Loop test is performed inside the cycle of the loop

⇒ No transition goes past the loop

⇒ Must be a clock edge between loop test and any succeeding output

while (not ready) loop
wait until clk’event and clk=’1’;

end loop;
-- Illegal: no wait
outdata <= data;

loop_Begin

loop_end

split

exit...

cstep 0

cstep 1

EMA1997 I/O modes V - 8 of 18

Loops in fixed mode

Mental representation of a while loop

free_loop: loop
if ready then
wait until clk’event and clk=’1’;
exit free_loop;

end if;
wait until clk’event and clk=’1’;

end loop;

dataout <= data;

EMA1997 I/O modes V - 9 of 18

Nested loops and FM

A: otherwise two condition must be tested in the same cycle

B: otherwise one branch of nested loop without a clock edge

while (not done) loop
-- A: wait needed
while (not ready) loop

wait until clk’event and clk=’1’;
end loop;
--B: wait needed

end loop;

EMA1997 I/O modes V - 10 of 18

Successive loops and FM

while (not done) loop
wait until clk’event and clk=’1’;

end loop;
-- wait needed
while (not ready) loop

wait until clk’event and clk=’1’;
end loop;

EMA1997 I/O modes V - 11 of 18

Complex loop conditions

Complex conditions may take more than 1 cycle
while (x*inport1 < y-inport2) ...

Two reads locked to the same cycle

Operations are performed: 2 cycles

Extra cycle should be taken into account in the subsequent code

EMA1997 I/O modes V - 12 of 18

Superstate-Fixed Mode

Properties
Preserves the I/O ordering but

Not necessarily the number of clock edges between I/O operations

Latency of the design may change by user commands without changing the HDL
> pipeline_loop main_loop -latency 16 -initiation 4

A superstate is the interval between 2 source clock edges.

BC is allowed to add clock edges to a superstate

Equivalence
 Any I/O write will take place in the last cycle of the superstate

An I/O read can take place in any cycle of the superstate

EMA1997 I/O modes V - 13 of 18

Superstate-Fixed Mode
(Implications)

Any 2 writes happening in the same superstate must be simultaneous

Input data must be held stable during a superstate

I/O protocols must handle extra delays possibly added by BC

⇒ handshaking is a candidate protocol

EMA1997 I/O modes V - 14 of 18

Superstate Rules
(continuing superstate)

The first superstate of a loop contains any I/O

⇒ no superstate containing a loop continue may contain an I/O write

while (not ready) loop
tmp := inport ; --read
-- edge 1
wait until clk’event and clk=’1’;
-- edge 2
wait until clk’event and clk=’1’;
outport <= data; --illegal

end loop;

Edges 1 2

super A

 super B
(continuing)

EMA1997 I/O modes V - 15 of 18

Superstate Rules
(separating write orders)

There must be a clock edge between a write and the beginning of a loop whose first
superstate contains a write operation

Ex: 1st superstate starts outside of the loop

⇒ outside write has to migrate inside the loop (contradiction)

this_port <= some;
-- must have a wait
loop
that_port <= any ;
wait until clk’event and clk=’1’;

end loop;

EMA1997 I/O modes V - 16 of 18

Superstate Rules
(Conditional superstate)

A write can never precede a conditional superstate boundary if any I/O operation succeeds
the boundary

thisport <= some;
-- must have a wait
while strobe loop

wait until clk’event and clk=’1’;
end loop;
reg1 := thatport;

EMA1997 I/O modes V - 17 of 18

Superstate Rules
(Escaping from the loop)

No I/O write can occur between the exit and the last clock edge before the exit

busy: while strobe loop
wait until clk’event and clk=’1’;
thisport <= some;
 if (interrupt) then exit busy;
end if;

end loop;

EMA1997 I/O modes V - 18 of 18

Free-Floating Mode

I/O operations are free to float with respect to one another

Operations on single port are partially ordered

Series of reads can be permuted

No ordering between operations on different ports

Data precedences and constraints respected

Deleting or adding clock edges permitted

If two signals are logically bound then express it using manual constraints

VI. Explicit Directives and Constraints

EMA1997 Explicit Directives and Constraints VI - 2 of 9

Labeling
(Default naming)

If “+” falls in line 35 the default name is

P1/outloop/innerloop/add_35

If > one “+” then add_35_1, add_35_2

Default names created for unlabeled loops

If unrolled loop: add_35_i_3 for iteration 3
> find -hier cell > names.txt

Drawback: cell names change if source edited

P1: process
outloop: loop
innerloop: loop
x := a+b;

end loop;
end loop;

end process;

EMA1997 Explicit Directives and Constraints VI - 3 of 9

Labeling
(user naming)

Use pragma
New name not sensitive to editing is

P1/outloop/innerloop/alu

Limitations

Ambiguity when many operations on the same line,

Not applicable to I/O and memory operations loop boundaries

...
x := a+b; -- synopsys label alu

...

EMA1997 Explicit Directives and Constraints VI - 4 of 9

Labeling
(improved naming)

Labeling lines
P1/outloop/innerloop/add_thisline

If multiple operation: names generated from left to right

...
x := a+b; -- synopsys line_label thisline
...

EMA1997 Explicit Directives and Constraints VI - 5 of 9

Scheduling Constraints

> preschedule p2/res_loop/main/sub_107 4

Forces the named operation into a particular cstep

The cstep is relative to the beginning of the enclosing hierarchical context

sub_107 will be put in the 5th cstep of loop main

> set_cycles 3 -from op1 -to op2

op2 must start exactly 3 cycles after op2 started

> set_cycles 3 -from_begin loop4 -to_end loop4

> set_min_cycles 5 -from_end loop4 -to_begin loop6

EMA1997 Explicit Directives and Constraints VI - 6 of 9

Scheduling Constraints
(cont’d)

chain_operations equivalent to set_cycles 0

dont_chain_operations equivalent to set_min_cycles 1

remove_scheduling_constraints removes all explicit constraints

> set_common_resource op1 op2 op3 -min_count 2

EMA1997 Explicit Directives and Constraints VI - 7 of 9

Shell Variables

> bc_enable_chaining = false

Globally turns off chaining of synthetic operations.

Use more specific constraints.

true by default

bc_enable_multi_cycle: true by default

bc_enable_speculative_execution: false by default

EMA1997 Explicit Directives and Constraints VI - 8 of 9

Shell Variables (cont’d)

bc_fsm_coding_style

one_hot

counter_style

two_hot

use_fsm_compiler (default)

reset_clears_all_bc_registers when set to true

Clear pins of all registers connected to the reset net

With set_behavioral_async_reset provides asynch reset to all registers

EMA1997 Explicit Directives and Constraints VI - 9 of 9

Shell Commands

set_margin controls the margin

allowed for control and muxing delays

when timing the design before scheduling

> register_control -inputs -outputs

Forces registers on inputs and/or outputs of the control FSM

May improve the cycle time but

May increase latency if conditionals on the critical path

set_stall_pin

Used to stop the design for some external event to occur

Equivalent to a gated clock

VII. RTL Design Methodology

EMA1997 RTL Design Methodology VII - 2 of 21

RTL Design flow

Netlist simulation

Functional specs

RTL coding Behavioral
 compiler

Behav. coding

RTL code

Test insertion

Floorplanner

Place and Route

RTL simulation

Logic synthesis

1

2

3

4

5

6

7

8

EMA1997 RTL Design Methodology VII - 3 of 21

RTL Design flow

It is an iterative process
If simulation not satisfactory, goto RTL code

If timing requirements of the clock not met after synthesis
• modify code
• change synthesis strategy
• hack the netlist

After P&R
Back-annotate real delay values

Perform in place optimization to meet routing delays

EMA1997 RTL Design Methodology VII - 4 of 21

Design refinement

Block diagram of ASIC created after step 1

HDL coding of each block

Style of coding important for synthesis

Knowledge internals
⇒ write good synth. code

Hierarchy based on func. specs.
 ⇒ critical path may traverse hierarchy boundaries

Best results when critical path in one block

Ensure registered output blocks
⇒ avoid complicated timing budgeting

EMA1997 RTL Design Methodology VII - 5 of 21

HDL FF Code

entity comp is
port (b, c: in bit; qout: out bit);

end comp;
architecture FF of comp is
begin
P1: process
begin
wait until c’event and c =’1’;
qout <= b;

end process P1;
end FF;

Db

c clk

Q qout

EMA1997 RTL Design Methodology VII - 6 of 21

HDL latch Code

entity comp is
port (b, c: in bit; qout: out bit);

end comp;
architecture latch of comp is
begin
P1: process (b, c)
begin
if (c =’1’) then qout <= b;
 end if;

end process P1;
end latch;

Db

c enable

Q

EMA1997 RTL Design Methodology VII - 7 of 21

HDL AND Code

entity comp is
port (b, c: in bit; qout: out bit);

end comp;
architecture and2 of comp is
begin
P1: process (b, c)
begin
if (c =’1’) then qout <= b;
else qout <= ’0’;
end if;

end process P1;
end and2;

b

c

qout

EMA1997 RTL Design Methodology VII - 8 of 21

MUX inference

Often gates are inferred instead of MUXes

map_to_entity pragma forces mapping to MUXes or

Function calls or

Instantiating MUXes from Synopsys generic library (gtech.db) and assigning map_only
attribute

0

b
MUX

Select
1

a f

s

EMA1997 RTL Design Methodology VII - 9 of 21

MUX modeling

entity comp is
port (a,b, s: in bit; f: out bit);

end comp;

architecture mux of comp is
begin
P1: process (a,b, s)
begin
case s is

when ’0’ => f<=a;
when ’1’ => f<=b;

end case;
end process P1;

end mux;

EMA1997 RTL Design Methodology VII - 10 of 21

Synthesized gate-level netlist simulation

VHDL simulation models of technology library cells

Unit Delay Structural Model (UDSM)
Comb. cells delay = 1ns

Seq. cells delay = 2ns

Full-Timing Structural Model (FTSM)
Transport wire delays

Pin-to-pin delays

Zero delays functional networks

Timing constraints violations reported as warnings

EMA1997 RTL Design Methodology VII - 11 of 21

Netlist simulation (cont’d)

Full-Timing Behavioral Model (FTBM)
Transport wire delays

Pin-to-pin delays

Very detailed timing verification

Full-Timing optimized Gate-level Model (FTGM)
Transport wire delays

Pin-to-pin delays

Warnings + handling X values

Timing constraints violations reported as warnings

Logic synthesis
Transform RTL HDL to gates

Optimize by selecting the optimal combination of technology library cells

EMA1997 RTL Design Methodology VII - 12 of 21

Simulation of commercial ASICs

vdlib.vhd.E : encrypted, contains simulation models with timing delays

vdlib_components.vhd: package, declarations for all the cells of ASIC vendor library

If source available (.lib) the user can control the type of the model by setting the dc_shell
variable vhdllib_architecture

write_lib -f vhdl

vdlib.vhd.E

ASIC vendor library
(vdlib.db)

Synopsys Library
Compiler liban utility

vdlib_components.vhd

EMA1997 RTL Design Methodology VII - 13 of 21

Design for Testability

Cost of testing important part of the total cost

Scan Design techniques: popular DFT technique

Full Scan ⇒ combinational ATPG

Partial Scan ⇒ sequential ATPG

TC automatically replaces sequential cells by scan cells

TC generates test patterns and computes fault coverage (single s-a-0/1 model)

D

clk

Q

A

Scan In
MUX

SB

Data

Mode

Clock

Data

Mode

Clock

Scan
Q

Scan
Q

Scan
Q Scan Out

EMA1997 RTL Design Methodology VII - 14 of 21

Design Re-use

Achieves fast turnaround on complex designs

DesignWare is a mechanism to build a library for re-usable components

Generic GTECH Library
Source read in DC converted to a netlist of GTECH components and inferred DW parts
gtech.db contains basic logic gates, flip flops, half adder and a full adder

DW libraries
Standard, ALU, Maths, Sequential, Data Integrity, Control Logic and DSP
adders, counters, comparators, decoders
Parts are parametrizable, synthesizable, testable, technology independent
Parts have simulation models
When used, implementation selection, arith. optimization and resource sharing are on

Users can create new DW libraries
Effective mechanism to infer structures that DC would not

EMA1997 RTL Design Methodology VII - 15 of 21

Designing with DW Components

Data Bus
Buffer

Receiver

Transmitter

Modem
Control

Baud
Generator

Interrupt
Logic

Select
and

Control
Logic

Transmitter Holding
Register

DW03_FIFO_S_DF

Transmitter
FSM

Decode Logic
DW03_DECODE

Transmitter Shift
Register

DW03_SHFT_REG

Hierarchical view of UART Transmitter Block

EMA1997 RTL Design Methodology VII - 16 of 21

FPGA Synthesis

User programmable IC: set of logic blocks that can be connected using routing resources

Interconnect: wires of diff. lengths and programmable switches

Easy to configure by the user

Implement logic circuits at relatively low cost with a fast turnaround

Hardware emulation: use programmable hardware as a prototype of an IC design

Rapid growth and density of FPGAs ⇒ need for synthesis tools

FPGA Compiler for Synopsys:

Map HDL descriptions to logic blocks and provide configuration of switches

EMA1997 RTL Design Methodology VII - 17 of 21

Links to layout

Advent of sub-micron tech. ⇒ net delays become significant

while gate delays decrease wire delays increase due to capacitances

Accurate wire loads and physical hierarchy become crucial to synthesis tools

Synopsys Floorplan Manager transfers information between back-end tools and DC

Formats for transfer:

 Standard Delay Format (SDF)

 Physical Data Exchange Format (PDEF)

 Synopsys set_load script

EMA1997 RTL Design Methodology VII - 18 of 21

DC and DA environments

Design Analyzer (DA): graphical front end of Synopsys environment
Used to view schematics and their critical path

dc_shell (DC): command line interface for RTL synthesis
Can be invoked from DA command window
(setup -> Command Window)

Startup files
DC reads .synopsys_dc.setup when invoked
Recommendation: keep .synopsys_dc.setup in current working directory
⇒ design specific variables specified without affecting other designs

EMA1997 RTL Design Methodology VII - 19 of 21

DC and DA environments
(cont’d)

Ex:
search_path = search_path+{“.”, “./lib”,“./vhdl”,“./script”}
target_library = {target.db}
link_library = {link.db}
symbol_library = {symbol.db}

DA (setup ->Defaults) should indicate the specified libraries

Specifying libraries in .synopsys_dc.setup is permanent compared to specifying them in DA

Command list <variable_name> gives the current value of the variable
> list target_library

EMA1997 RTL Design Methodology VII - 20 of 21

Target, Link, and Symbol Libraries

Target library
ASIC vendor library

Used to generate a netlist for the design described in HDL

Link library
Used when the design is already a netlist or

When the source instantiates technology library cells

Symbol libraries
Contain pictorial representation of library cells

> compare_lib <target_library> <symbol_library>

Shows any differences between the two libraries

EMA1997 RTL Design Methodology VII - 21 of 21

Libraries generation

Libraries generated from ASIC files (.lib, .slib) files

By Synopsys Library Compiler

Produce (.db, .sdb) libraries

> read_lib my_lib.lib
> write_lib my_lib.db

> read_lib my_lib.slib
> write_lib my_lib.sdb

VIII. VHDL RTL SEMANTICS

EMA1997 VHDL RTL SEMANTICS VIII - 2 of 22

Types, signals and variables

Use std_logic for ports

⇒ no conversion functions needed

std_logic ∈ std_logic_1164 package

Avoid using mode buffer: must percolate through hierarchy

Variables
+ Updated immediately

+ Faster simulation

- May mask glitches

Signals
Need δ-time

Signals used by a process ∉ sensitivity list

 ⇒ RTL ≠ gate simulation

EMA1997 VHDL RTL SEMANTICS VIII - 3 of 22

Buffer mode modeling

entity buf is
port (a,b: in std_logic, c:out std_logic)

end buf;

architecture test of buf is
signal c_int: std_logic;

begin
process
begin
...
c_int <= ...
...
end process;
c <= c_int;

end test;

EMA1997 VHDL RTL SEMANTICS VIII - 4 of 22

STD_LOGIC

TYPE std_ulogic IS (’U’, -- Uninitialized
 ’X’, -- Forcing Unknown
 ’0’, -- Forcing 0
 ’1’, -- Forcing 1
 ’Z’, -- High Impedance
 ’W’, -- Weak Unknown
 ’L’, -- Weak 0
 ’H’, -- Weak 1
 ’-’ -- Don’t care
);

attribute ENUM_ENCODING of std_ulogic : type is "U D 0 1 Z D 0 1 D";
FUNCTION resolved (s : std_ulogic_vector) RETURN std_ulogic;

SUBTYPE std_logic IS resolved std_ulogic;

EMA1997 VHDL RTL SEMANTICS VIII - 5 of 22

Arithmetic

library IEEE;
use IEEE.std_logic_1164.all;

package std_logic_arith is

 type UNSIGNED is array (NATURAL range <>) of STD_LOGIC;
 type SIGNED is array (NATURAL range <>) of STD_LOGIC;
 subtype SMALL_INT is INTEGER range 0 to 1;

 function "+"(L: UNSIGNED; R: UNSIGNED) return UNSIGNED;
...
 function "+"(L: INTEGER; R: UNSIGNED) return UNSIGNED;
 function "+"(L: INTEGER; R: SIGNED) return SIGNED;
 function "+"(L: UNSIGNED; R: UNSIGNED) return STD_LOGIC_VECTOR;
 function "+"(L: SIGNED; R: SIGNED) return STD_LOGIC_VECTOR;
...
end Std_logic_arith;

EMA1997 VHDL RTL SEMANTICS VIII - 6 of 22

Unwanted latches

Ensure
All signals initialized

Case and if stat. completely defined

library ieee;
use ieee.std_logic_1164.all;

entity qst is
port
(clk: in std_logic;
d: in std_logic_vector (1
downto 0);
q: out std_logic_vector (1
downto 0));

end qst;

architecture unwanted of qst is
begin
process (clk, d)
begin
if clk = ‘1’ then q <= d;
-- incomplete no else
end if;

end process;
end unwanted

EMA1997 VHDL RTL SEMANTICS VIII - 7 of 22

Asynchronous reset

entity FF is
port (x,clk, rst: in bit; z:out bit);

end FF;

architecture async of FF is
begin
process (clk,rst);
 variable ST: ...;
begin
if rst = ‘0’ then
 ST := S0; z <= ‘0’;
elsif clk’event and clk =’1’ then

 case ST is
 ...
 end case;
end if;

end process;
end async;

EMA1997 VHDL RTL SEMANTICS VIII - 8 of 22

Synchronous reset

entity FF is
port (x,clk, rst: in bit; z:out bit);

end FF;

architecture sync of FF is
begin
process
 variable ST: ...;
begin
wait until clk’event and clk =’1’;
if rst = ‘0’ then
 ST := S0; z <= ‘0’;
else

 case ST is
 ...
 end case;
end if;

end process;
end sync;

EMA1997 VHDL RTL SEMANTICS VIII - 9 of 22

VHDL specifics

Case insensitive

Case statement
Mutually exclusive branches

Exhaustive

Sign interpretation
Depends on data types and associated operations

TYPE std_logic_vector IS ARRAY (NATURAL RANGE <>) OF std_logic;

std_logic_signed, _unsigned: packages for operations on std_logic_vector

EMA1997 VHDL RTL SEMANTICS VIII - 10 of 22

VHDL specifics
(cont’d)

I/O modes
in, out, inout, buffer

Avoid buffer

inout: port read& written otherwise use internal signals or variables

Multiple drivers
std_logic is a resolved data-type

Components
declared

configured

instantiated

EMA1997 VHDL RTL SEMANTICS VIII - 11 of 22

Finite state machines

Inputs

Input logic

Output
logic

State mem.
(FF)

Next S.

Present State

Mealy machine

EMA1997 VHDL RTL SEMANTICS VIII - 12 of 22

State encoding

Default

n FF : up to 2n states

One hot encoding
 1 state ↔ 1 FF

 Larger area

 No decoding

 Fastest

Gray

EMA1997 VHDL RTL SEMANTICS VIII - 13 of 22

HDL description of a state machine

package states is
type state is (s0, s1, s2, s3);

end states;

use work.states.all;
entity ET is
port (x, clk: in bit;
 z: out bit);

end ET;

architecture One of ET is
signal st: state;

begin
process
begin
wait until clk’event and clk =’1’;
if x=’0’ then z <= ’0’;
else
 case st is
 when s0 => st <= s1; z <=’0’;
 when s1 => st <= s2; z <=’0’;
 when s2 => st <= s3; z <=’0’;
 when s3 => st <= s0; z <=’1’;
 end case;
end if;

end process;
end One; -- registered outputs

so

s3

s1

s2

x=1/z=0

x=1/z=1

x=1/z=0

x=1/z=0

EMA1997 VHDL RTL SEMANTICS VIII - 14 of 22

Recommended style

architecture Rec of ET is
 signal currentS, nextS: state;
 attribute state_vector: string;
 attribute state_vector of Rec: architecture is “currentS”;
begin
 COMB: process(currentS, X)
 begin
 case currentS is
 when s0 => if x = ‘0’ then z <= ‘0’; nextS <= s0;
 else z <= ‘0’; nextS <= s1; end if;...
 end case
 end process; -- Outputs not registered

 SYNC: process
 begin
 wait until clk’event and clk = ‘1’
 currentS <= nextS;
 end process;
end Rec;

EMA1997 VHDL RTL SEMANTICS VIII - 15 of 22

Enumerated types and encoding

Default encoding
0, 1, ...

Minimum number of bits

Explicit encoding

architecture Rec of ET is
 type state is (s0, s1, s2, s3);
 attribute enum_encoding : string;
 attribute enum_encoding of state: type is “000 110 111 101”;
 signal currentS, nextS: state;
begin
 COMB: process(currentS, X)
 ...
 SYNC: process
 ...
end Rec;

EMA1997 VHDL RTL SEMANTICS VIII - 16 of 22

General description of FSM

package states is
type state is (s0, s1, s2, s3);

 attribute enum_encoding : string;
 attribute enum_encoding of state: type is “0001 0100 0010 0001”;
end states;

use work.states.all;
entity ET is port (x, clk: in bit; z: out bit);
end ET;

architecture Rec of ET is
 signal currentS, nextS: state;
 attribute state_vector: string;
 attribute state_vector of Rec: architecture is “currentS”;
begin
 COMB: process(currentS, X)...
 SYNC: process...
end Rec;

EMA1997 VHDL RTL SEMANTICS VIII - 17 of 22

Guidelines for FSM coding

Only input or output ports

Separate machines == separate designs

State FF driven by same clock

others clause ensures fail-safe behavior

EMA1997 VHDL RTL SEMANTICS VIII - 18 of 22

 fail-safe behavior

architecture One of ET
type state is (s0, s1, s2);
signal st: state

begin
process
begin
wait until clk’event and clk =’1’
if x=’0’ then z <= ‘0’;
else
 case st is
 when s0 => st <= s1; z <=’0’;
 when s1 => st <= s2; z <=’0’;
 when s2 => st <= s3; z <=’0’;
 when others => st <= s0; z <=’1’;
 end case;

end process;
end One;

EMA1997 VHDL RTL SEMANTICS VIII - 19 of 22

Memories

➊Not synthesized by DC ➋Instantiated as black boxes ➌HDL descr. for simulation

library IEEE;
use std_logic_1164.all;
use std_logic_unsigned.all;

entity ram_vhd is
 generic (width: natural :=8
 depth: natural :=16;
 addW: natural:=4);
 port (addr: in std_logic_vector(addW-1 downto 0);
 datain: in std_logic_vector(width-1 downto 0);
 dataout: out std_logic_vector(width-1 downto 0);
 rw,clk: in std_logic);
end ram_vhd;

EMA1997 VHDL RTL SEMANTICS VIII - 20 of 22

Memory behavior

architecture behv of ram_vhd is
 subtype wtype is std_logic_vector(width-1 downto 0);
 type mem_type is array(depth-1 downto 0) of wtype;
 signal memory:mem_type;
begin
 process
 begin
 wait until clk=’1’ and clk’event;
 if (rw=’0’) then memory(conv_integer(addr)) <= datain; end if;
 end process;
 process(rw,addr)
 begin
 if (rw=’1’) then dataout <= memory(conv_integer(addr));
 else dataout <= wtype’(others =>’Z’);
 end if;
 end process;
end behv;

EMA1997 VHDL RTL SEMANTICS VIII - 21 of 22

Barrel shifter

library IEEE; use std_logic_1164.all, std_logic_unsigned.all;
entity bs_vhd is
 port (datain: in std_logic_vector(31 downto 0);
 direct: in std_logic;
 count: in std_logic_vector(4 downto 0);
 dataout: out std_logic_vector(31 downto 0));
end bs_vhd;
architecture behv of bs_vhd is
 function b_shift (din: in std_logic_vector(31 downto 0);
 dir:in std_logic; cnt: in std_logic_vector(4 downto 0)
 return std_logic_vector is
 begin
 if (dir =’1’)
 then return std_logic_vector((SHR(unsigned(din),unsigned(cnt))));
 else return std_logic_vector((SHL(unsigned(din),unsigned(cnt))));
 end if;
 end b_shift;
begin
 dataout <= b_shift(datain,direct,count);
end behv;

EMA1997 VHDL RTL SEMANTICS VIII - 22 of 22

Multi-bit register
library IEEE; use std_logic_1164.all;
entity reg_vhd is
 generic (width: natural:=8);
 port (r: in std_logic_vector(width-1 downto 0);
 clk,ena,rst: in std_logic;
 data: out std_logic_vector(width-1 downto 0));
end reg_vhd;

architecture behv of reg_vhd is
 signal gclk: std_logic;
begin
 gclk <= clk and ena;
 process(rst,gclk)
 begin
 if (rst = ‘0’) then data <= (others=>’0’);
 elsif gclk’event and gclk=’1’ then data <= r;
 end if;
 end process;
end behv;

IX. Methodology for RTL synthesis

EMA1997 Methodology for RTL synthesis IX - 2 of 29

Objectives

How to get the best results

Commonly used DC commands

Methodology to optimize a design

General guidelines

EMA1997 Methodology for RTL synthesis IX - 3 of 29

Synthesis constraints

Design Rule constraints
Fanout

Transition

Capacitance

Optimization constraints
Speed

set_input_delay

set_output_delay

max_delay
create_clock

Area

EMA1997 Methodology for RTL synthesis IX - 4 of 29

Design rule constraints

Imposed by the techn. target lib.

max_fanout

> get_attribute find(pin, “lsi_10k/OR2/A”) fanout_load

Warning: Attribute ‘fanout_load’ does not exist on port ‘A’

> get_attribute lsi_10k default_fanout_load

{1.000000}

a

b

c

d

fanout_load i()
b c d, ,
∑ max_fanout a()≤

EMA1997 Methodology for RTL synthesis IX - 5 of 29

DRC

max_transition
Longest time 0-1, 1-0

Specific to a net / whole design

Related to RC time

More restrictive (techn. lib, user)

max_capacitance
Direct control on capacitance

Can be used with max_transition

Violations reported

max_fanout ,max_capacitance ⇒ control buffering

maxcapa drivingpin() capa i()
drivenpins

∑≥

EMA1997 Methodology for RTL synthesis IX - 6 of 29

Related commands

set_max_transition <value> <design_name/port_name>

set_max_fanout <value> <design_name/port_name>

set_max_capacitance <value> <design_name/port_name>

EMA1997 Methodology for RTL synthesis IX - 7 of 29

Optimization constraints

Speed & area constraints by the user

Timing >priority area

Synch. paths constrained by specifying all clocks
set_max/min_delay to specify point to point asynch. constraints

Commands
create_clock

set_input_delay

set_output_delay

set_driving_cell

set_load

set_max_area

EMA1997 Methodology for RTL synthesis IX - 8 of 29

Cost functions

Importance ➘
Max delay

Min delay

Max power

Max area

Others
Non-respected setup requir. of a seq. element ⇒ violation

Path group = paths constrained by a same clock

Weights attached to ≠ path groups

Min indep of groups = worst min

Max power for ECL only

Area optimization performed only if specified

Optimization is an iterative process

EMA1997 Methodology for RTL synthesis IX - 9 of 29

Clock specification

Define each clock by create_clock

Clock trees must be hand instantiated

Use set_dont_touch_network to prevent buffering clock trees

DC considers clock delay network ideal, even gated clocks

Use set_clock_skew to override ideal behavior

Use set_clock_skew -uncertainty to specify an upper limit

EMA1997 Methodology for RTL synthesis IX - 10 of 29

Timing reports

library IEEE;
use IEEE.std_logic_1164.all;

entity FF2 is
port (a,b,clk, rst: in std_logic;
d:out std_logic);
end FF2;

architecture two of FF2 is
 signal f: std_logic;
begin

process (clk,rst)
begin
if rst = ‘0’ then f <= ‘0’;
elsif clk’event and clk =’1’
then f <= a;
end if;

end process;

process (clk,rst)
begin
if rst = ‘0’ then d <= ‘0’;
elsif clk’event and clk =’1’
then d <= f and b;
end if;

end process;
end two;

EMA1997 Methodology for RTL synthesis IX - 11 of 29

Design after read

EMA1997 Methodology for RTL synthesis IX - 12 of 29

VHDL after READ

entity FF2 is port(a, b, clk, rst : in std_logic; d : out std_logic); end FF2;

architecture SYN_two of FF2 is
 component GTECH_NOT port(A : in std_logic; Z : out std_logic); end component;
 component GTECH_BUF port(A : in std_logic; Z : out std_logic); end component;
 component SYNOPSYS_BASIC_SEQUENTIAL_ELEMENT
 generic (ac_as_q, ac_as_qn, sc_ss_q : integer);
 port(clear, preset, enable, data_in, synch_clear, synch_preset, synch_toggle, synch_enable,
 next_state, clocked_on : in std_logic; Q, QN : buffer std_logic);
 end component;
 signal a_port, Logic0, f, d56, clk_port, Logic1, d_port, LogicX, n67, n68,
 n70, n71, n72, n73, n74, n75 : std_logic;
begin
 a_port <= a; clk_port <= clk; d <= d_port;
 U1 : GTECH_NOT port map(A => rst, Z => n70);
 d56 <= (f and b);
 Logic0 <= ‘0’;
 U11 : GTECH_NOT port map(A => rst, Z => n71);
 U2 : GTECH_BUF port map(A => rst, Z => n72);
 U12 : GTECH_BUF port map(A => rst, Z => n73);
 Logic1 <= ‘1’;
 U25 : GTECH_NOT port map(A => rst, Z => n67);
 U26 : GTECH_NOT port map(A => rst, Z => n68);
 f_reg : SYNOPSYS_BASIC_SEQUENTIAL_ELEMENT
 generic map (ac_as_q => 5, ac_as_qn => 5, sc_ss_q => 5)
 port map (clear => n68, preset => Logic0, enable => Logic0, data_in => LogicX,

EMA1997 Methodology for RTL synthesis IX - 13 of 29

 synch_clear => Logic0, synch_preset => Logic0, synch_toggle => Logic0, synch_enable =>
 Logic1, next_state =>a_port, clocked_on => clk_port, Q => f, QN => n74);
 d_reg : SYNOPSYS_BASIC_SEQUENTIAL_ELEMENT
 generic map (ac_as_q => 5, ac_as_qn => 5, sc_ss_q => 5)
 port map (clear => n67, preset => Logic0, enable => Logic0, data_in => LogicX, synch_clear
 => Logic0, synch_preset => Logic0, synch_toggle => Logic0, synch_enable => Logic1,
 next_state => d56, clocked_on => clk_port, Q => d_port, QN => n75);
 LogicX <= ‘0’;
end SYN_two;

entity SYNOPSYS_BASIC_SEQUENTIAL_ELEMENT is
 generic (ac_as_q, ac_as_qn, sc_ss_q : integer);
 port(clear, preset, enable, data_in, synch_clear, synch_preset, synch_toggle,
 synch_enable, next_state, clocked_on : in std_logic; Q, QN : buffer std_logic);
end SYNOPSYS_BASIC_SEQUENTIAL_ELEMENT;

EMA1997 Methodology for RTL synthesis IX - 14 of 29

Basic Sequential Element

architecture RTL of SYNOPSYS_BASIC_SEQUENTIAL_ELEMENT is
begin
 process (preset, clear, enable, data_in, clocked_on)
 begin
 -- Check the value of inputs (asynchronous first)
 if (((preset /= ‘1’) and (preset /= ‘0’)) or ((clear /= ‘1’) and (clear /= ‘0’))) then Q <= ‘X’; QN <= ‘X’;
 elsif (clear = ‘1’ and preset = ‘1’) then
 case ac_as_q is when 2 => Q <= ‘1’; when 1 => Q <= ‘0’; when others => Q <= ‘X’; end case;
 case ac_as_qn is when 2 => QN <= ‘1’; when 1 => QN <= ‘0’; when others => QN <= ‘X’; end case;
 elsif (clear = ‘1’) then Q <= ‘0’; QN <= ‘1’;
 elsif (preset = ‘1’) then Q <= ‘1’; QN <= ‘0’;
 elsif ((enable /= ‘1’) and (enable /= ‘0’)) then Q <= ‘X’; QN <= ‘X’;
 elsif (enable = ‘1’) then Q <= data_in; QN <= not(data_in);
 elsif ((clocked_on /= ‘1’) and (clocked_on /= ‘0’)) then Q <= ‘X’; QN <= ‘X’;
 elsif (clocked_on’event and clocked_on = ‘1’) then
 if (((synch_preset /= ‘1’) and (synch_preset /= ‘0’)) or ((synch_clear /= ‘1’) and (synch_clear /= ‘0’))) then
 Q <= ‘X’; QN <= ‘X’;
 elsif (synch_clear = ‘1’ and synch_preset = ‘1’) then
 case sc_ss_q is when 2 => Q <= ‘1’; QN <= ‘0’; when 1 => Q <= ‘0’; QN <= ‘1’; when others => Q <= ‘X’; QN <= ‘X’;
 end case;
 elsif (synch_clear = ‘1’) then Q <= ‘0’; QN <= ‘1’;
 elsif (synch_preset = ‘1’) then Q <= ‘1’; QN <= ‘0’;
 elsif (((synch_toggle /= ‘1’) and (synch_toggle /= ‘0’)) or ((synch_enable /= ‘1’) and (synch_enable /= ‘0’))) then
 Q <= ‘X’; QN <= ‘X’;
 elsif (synch_enable = ‘1’ and synch_toggle = ‘1’) then Q <= ‘X’; QN <= ‘X’;
 elsif (synch_toggle = ‘1’) then Q <= QN; QN <= Q;

EMA1997 Methodology for RTL synthesis IX - 15 of 29

 elsif (synch_enable = ‘1’) then Q <= next_state; QN <= not(next_state);
 end if;
 end if;
 end process;
end RTL;

EMA1997 Methodology for RTL synthesis IX - 16 of 29

After compilation to lsi_10k;

entity FF2 is port(a, b, clk, rst : in std_logic; d : out std_logic);
end FF2;

architecture SYN_two of FF2 is
 component AN2 port(A, B: in std_logic; Z: out std_logic); end component;
 component FD2 port(D, CP, CD : in std_logic; Q, QN : out std_logic);
 end component;
 signal f, n79, n80, n81 : std_logic;
begin
 U28 : AN2 port map(A => f, B => b, Z => n79);
 f_reg : FD2 port map(D => a, CP => clk, CD => rst, Q => f, QN => n80);
 d_reg : FD2 port map(D => n79, CP => clk, CD => rst, Q => d, QN => n81);
end SYN_two;

a

clk

rst
b

FD2

FD2
CP

D
AN2
Z dn79

fQ

EMA1997 Methodology for RTL synthesis IX - 17 of 29

Reports

read -f vhdl test.vhd
link_library=target_library=lsi_10k.db
create_clock clk -period 5
compile -exact_map
report_timing -max_paths 5

clk

Q(f_reg)

Z

1.42

0.82

2.24
1.91

slack

.85

setup

EMA1997 Methodology for RTL synthesis IX - 18 of 29

 Startpoint: f_reg (rising edge-triggered flip-flop clocked by clk)
 Endpoint: d_reg (rising edge-triggered flip-flop clocked by clk)
 Path Group: clk
 Path Type: max
 Point Incr Path

 clock clk (rise edge) 0.00 0.00
 clock network delay (ideal) 0.00 0.00
 f_reg/CP (FD2) 0.00 0.00 r
 f_reg/Q (FD2) 1.42 1.42 f
 U28/Z (AN2) 0.82 2.24 f
 d_reg/D (FD2) 0.00 2.24 f
 data arrival time 2.24

 clock clk (rise edge) 5.00 5.00
 clock network delay (ideal) 0.00 5.00
 d_reg/CP (FD2) 0.00 5.00 r
 library setup time -0.85 4.15
 data required time 4.15

 data required time 4.15
 data arrival time -2.24

 slack (MET) 1.91

EMA1997 Methodology for RTL synthesis IX - 19 of 29

> set_input_delay 3 -clock clk a
 Point Incr Path

 clock clk (rise edge) 0.00 0.00
 clock network delay (ideal) 0.00 0.00
 input external delay 3.00 3.00 r
 a (in) 0.00 3.00 r
 f_reg/D (FD2) 0.00 3.00 r
 data arrival time 3.00

 clock clk (rise edge) 5.00 5.00
 clock network delay (ideal) 0.00 5.00
 f_reg/CP (FD2) 0.00 5.00 r
 library setup time -0.85 4.15
 data required time 4.15

 data required time 4.15
 data arrival time -3.00

 slack (MET) 1.15

EMA1997 Methodology for RTL synthesis IX - 20 of 29

> set_output_delay 2 -clock clk d
 Point Incr Path

 clock clk (rise edge) 0.00 0.00
 clock network delay (ideal) 0.00 0.00
 d_reg/CP (FD2) 0.00 0.00 r
 d_reg/Q (FD2) 1.37 1.37 f
 d (out) 0.00 1.37 f
 data arrival time 1.37

 clock clk (rise edge) 5.00 5.00
 clock network delay (ideal) 0.00 5.00
 output external delay -2.00 3.00
 data required time 3.00

 data required time 3.00
 data arrival time -1.37

 slack (MET) 1.63

EMA1997 Methodology for RTL synthesis IX - 21 of 29

External input delay

External output delay

0

3 1.15 .85

ext. in delay slack setup

clk

a(in)

1.37 1.63 2

ext. out delayslackdata arriv

clk

d(out)

EMA1997 Methodology for RTL synthesis IX - 22 of 29

Set_dont_touch

Useful in hierarchical designs

Assigned to a design or library cell

Allows keeping a subdesign unchanged
during re-optimization

Applied to an instance u1
current design = TOP
set_dont_touch u1
or
set_dont_touch find(cell,u1)

Applied to a design
current_design=BlockA
set_dont_touch find(design, BlockA)

Applied to a design ⇒ all instance

Removing
remove_attribute find(design,A) dont_touch
remove_attribute find(cell,C) dont_touch

Block B

Block A

Block C
u1

TOP

EMA1997 Methodology for RTL synthesis IX - 23 of 29

Flattening

Put combin. logic as ∑∏
Achievable for less than 20 inputs

May be expensive

 Y1 a b+()=

X1 Y1C=
X1⇒ ac bc+=

To specify
set_flatten true
set_structuring -timing true

To verify options
report_compile_options

EMA1997 Methodology for RTL synthesis IX - 24 of 29

Structuring

Improves area and gate count

Timing driven (by default) or boolean structuring

Boolean struct. ⇒ 2X to 4X compilation time

X1 ab ad+()=

X2 bc cd+()=

Y1 b d+()=

X1 aY1=

X2 cY1=

⇒

EMA1997 Methodology for RTL synthesis IX - 25 of 29

Grouping and using

Dealing with hierarchy
ungroup group ≡ remove create levels of hierarchy

ungroup -flatten -all ≡ recursive ungroup except dont_touch cells

replace_synthetic -ungroup ≡ ungroup synthetic designs

group {u1, u2} -design_name B1 -cell_name C_N

During technology mapping
set_dont_use lsi_10k/FD2S

set_prefer lsi_10k/FD2

EMA1997 Methodology for RTL synthesis IX - 26 of 29

Characterization

Used in hierarchical designs

Constraints on sub-designs depend on environment

characterize capture surrounding constraints

read -f db TOP.db
characterize u1
current_design = sub1
write script > sub1.scr
compile
current_design TOP
characterize u2
current_design = sub2
write script > sub2.scr
compile

Sub1

Block A

Sub2

TOP

u1

u2

EMA1997 Methodology for RTL synthesis IX - 27 of 29

Guidelines

Specify accurate timing
Accurate point to point delays for asynch paths

Create_clock, group_path for synch. paths

Register output
Simplifies time budgeting

-ive, +ive FF in ≠ hierarch. modules
simpler debugging and timing analysis

simplifies test insertion

EMA1997 Methodology for RTL synthesis IX - 28 of 29

Guidelines (cont’d)

Group FSMs, optimize separately

Size: 250-5000

Middle-of-the road strategy
Balance Hierach. vs. large flat design

Critical path “should not” traverse hierarch. boundaries

Consider alternatives : instantiate logic vs. infer through DesignWare

Put in same level of hierarchy
driving and driven of large fanouts

Sharable resources: e.g. adders

EMA1997 Methodology for RTL synthesis IX - 29 of 29

Guidelines (cont’d)

Compile time too long ?
High map effort

Design too large

Declared false paths traversing hierarchies

Glue logic at top level

Inappropriate flattening

 Adders, muxes, XORs

 Over 20 inputs

Boolean optimization ON.

Not enough memory

Perform preliminary synthesis + Place& Route
Consider re-writing VHDL if necessary

X. Finite State Machines

EMA1997 Finite State Machines X - 2 of 8

Extracting FSMs

package states is
type state is (s0, s1, s2, s3);
end states;

use work.states.all;
entity ET is
port (x, clk: in bit;
 z: out bit);
end ET;

architecture One of ET is
signal st: state;
begin

process
begin
wait until clk’event and clk =’1’;
if x=’0’ then z <= ’0’;
else
 case st is
 when s0 => st <= s1; z <=’0’;
 when s1 => st <= s2; z <=’0’;
 when s2 => st <= s3; z <=’0’;
 when s3 => st <= s0; z <=’1’;
 when others => st <= s0;
 end case;
end if;
end process;
end One; -- registered outputs

EMA1997 Finite State Machines X - 3 of 8

> read -format vhdl fsm1.vhd
Inferred memory devices in process

===
| Register Name | Type | Width | Bus | AR | AS | SR | SS | ST |
===
| st_reg | Flip-flop | 2 | Y | N | N | N | N | N |
| z_reg | Flip-flop | 1 | - | N | N | N | N | N |
===

> compile -map_effort low
 OPTIMIZATION DESIGN RULE
 TRIALS AREA DELTA DELAY COST COST
 -------- ------ ----------- ------ ------
 10

 10
 Optimization complete

 > report_fsm
 The design is not currently represented as a state machine

EMA1997 Finite State Machines X - 4 of 8

Schematic

> set_fsm_state_vector { “st_reg[0]” “st_reg[1]” }

> set_fsm_encoding { “s0=2#00” “s1=2#10” “s2=2#01” “s3=2#11”}

> group -fsm -design_name eg1_fsm

> current_design =eg1_fsm

> extract
FSM

FF
Z

X

clk

EMA1997 Finite State Machines X - 5 of 8

> report_fsm

Clock : clk Sense: rising_edge
Asynchronous Reset: Unspecified
Encoding Bit Length: 2
Encoding style : Unspecified
State Vector: { st_reg[0] st_reg[1] }

> write -format st -o state_mach.st

...
1 s0 s1 ~
0 s0 s0 ~
- s0 ~ 0
1 s0 s1 ~
0 s0 s0 ~
1 s1 s2 ~
0 s1 s1 ~
- s1 ~ 0
1 s1 s2 ~
0 s1 s1 ~

1 s2 s3 ~
0 s2 s2 ~
- s2 ~ 0
1 s2 s3 ~
0 s2 s2 ~
1 s3 s0 1
0 s3 s3 ~
1 s3 s0 ~
0 s3 s3 0

EMA1997 Finite State Machines X - 6 of 8

Coding FSMs in VHDL

package states is
type state is (s0, s1, s2, s3);
end states;

use work.states.all;
entity ET is
port (x, clk: in bit;
 z: out bit);
end ET;
architecture One of ET is
 signal st: state;
 attribute state_vector: string;
 attribute state_vector of One:
 architecture is “st”;
begin

process
begin
wait until clk’event and clk =’1’;
if x=’0’ then z <= ‘0’;
else
 case st is
 when s0 => st <= s1; z <=’0’;
 when s1 => st <= s2; z <=’0’;
 when s2 => st <= s3; z <=’0’;
 when s3 => st <= s0; z <=’1’;
 when others => st <= s0;
 end case;
end if;
end process;
end One; -- registered outputs

EMA1997 Finite State Machines X - 7 of 8

> read -format vhdl fsm2.vhd
same as previous example

> report_fsm
Recognizes the FSM

Clock : Unspecified
Asynchronous Reset: Unspecified
Encoding Bit Length: 2
Encoding style : Unspecified
State Vector: { st_reg[1] st_reg[0] }
State Encodings and Order:
S0 : 00
S1 : 01
S2 : 10
S3 : 11

> compile

> group -fsm -design_name fsm_1hot

> extract

similar to previously

EMA1997 Finite State Machines X - 8 of 8

> set_fsm_encoding_style one_hot

> set_fsm_encoding { “S0=2#1000” “S1=2#0100” “S2=2#0010” “S3=2#0001” }

> set_fsm_minimize true

> compile -map_effort low

> ungroup -all

