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Abstract—The opportunistic utilization of access devices to
offload mobile data from cellular network has been considered
as a promising approach to cope with the explosive growth
of cellular traffic. To foster this opportunistic utilization, we
consider a mobile data offloading market where mobile net-
work operator (MNO) can sell bandwidth made available by
the access points to increase MNO’s profit. We formulate the
offloading problem as a multi-item auction and study MNO’s
profit maximization problem. We discuss the conditions to (i)
offload the maximum amount of data traffic, (ii) foster the
participation of mobile subscribers (MSs) (individual rationality),
(iii) prevent market manipulation (incentive compatibility) and
(iv) preserve budget feasibility of MSs. Then, we propose a robust
optimization based method to implement multi-item auction
mechanism. We further propose two iterative algorithms that
efficiently solve the offloading problem. The simulation results
show the efficiency and robustness of our proposed methods for
cellular data offloading.

Index Terms—Multi-item auction, mobile data offloading, het-
erogeneous networks, robust optimization.

I. INTRODUCTION

The rapid growth of mobile data traffic raises big challenges
to cellular network. Global mobile data traffic grew 63 percent
and reached 7.2 exabytes per month in 2016, which is 18-fold
over the past 5 years [1]. The huge amount of mobile data
traffic exceeds the capacity of cellular network and reduces
the network quality [2]. To address such challenges, one
simple solution is to increase the capacity of cellular network,
which is inefficient and expensive due to the corresponding
expensive investments in radio access networks and the core
infrastructure. One promising solution, namely mobile data
offloading, is to offload cellular traffic to other kinds of
networks, e.g. WiFi access points and femtocell; this can solve
the cellular traffic overload problem [3, 4].

Although mobile data offloading can significantly reduce
cellular traffic, the task of developing a comprehensive and
reliable mobile data offloading system remains challenging.
A key challenge is how to achieve an efficient data offloading
coordination among multiple mobile devices. By opportunistic
utilization of lower cost access points, mobile subscribers will
have better wireless access service with lower cost. In contrast,
mobile network operators (MNOs) who have deployed these
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access points (APs) want to maximize the revenue by selling
bandwidth. Thus, how to effectively allocate this bandwidth
to mobile devices effectively becomes a key problem to be
solved.

Given the limited bandwidth of APs deployed in a mobile
data offloading market, when demands of mobile devices
exceed supply, MNO needs to allocate the bandwidth to
mobile devices and decide the price for allocated bandwidth
in order to achieve the highest revenue. Auction mechanism
is considered as an economically efficient approach towards
the allocation of APs’ bandwidth, and assigns bandwidth
to mobile users who value it the most [5-11]. In a real-
world data offloading market, the bidding prices of mobile
users are private information unavailable for MNO. However,
MNO may use historical information to identify the numerical
characteristics of the bidding prices. Consequently, it is natural
to consider how to model the bidding prices based on histor-
ical information. Here, uncertainty set is used to model the
possibility of bidding prices. MNO assumes that all bidding
prices belong to the uncertainty set derived from historical
information. Then, MNO makes an offloading mechanism
based on the uncertainty set instead of some fixed bidding
prices.

In this paper, we focus on designing an efficient auction
mechanism for allocating APs’ bandwidth among multiple
MSs; this is considered as a multi-item auction problem.
MNO which owns the network infrastructure acts as the
auctioneer and sells bandwidth to mobile devices through an
auction. We formulated the auction problem based on robust
optimization which models the desirable properties (budget
feasibility, incentive compatibility, and individual rationality)
of optimal auctions enabling the auctioneer to use historical
data or prior knowledge of valuations. The uncertainty of
item valuations is modeled as an uncertainty set, which is
constructed based on limit theorems of probability theory.
The optimal auction mechanism with reservation price has the
structure of a Vickrey-Clarke-Groves (VCG) mechanism [12].

The main contributions of this paper can be summarized as
follows:

e We characterize the interaction among MNO and MSs in

a multi-item auction aiming at maximizing the MNO’s
revenue and the amount of offloaded traffic from mo-
bile subscribers (MSs). Our proposed multi-item auction
calculates reservation prices based on the uncertainty set
and the MSs’ budgets; this can prevent market manipu-
lation. Our proposed auction is implemented by robust
optimization. Instead of requiring the full knowledge of
MSs’ valuations, robust optimization uses few informa-
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tion of MSs’ valuations and can obtain a global e-optimal
solution.

« Since the optimal multi-item auction problem is difficult
to solve, we further propose two greedy auctions that
can solve the offloading market problem in polynomial
time, while preserving the properties of budget feasibility,
incentive compatibility, and individual rationality. These
two greedy auctions outperforms each other in different
network scenarios.

o We perform numerical analysis and comparative evalua-
tion of the proposed optimal and greedy auctions, consid-
ering realistic network scenarios. We further illustrate that
the proposed offloading mechanisms can improve cellular
data offloading performance and has higher robustness
compared to Myerson auction.

The rest of the paper is organized as follows. Section II
presents related work. Section III presents the system model.
Section IV formulates the multi-item auction as a robust
optimization problem. Section V and Section VI propose
the optimal and greedy auction mechanisms, to solve the
offloading market problem, respectively. Section VII illustrates
and analyzes the numerical results. Section VIII concludes the

paper.

II. RELATED WORK
A. Mobile Data Offloading

To cope with the growth of cellular traffic, some previous
contributions have studied efficient data offloading methods
from the perceptive of data offloading decision making. Jung et
al. [13] proposed a WiFi based offloading model to maximize
per-user throughput by collecting network information, c.g.,
the number of MSs and their data demands. Cheung et al. [14]
proposed a Markov decision process based network selection
algorithm for delay-tolerant applications under the setting of
a single MS. Barbarossa et al. [15] proposed a centralized
scheduling algorithm to jointly optimize the communication
and computation resource allocations among multiple users
with latency requirements. Kang et al. [16] studied the offload-
ing problem from MNO’s perspective and proposed a usage-
based charging model to maximize MNO’s revenues. Wu et
al. [17] studied optimal resource allocation for data offloading
via dual-connectivity, while taking into account the trade-off
between optimal bandwidth allocation for base stations and
optimal power allocation for mobile users.

Other contributions have investigated data offloading prob-
lems based on auction theory or game theory. Chen et al. [18]
studied the scenario where multiple users can access the same
wireless base station, and designed a decentralized offload-
ing mechanism that ensures the scalability of the proposed
mechanism with the number of mobile users. Zhou et al.
[19] proposed a reverse auction based incentive framework
for cellular traffic offloading, and provided a prediction model
for WiFi data offloading potential. Cheng et al. [20] took
into consideration users’ mobility information and proposed an
auction based offloading mechanism to maximize MSs’ social
welfare and improve MNO’s revenues. Lee et al. [21] proposed
a two-stage sequential game to model the interaction between
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MNO and MSs, and demonstrated, via simulations, that WiFi
offloading is economically beneficial for both MNO and MSs.
Paris et al. [22] proposed a reverse auction based offloading
algorithm leasing WiFi access points, owned by third parties,
to allocate bandwidth to multiple mobile users. However, all
these works assume that all players are rational and will take
the truthful bidding. Different from existing contributions, we
consider to implement worst case optimality as long as the
bid values belonging to the uncertainty set constructed by
historical bidding information.

B. Multi-Item Auction

Most existing studies on multi-item mechanisms aim to
maximize the MNO’s revenue or incentivize the participation
of MSs. Zhao et al. [2] proposed an online auction method
to maximize the value of services in mobile crowdsourcing
(MCS), and to incentivize the participation of MSs in MCS
applications. Gan et al. [4] proposed a reverse auction method
to incentivize the participation of MSs in MCS applications.
Wang et al. [5] designed a truthful, individual rational, bud-
get feasible and quality-aware algorithm for task allocation
in MCS. However, these works only considered the budget
feasibility of MNO. This is because that, in MCS, MSs
consume their own resources such as computational resources
and computing power to help MNO solve a complex problem.
MNO needs to pay MSs in return. In contrast, in our model,
MSs request the bandwidth resources of MNO. Thus, we need
to consider the budget feasibility of all MSs, which is more
complex than MCS.

Other works consider the budget constraints of MSs. Bhat-
tacharya et al. [1] proposed an approximation algorithm to
solve the multi-item auction problem. Wang et al. [3] studied
distributed truthful auction mechanism for task allocation in
mobile cloud computing (MCC). They proposed an auction
model considering computational efficiency, individual ra-
tionality, truthfulness guarantee of the bidders, and budget
balance. Jin et al. [6] investigated the resource sharing problem
for cloudlets in MCC. They proposed an incentive mechanism
to charge MSs and reward cloudlets. Although these works
considered the budget constraints of MSs, they didn’t use the
historical bidding information. In this paper, we design an
optimal multi-item auction mechanism based on the historical
bidding information, while taking into consideration MSs’
budget constraints.

Compared with the above mechanisms, the auction problem
designed in this paper is rather challenging, and has the follow-
ing differences: (1) we take full advantage of historical bidding
information and prevent abnormal auction to destroy the multi-
item auction; (2) we consider the worst case optimization
problem; thus, our proposed method has strong robustness
compared to other optimal auction mechanisms; and (3) Our
optimal auction considers reservation prices that are functions
of the uncertainty set and the budgets, thus can potentially
protect the MNO’s revenue.

III. SYSTEM MODEL

In this section, we present the economic definitions and
network model that are considered in our multi-item auction
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mechanism; the objective of this mechanism is to implement
efficient mobile data offloading. A scenario of data offloading
among multiple APs and MSs is shown in Figure 1, where
MSs, in the coverage area of APs, engage in an auction
to acquire bandwidth (in WiFi network). We first model

(%/g»
Cellular BS -

WiFi AP3 %

Fig. 1. An illustration of data offloading auction model. WiFi APs are
managed by a single MNO that provides network access to its mobile
subscribers (e.g., MS1). The network capacity of WiFi access points (e.g.,
AP1) is allocated to MSs for data traffic offloading. In this scenario, MS1,
MS2 and MS3 bid for bandwidth (i.e., AP1, AP2 and AP3) with different
valuations. Considering the coverage area of each AP, MS2 can bid for
three APs, while MS1 and MS3 can bid for two APs. MNO who is the
auctioneer allocates different APs” bandwidth to MSs. The winning MSs can
use bandwidth determined by MNO.

the uncertainty of MNO’s beliefs on MS’s valuations using
uncertainty set. Then, we introduce the general economical
definitions for multi-item auction.

Let A denote the set of MSs, and M denote the set of
APs owned by MNO, where [N| = n and |[M| = m. MS i
has a private valuation for the unit bandwidth usage associated
with AP j, denoted by v;; which is unknown to MNO. Let
v = {v;li € N,j € M} denote the private valuation
matrix. Thus, for AP j, v; = (vij,...,vn;) denotes the
column vector of private valuation matrix P. Moreover, MS
¢ is budget constrained and the available budget is denoted
by B;,i € N, while AP j is bandwidth constrained and the
available bandwidth is denoted by C};, j € M. In this paper,
we consider that the valuation information is private (only
known to MS) and budget information is public (known to
MNO). !

For AP j, since the private valuations of MSs are hidden
from MNO, we model MNO’s beliefs on the valuations of
n MSs using uncertainty set U{;, where the valuation vector
v; € U;. MNO’s belief on valuations for all APs is denoted
as U = {Uj}jem-

We assume that the valuations for AP j are independent and
identically distributed, as well as the expectation and deviation
of AP j are p; and d; respectively. Based on the central limit
theory, the distribution of

D i1 Vig = N

V-6

'The budget information can be extended to private situation by uncertainty
set with extra computaional complexity.

3

TABLE I
NOTATION USED IN THE PAPER

N Set of Mobile Subscribers
M Set of Access Points

Uu Uncertainty set of v

B ={B;}ien MS budget constraints

D ={D;}ien MS bandwidth demand
C ={Ci}iem AP bandwidth constraints
v = {vij bieN,jem Bid matrix

Bid vector of MS k
Bid vector except for MS k

v = {Vj }jem
vk = {Vij liea\ (k). jem
z = {2ij}ieN jeMm
z* = {z}; }ien jem
= {"”X,-}z‘e/\f,jeM
y¥ ={y}; bien jem
Vo — VR )
YUk ={y;; " hen\ (k) jeM
a® = {a};tien,jem
p¥ = {p} }ien

Worst case bid vector

Nominal allocation in worst case
Reservation prices in worst case
Adapted allocation

Adapted allocation without MS &
Real allocation

Real payments

is approximately a standard normal distribution when n — co.
Thus, the uncertainty set f; can be constructed as follows.

e Zimi% Tl g
1

where F; and Fj are the lower bound and upper bound of
the competition function f;(k), respectively. I' is a parameter
that controls the conservativeness of the historical valuations.
For example, under the central limit theorem, the probability
that (015,--- , 0y ) belongs to

Uj = { (Ulj,...,v"j)

n

V-6

can be calculated by

P((015,- -, 0ng) €Uy) = 20(T) — 1, )
where ®(-) is the cumulative distribution function of the stan-
dard normal. If we set I to 1,2 and 3, then P((0y,- - , 0y ) €
U;) is 0.683, 0.955 and 0.997, respectively. A smaller I' makes
MNO consider only those valuations with higher probability.
A larger I' makes MNO consider a larger range of valuations,
which increases the accuracy of auction at the cost of compu-
tational complexity. Thus, MNO needs to choose a proper '
to balance the accuracy and computational complexity of the
auction.

IV. PROBLEM STATEMENT

In this section, we formulate the multi-item auction based
data offloading problem as a robust optimization problem. Our
objective is to maximize the total revenue of MNO for all
valuations in the uncertainty set ¢. We first introduce the
decision variables that represent the allocation rule and the
payment rule. Then, we define the properties that the allocation
and payment rules should satisfy in order to implement an
efficient auction. The notations used in this paper are described
in Table 1.
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A. Allocation and Payment Rules

The decision variable ¥ = {x}’]}ze/\/ jem describes APs’
bandwidth allocation among multiple MSs based on the valu-
ation matrix v, that is, if the valuation matrix is v, MNO will
allocate z7; bandwidth of AP j to MS . If MS i is not in the
coverage area of AP j, then z7; = 0. The decision variable
p¥ = {p?}icn denotes the payment of MSs according to
current valuation matrix v, where py is the total payment of
MS ¢ for using the bandwidth of APs. Thus, pf > 0.

Given the allocation variable ¥ and payment variable p?,
we can derive the utility (i.e., the difference of total valuation
and payment) of MS ¢ as follows,

UP =Y wyj-aly—pl. i€N, vel. (3)
JEM
The allocation and payment variables should satisfy the
following properties in order to implement an efficient multi-
item auction.

o Individual Rationality (IR). This property ensures non-
negative utilities (i.e., the payment of MS should be less
than his obtained valuation) for MSs who bid truthfully.
Formally,

p? < va-xfj,‘diEJ\/,VUEZ/{. 4)

JEM
« Budget Feasibility (BF). This property ensures the pay-
ment of each MS is within his budget constraint. For-

mally,
p? < By,Vie N,Vv e U, (5)

where B; is the limited budget of MS 1.

o Incentive Compatibility (IC). This property ensures that

MS cannot improve his utility by bidding untruthfully.

Thus, the utility of MS under truthful bidding is higher

than untruthful biddings; this allows avoiding market
manipulation by MSs. Formally,

Ui(v,p,v_;) > Ui(ui’v_i),V’i c N,

(6)
V('UZ',’U_Z‘) € U,V(ui,v_i) € Z/[,

where v; = {v;5}jenm is the truthful valuation of MS
i and w; = {u;;}jcm is a possible valuation of MS i.
v_; = {Ukj}rean{i},jem denotes the valuation matrix
obtained by omitting the valuations from MS 4. By
substituting Eq. (3) into Eq. (6), we have

Z vij-xg;’i’v*i) _ png i)
JEM
> Z Vij * ,1,‘(.".'""“'(0*"') _p(_ui,'LLi)7 (7

Vi e /\/',V(vi,v_l-) S U,V(’UJZ',’U_Z') eu,

With some mathematical manipulation of Eq. (7), we
obtain the following equation.

Z Vij (mng“—i) _ ml(;_n,v,i))
jEM (3)
+p§uiy'v_i) _pgvi,v_i) >0,

Vi € /\/’,V(vi,v_i) S U,V(ui,v_i) eu.

IEEE Transactions on Vehicular Technology

B. Optimal auction problem

The optimal auction design problem, based on the above
property constraints, is formulated as a robust optimization
problem, with the objective to maximize the revenue of
MNO for all the valuations in set Y. Since MNO’s beliefs
on MSs’ valuations are modeled as an uncertainty set, we
focus on maximizing the worst case revenue. The network
constraints, including APs’ bandwidth constraints and MSs’
demand constraints, are also formulated in the optimization
problem.

max W (9a)
w’l},p‘l}
st W=> p<0Yvel (9b)
iEN
Py < Y wiah,Vie NV eld (9¢)
JEM
py < Bi,Vi e N,Vv eld (9d)
Z vij - (mg;‘“mv—'i) _ mg;'"’v”))
JEM
(w;,v—i) (viv—i) .
+p; -, >0,VielN, %)

V(vi,v_i) cu, V(ui, ’U_i) cu

D al <Gy Ve M Vo eld 6
iEN
Y @l <D VieNVvel %g)
JEM
zi; > 0,Vie N,Vje MYveld (9h)
py > 0,Vi € N,Vv € U. (9i)

Constraint (9b) ensures the maximization of worst case rev-
enue considering all the possible valuations in the uncertainty
set Y. Constraints (9c), (9d) and (9e) correspond to IR, BF
and IC properties, respectively. Constraint (9f) ensures that
the bandwidth allocation should not exceed the available
bandwidth of an AP. Constraint (9g) guarantees that each
MS cannot obtain over-demanding bandwidth. Note that the
demand D,; varies over time due to the stochastic nature
of MS traffic. We consider a quasi-static network scenario
[23], and analyze the auction mechanism in a data offloading
period (e.g., ten seconds), during which D; remains unchanged
for all 4+ € A. Finally, Constraint (9i) prevents negative
allocation and payment for MSs. Note that v € U is defined
as {v = (v1,- -+ ,vm)|v; € U;,Vj € M} v; € Uj is short
for the following two constraints derived from Eq. (1).

n

Dy =gy < IV € M
i=1

n

Z“ii —n-p; > -Ty/n-8;Vj € M.
i=1

For simplicity, we use v € U to stand for the above constraints
in the rest of the paper.
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V. OPTIMAL AUCTION MECHANISM

In this section, we propose the optimal auction mechanism
to solve the optimization problem (9) in order to determine
an optimal allocation and payment rules. That is, how APs’
bandwidth is shared among multiple MSs, and how much MSs
are charged for using allocated bandwidth. Our optimal auction
mechanism illustrated in Algorithm 1, takes as input the
uncertainty set U, MS budget vector B, AP constraint vector
C, MS demand vector D and bid matrix v, and calculates as
output the real allocation matrix a” and the payment vector
p®. We will refer to Algorithm 1 as Optimal Algorithm in
the rest of paper. We first introduce the details of Optimal
Algorithm. Then, we show the auction properties of Optimal
Algorithm.

Algorithm 1 Optimal offloading auction mechanism
Input: U, B,C,D,v, M,N
Output: a¥, p®
1: (z,x*) + solving problem (10)
2: (€%,m*, A", 0%) < solving problem (13)
3. for i € N do
4 for j € M do
s rE = S (A ) 2
6
7
8
9

end for

: end for

: y¥ ¢ solving problem (14)

. for k € N do
10: yV—* < solving problem (15)
11: end for
12: for i € N do
13: for j € M do

14: a}’j = asfj + y}é
15: end for
16: end for

17: for k € N do
18: Calculate p} using Eq. (16)
19: end for

Fig. 2 shows the relationship among different optimization
problems in Optimal Algorithm. Optimal Algorithm consists
of two phases, the phase of nominal allocation (Steps 1 — 7,
left column of Fig. 2) and the phase of final allocation (Steps
8 — 19, right column of Fig 2). The aim of nominal allocation
is to calculate the reservation price 7* = {r;; }ien jem and
the nominal allocation * = {z;; }ienr,jem. MS i has to bid
at least 7r;; in order to use the bandwidth provided by AP
j. ¥ represents the best allocation in worst case scenario,
which is part of the final allocation calculated in the phase of
final allocation. Reservation price is obtained by calculating
problems (10) and (13) sequentially. Final allocation calculates
the real allocation a¥ and final payment p* based on a specific
bid matrix v. The final allocation a¥* = x* + yv, where
y¥ = {y}; }ien jem, called adapted allocation, denotes the
best allocation for a specific bid matrix v. Final allocation is
based on the results of optimization problems (14) and (15).
Problems (14) and (15) can be calculated independently, since
their inputs don’t rely the results of each other.

5

Problem (10)
Input: Q,U
Solution: x*, z

I >

Problem (13)

[—| Problem (14) '—‘

[Input: Q,z*, r*, v |

Solution: yv

[Input: Q,z*, r*, v |

‘ Solution: yV—k

lInput: Q,z*, z |
[Solution: €*, p*, A*, 0" |
[ J

Final Results

|In;|)ut: x* r* Yy yv-k |
[Run Steps (12—19) |

[-lReservation Price|—]
[Input: Q, €*, n*, A*, 6% |
I I
[Run Steps (3—7) |

Solution: 7*

Solution: a?,p? |

Fig. 2. ( Fig. 2 in new manuscript ) Flow chart of the proposed Optimal
Algorithm. The left column denotes the nominal allocation phase, while
the right column denotes the final allocation phase. Note that set Q =
{B,C, D, M, N} contains the information of MSs’ budgets and demands,
as well as the capacity constraints of APs.

A. Phase of Nominal Allocation

In the phase of nominal allocation, Step 1 calculates the
worst case bid matrix z and reservation price r* by solving
the bilinear optimization problem (10), where the constraints
(10b), (10c¢) and (10d) are derived from constraints (9d), (9f)
and (9g), respectively. Constraint (10e) that captures the IC and
IR properties of problem (9) is used to calculate the worst case
bid matrix z, under which the obtained payoff Zje M Tij
zyj for MS 4 is minimum. The nominal allocation z* is a
preallocation that corresponds to the worst case bid matrix z.

IIQ}:%X Z Z CCZ']'UZ‘J‘ (loa)
iEN jEM
s.t. Z Tij - Vij < B;, Vi€ N, (10b)
JjEM

Z;L-U <CiVjeM, (10c)
iEN

> @iy <D Vie N, (10d)
JEM
Z Tij * Vij < Z Tij -uz-j,Vu S Z/I,Vz EN,

JEM JEM
(10e)

x>0, veld. (10

In order to obtain the reservation price r*, We first simplify
the problem (10) as a linear programming problem with
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decision variable  by: 1) replacing variable v with constant
z (obtained in Step 1); 2) replacing Constraint (10e) with Eq.
1.

> wievi <Y apul, VieN, (11

JEM jEM
where

ul = argumgzl} Z xy; - uig, Vie N (12)

JEM

Then, we can obtain the dual problem of simplified problem
(10) as follows.

Jmng S &0+ Y (mBit AD 0 Y )

JEM iEN JEM
(13a)
st. &+ zig(ni+ XN +0;) > 2zi5,Vie N, je M,
(13b)
5]7”27)\1792 207VZ€N,j EM (13C)
The decision variables £&* = {{F}jem, n* = {n] Len,

{A\f}ien and 6% {0} }ienr correspond to the
constraints (10c), (10b), (10d) and (11), respectively. Step 2
calculates the solution of dual problem (13) used to obtain the
reservation price 7* in Steps 3 — 7, where r}; represents the
minimum price that MS ¢ should bid in order to use bandwidth
of AP j.

B. Phase of Final Allocation

In the phase of final allocation, We first calculates the
adapted allocation y” based on bid matrix v in Step 8. The
adapted allocation y” is obtained by solving the lincar problem
(14). The objective function (Eq. (14a)) of this problem
maximizes the social welfare (i.e., the total valuations of all
MSs) taking into consideration the reservation price r*. Thus,
Constraints (14b), (14c) and (14d) are adjusted by considering
the impact of nominal allocation =* and reservation price 7*
obtained from the phase of nominal allocation.

max Z Z yLJ UU Lj) (143)

iEN jJEM
st Y Y <Ci— Y @y, VieM, (14b)

iEN iEN
ST yh vy <Bi— S al vy, VieN, (l40)
JEM jEM
Zy?jSDy‘— foj, Vie N. (14d)
jeM JEM

Then we calculate the adapted allocation y¥ * without consid-
ering the auction participation of MS £ in Steps 9—11. yV—* is
used to calculate the final payment of MS £ and is obtained by
solving the linear problem (15), which is a reduced version of
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problem (14) by deleting the bidder k£ from the set of bidders.

V_k *
E}ﬁ_‘f Z Z Yii " (g — 1) (15a)
ieN\{k} JEM
st Yyt <Ci— Y ay, YjeM, (15b)
1€EN\{k} 1€EN\{k}
Z yfj’k v < By — Z ziryy,  Vie N\ {k},
JEM JEM
(15¢)
Zy” "< Dj— Zx;j, Vie N\ {k}. (15d)

JEM JEM

With * and r* obtained in the phase of nominal allocation,
as well as y¥ and y”~* obtained in this phase, we can calculate
the final allocation @ and the final payment p? for all k € .
Steps 12 — 16 calculate the final allocation a” that is the sum
of nominal allocation x* and adapted allocation y¥. Steps
17 — 19 calculate the final payment p* using Eq. (16), where
p} consists of the payment of using a} bandwidth and the
difference between the optimal value of the objective function
obtained with and without the participation of k. This payment
scheme guarantees the IR property of Optimal Algorithm.
Furthermore, we show that Optimal Algorithm can implement
an efficient auction according to Theorem 1.

v v * * *
PR =D kit D ko rh

JEM JEM

Y Dup )= X Y wh(ey =)
iEN\{k} jEM iEN\{k} jEM

Yk e N.

(16)

Theorem 1. The proposed auction mechanism illustrated in
Optimal Algorithm has the properties of incentive compati-
bility, budget feasibility, individual rationality and worst case
optimality.

The proof of Theorem 1 is illustrated in Appendix A.

C. Design Rational

We discuss the relationship of our proposed mechanism and
VCG mechanism as follows.

(a) The allocation rule has a structure similar to that of VCG
mechanism, where the bandwidth is allocated to a set of
MUs in order to maximize a social welfare function. In
Optimal Algorithm, the social welfare function is defined
in Eq. (14a), which is parameterized by the reservation
price r*.

(b) The payment rule, as defined in Eq. (16), is also similar
to that of VCG mechanism. Each MU is charged with the
opportunity cost, which is defined as the lowest amount
that MU has to bid in order to win the allocation.

(¢) Unlike VCG mechanism, we calculate the reservation
price r* in the worst case. Thus, r;; is defined as the
lowest price that MNO would be willing to accept for
allocating the corresponding bandwidth from AP j to
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MS i. The reservation price is a threshold price; the bids
less than the reservation price will not be accepted. The
reservation price can accelerate the auction process, since
the set of prices that are lower than the reservation price
can be discarded.

(d) Unlike VCG mechanism, we focus on the case where the
payments of MUs provided by the optimal mechanism
do not exceed their budget constraints. Standard mecha-
nisms, such as VCG mechanism and its variants, are not
applicable here [24, 25].

In summary, the well-known VCG mechanism is a dominant
strategy mechanism, which can achieve ex-post incentive com-
patibility (truth-telling is a dominant strategy for every player
in the game). However, VCG mechanism cannot implement
the budget feasibility of the auction, which costs extra payment
from MUs and decreases their payoffs. Thus, it cannot be
properly used in the problem that we are solving in this paper.
Compared with VCG mechanism, our proposed optimal mech-
anism is an incentive efficient mechanism that can maximize
the expected total payoff of all MUs. Additionally, it achieves
the budget feasibility of MUs. There is no extra cost paid in
the auction when applying our optimal mechanism while VCG
mechanism can not.

D. Solving Optimal Algorithm

Solving Optimal Algorithm needs to calculate one bilinear
optimization problem (10) and three linear optimization prob-
lems (13), (14) and (15). The linear problems can be solved
using simplex method [26]. The bilinear problem, which is the
computation intensive step in the proposed mechanism, is NP-
hard [27]. However, we can solve problem (10) in polynomial
time to achieve global e-optimal solution. This is based on the
observation that both inner and outer optimization problems
of problem (10) are linear optimization problems. Thus, fixing
the inner optimal solution, there always exists an extreme point
solution to the outer problem and vice versa. We can use
Bender decomposition algorithm [28] to solve problem (10)
by simply enumerating all the extreme points. Please refer to
[28] for details.

VI. GREEDY AUCTION MECHANISM

In this section, we turn to the concept of two-sided matching
[29] to solve the data offloading problem in polynomial time.
In our two-sided matching scenario, one matching partners are
MSs and another matching partners are APs. Note that each
AP can be matched to multiple MSs. We propose two greedy
auction mechanisms: 1) MarchingAP scheme, i.e., it is AP
which selects MSs that it will provide network connection to;
2) MatchingMS scheme, i.e., it is MS which selects appropriate
AP for network connection. Then, we show that these two
algorithms satisfy the properties of individual rationality and
incentive capability.

A. MatchingAP Scheme

The greedy algorithm for MatchingAP scheme, illustrated
in Algorithm 2, is composed of two phases, namely, allocation

7

Algorithm 2 Greedy MatchingAP Scheme
Input: b,d, M,N,C
Output: a,p

1: M « Sort(j € M, WC?J_—, “non — decreasing’)

2 N« N

3: while M #23 AN # @ do

4 j+ Next(M), M <+ M\ {j}

5 N; < Sort(i € Nj, b;, “non — decreasing’)
6: while ziGN, a;; < Cj A Nj #+ & do
7
8
9

i € Next(N;)
if ZjEM Qij = 0ONd; + ZZE./\G Qij < Cj then

: QAjj < d;
10 N+ N\ {i}
11: end if
12: end while

13: end while
14: for all j € M do

15: Pk < MaX{icN;|a;;=0} bi

16: for all ; € ./\/’J A Q5 = d; do
17: Pi < pj- di

18: end for

19: end for

phase and payment phase. The allocation phase aims to select
MSs for each AP that can offload mobile data traffic. The
payment phase calculates the price paid by each winner by
considering the maximum bid from un-winning MSs. This
payment scheme is widely used in second price auction to
derive a truthful bidding [30].

In Algorithm 2, Step 1 defines the allocation order for the
set of APs. The sorted list M is obtained by sorting all
APs participating in the auction in a non-decreasing order
of bandwidth per number of covered MSs (i.e., the potential
bidders for each AP). The allocation phase (Steps 3 — 13)
considers APs starting from the first AP in M. In MatchingAP
scheme, each AP can select MSs under its radio coverage area
as potential bidders. Since one AP may have multiple bidders,
we define an allocation rule for each AP, which states that the
bidder who bids higher value has a higher probability to be
served, as shown in Step 5, where MSs under the coverage
of AP j are sorted in a non-decreasing order according to
the bids submitted by MSs. The bandwidth allocation phase
continues until AP j has allocated all its bandwidth or it has
no more MSs to be considered (Step 6). For each MS, if it is
not allocated to other APs (i.e., served by other APs) and the
network demand does not exceed the bandwidth of AP j, it
will be allocated to AP j (Steps 8 — 9). The payment phase
(Steps 14 — 19) defines the price paid by each winning MS
as the maximum bid value of the set of un-winning MSs. The
final payment of MS i is calculated by the market clearing
price pi (obtained in Step 15) and the network demand D;
(Step 17).

B. MatchingMS Scheme

In the following, we present the greedy algorithm illustrated
in Algorithm 3 for MatchingMS scheme; it has the same
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1

5 Algorithm 3 Greedy MatchingMS Scheme

3 Input: b,d, M,N,C

4 Output: a,p

5 1: N < Sort(i € N,maxc by, “non — decreasing’”)

6 2 M+~ M

7 3: while M # AN # @ do

8 4 i <+ Next(N), N < N\ {i}

9 5: M,; < Sort(j € M;,Cj, “non — decreasing”)

10 6: while ZjeMaij <di/\Mi7£®d0

11 7: Jj € Next(Mz)

12 8: if d; + ZiENi A5 < Cj then

13 9: Qij < d;

15 11: end if

16 12: end while

17 13: end while

18 14: for all j € M do

19 15: Pk = MAX{ie\;|az;=0} bi

20 16: for all i € ./\[J AN Q5 = d; do

21 17: Pi < Dj - d;

22 18: end for

23 19: end for

24

25 . . .

2% algorithm structure as MatchingAP scheme. It also includes
57 allocation and payment phases. Particularly, MatchingMS
28 scheme has same payment rule as MatchingAP scheme.

29 In Algorithm 3, Step 1 sorts the set of MSs by the maximum
30 bid in a non-decreasing order. Since we aim to maximize
31 the revenue of MNO, MSs are considered according to the
32 allocation order obtained in IN. The allocation phase (Steps
33 3 — 13) terminates until all MSs or APs are considered. In
34 the inner loop, MS selects one AP that can provide network
35 connection to it. APs that cover MS ¢ are sorted in the list
36 M, according to bandwidth (Step 5). The network selection
37 phase continues until MS ¢ has selected one AP or it has no
38 more APs to consider (Step 6). For each AP, if it has enough
39 bandwidth to satisfy the demand of MS, it will be selected by
40 MS (Steps 8 — 9). The payment phase (Steps 14 — 19) is the
M same as that in Algorithm 2.

) These two algorithms satisfy the properties of individual
43 rationality and incentive capability, since they adopted the
44 similar auction structure used in [22]. The budget feasibility
45 is satisfied by the fact that the payment of each MS will not
46 be greater than its bid, i.e., if MS i selects bid b; < %, then
47 its final payment satisfies p; < b;.

48 We next analyze the time complexity of MatchingAP and
49 MatchingMS. We consider the time complexity of Matchin-
50 gAP in three parts.

51 e (Step 1) In MatchingAP algorithm, the construction of
52 an AP preference list is the first step. Since there are m
53 APs, with an efficient sorting algorithm, we can get the
54 AP preference list in time of O(m log(m)).

55 o (Steps 3—13) We first consider the outer while loop of the
56 algorithm. This loop will terminate when the set of APs
57 or the set of MSs becomes empty. Thus, the maximum
58 number of loops is maz{m,n}. In step 5, we construct
59 an MS preference list for each AP with the complexity
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of O(nlog(n)). Then, we consider the inner while loop
from step 6 to step 12. It is obvious that the maximum
number of loops is n, which is the total attempts made
by an AP. Indeed, assume that every summation has
time complexity O(1). The total complexity of inner
loop is O(n). Since step 5 has higher complexity than
that of inner loop, the total complexity of outer loop is
O(nlog(n)max{m,n}).

o (Steps 14 —19 ) It is easy to see that the time complexity
of these steps is O(mn).

Finally, the total complexity of the MatchingAP is
O(maz{mlog(m), (nlog(n)maz{m,n}),mn}). In general
cases, the number of MSs is larger than that of APs, i.e.,
n > m. Thus, the time complexity of MatchingAP is
O(n?log(n)), mainly due to steps 3—13. Following the similar
analysis, we can obtain that the time complexity of Match-
ingMS is O (maz{nlog(n), (mlog(m)maz{m,n}),mn}).
In general cases, the time complexity of MatchingMS is

O((mnlog(m))}).

VII. NUMERICAL RESULTS
A. Impact of AP Density in Homogeneous Networks

In this section, we evaluate the performance of the proposed
auction mechanism for selling APs’ bandwidth to MSs in
proximity. More specifically, we aim to evaluate the impact
of AP density (the number of APs), budget constraint and
uncertainty set of valuation on the performance of the pro-
posed mechanisms in order to implement an effective mobile
data offloading marketplace. We first introduce the parameter
settings, then we illustrate and discuss the numerical results
achieved by the proposed offloading schemes.

‘We compare our proposed schemes, namely optimal scheme
(Optimal Algorithm) and two greedy schemes (i.e., Matchin-
gAP scheme and MatchingMS scheme), with the work in
[31, 32], denoted as MDP scheme, since this work aims to
maximize the amounts of offloaded data based on Markov
Decision Process. The following performance metrics are
considered in the evaluation.

o Total revenue: The total payoff of MNO.

o Offloaded traffic: The amount of traffic that can be
offloaded.

e Winning MSs: The number of MSs that win the auction.

B. Simulation Setup

In our evaluation, we consider a measurement-based model
[23], where there is an MNO represented by a macrocell
BS. The number of APs and MSs, located in the coverage
of BS, are chosen uniformly from the intervals [2,20] and
[10,60], respectively. Unless stated otherwise, we use the
information from [19, 23, 33] to set the parameters’ values.
Each MS submits a bid drawn from a normal distribution with
mean value equal to 28/Mb and derivation equal to 18/Mb.
The maximum bandwidth of each AP is in the range of
[5Mbps, 40Mbps], while the traffic demand of cach MS is in
the range of [2Mbps, 10M bps]. The budget of MS is selected
from the range of [10%,203]. We use the historical bidding
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information, i.e., 11; and d;, to construct the uncertainty set Uj,
Vj € M. We assume that i; and d; are drawn randomly from
the intervals [1$,3$] and [18,2$], respectively. We consider
the scenario with high conservativeness of historical valuations
by setting I' to 1. To compare the performance of two greedy
schemes, we define I, as .-, which is the ratio between the
number of MSs and the number of APs. I] measures the
competition among MSs. Larger value of I]}, implies higher
competition among MSs.

In order to evaluate the impact of AP density on the
performance of our proposed mechanisms, we consider three
levels of AP density, i.e., m is equal to 5, 10, and 20,
respectively. Each AP’s bandwidth is set to 30Mbps. The
simulation results are shown in Figs. 3, 4 and 5.

We first evaluate MNO’s revenue for three levels of AP
density, as shown in Figs. 3(a), 4(a) and 5(a), respectively.
We observe that MNO’s revenue increases with the number
of MSs. The larger number of MSs, the higher competition

Number of MSs

(b) Number of Winners

Number of MSs

(c) Offloaded Traffic

MSs may have, and consequently MNO can choose MSs with
higher bid values. Moreover, optimal scheme outperforms two
greedy schemes and MDP scheme in all scenarios. We further
observe that MatchingAP outperforms MatchingMS in low
AP density scenario (see in Fig. 3(a)), while MatchingMS
outperforms MatchingAP in high AP density scenario ((see in
Fig. 5(a))). This is because MatchingAP can take advantage
of the competition among MSs to obtain higher revenue.
This observation can be further validated by Fig. 4(a), where
MatchingAP achieves higher revenue than MatchingMS only
when n > 32. Note that m = 10 in Fig. 4(a). Thus, we
can obtain a threshold ratio when MatchingAP outperforms
MatchingMS; that is I]'* = 3.2 in our settings. Since I}, >
4 > I in Fig. 3(a), MatchingAP achieves higher revenue
than MatchingMS. In Fig. 5(a), MatchingAP achieves lower
revenue than MatchingMS due to I]}, < 3 < I7*.

We then evaluate the number of winning bidders of dif-
ferent schemes. Figs. 3(b), 4(b) and 5(b) show that optimal
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42 scheme has the largest number of winning MSs; this indicates number of MSs in Figs. 3(c), 4(c) and 5(c). We see that optimal
43 that optimal scheme can implement better fairness allocation scheme achieves the highest size of offloaded traffic and MDP
44 among multiple MSs. Figure 5(b) illustrates that the number scheme outperforms two greedy schemes, since MDP scheme
45 of winning MSs for all schemes increase linearly with the aims to maximize the size of offloaded traffic. However, as
46 number of MSs. This is because high AP density implies illustrated in Figs. 3, 4 and 5, we observe that two greedy
47 cnough bandwidth for traffic demand from MSs. However, it schemes achieve higher revenue than MDP scheme, even if
48 is not the same case for low AP density and medium AP MDP scheme can offload more data traffic. This is due to that
49 density, where the total APs’ bandwidth is not sufficient to MDP scheme does not take advantage of the competition of
50 support a large number of MSs. By comparing Figs. 5(a) and MSs to obtain revenue. Fig. 5(c) shows that all the schemes
51 5(b), we observe that MatchingMS achieves higher revenue achieve the same size of offloaded traffic, since all traffic
52 than MatchingAP, even when two greedy schemes have the demands of MSs are satisfied (see Fig. 5(b)).
53 same number of winning MSs. This observation implies that
54 two greedy schemes allocate bandwidth to different sets of C 1 AP Bandwidth in H N "
55 MSs and MatchingMS can select the set of MSs with higher - Impact of anawiath in teterogeneous Networks
56 bid values in high AP density scenario. In order to evaluate the effect of AP bandwidth on the per-
57 formance of our proposed schemes, we consider three levels
58 We finally investigate how AP density affects the data of bandwidth C, namely low, medium and high, corresponding
59 offloading performance. We plot the offloaded traffic versus the to 5, 25, and 40 M bps, respectively. The number of MSs varies
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in the range of [30, 40] and the demand of an MS varies in the
range of [3Mbps, 10Mbps]. The simulation results are shown
in Figs. 6, 7 and 8.

Figs. 6(a), 7(a) and 8(a) show the variation of revenue
with the number of APs. We observe that the revenues of
all schemes increase with the number of APs. As more
APs participate in the auction, MNO has more bandwidth
provided to MSs, leading to higher revenue. We find that
optimal scheme outperforms the other schemes in all scenarios.
MatchingMS achieves higher revenue than MatchingAP when
AP bandwidth is low, as shown in Figure 6(a). Note that with
low bandwidth 5 Mbps, each AP can serve one MS at most,
since the minimum demand of MS is 3 Mbps. In this scenario,
the final payment of winning MS is the same as its bid value,
since the only bidder is the winning MS itself. According to
the sorting rule of MatchingMS (see Algorithm 3), MS with
a higher bid value has higher chance of winning the auction,
resulting in a higher revenue.

However, the situation changes when AP bandwidth in-
creases to 25 Mbps, as shown in Figure 7(a), where one AP
can serve multiple MSs. In this scenario, MatchingAP achieves
higher revenue than MatchingMS when m < 10. This is be-
cause MatchingAP selects AP based on its average bandwidth
for each MS; larger AP bandwidth can serve more MSs and
lead to higher competition among MSs, achieving higher rev-
enue. While MatchingMS simply decides winning MSs based
on bid values, without considering the introduction of more
competition among MSs. Particularly, in the high bandwidth
scenario, as shown in Fig. 8(a) where AP bandwidth is 40
Mbps, MatchingMS achieves higher revenue than MatchingAP

Size of Budget

(b) Number of Winners

Size of Budget

(c) Offloaded Traffic

when m > 6. This is because the benefit of competition among
MSs is decreased with sufficient bandwidth provided by a large
number of APs.

Figs. 6(b), 7(b) and 8(b) show that the number of winning
MSs increase with the the number of APs, since large number
of APs increases the potential of satisfying the demand of
MSs. We observe that the optimal scheme has the highest
number of winning MSs. The curves, as shown in Figs. 6(c),
7(c) and 8(c), follow similar trends as Figs. 6(b), 7(b) and 8(b),
respectively, due to the fact that the offloaded traffic increases
with the number of winning MSs.

We summarize that the optimal scheme outperforms all
other schemes in all scenarios. MatchingMS outperforms
MatchingAP in the following two scenarios:

« High AP density: In this case, choosing MS with higher
value generates higher revenue, since its demand can
always be satisfied;

o Low AP bandwidth: This leads to a special case of data
offloading, where one AP is connected to at most one
MS at a time.

D. Impact of Budget Constraint

We evaluate the effect of budget constraint on the perfor-
mance of our proposed schemes. We consider two scenarios
based on whether the aggregate bandwidth of APs can satisfy
the bandwidth demands of MSs or not. Fig. 9 shows the
result when the aggregate bandwidth of APs is sufficient, i.e.,
m = 10, while Fig. 10 shows the result when the aggregate
bandwidth of APs cannot satisfy all the demands from MSs,
i.e., m = 5. We observe that the optimal method can obtain the
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highest revenue in all cases, as shown in Figs. 9(a) and 10(a).
MatchingMS outperforms MatchingAP when the aggregate
bandwidth of APs is sufficient, while MatchingAP outperforms
MatchingMS when the aggregate bandwidth of APs is small.

In Fig. 9, we further observe that the total revenue increases
with the value of budget. When B; > 25, all MSs win the
auction (see Fig. 9(b)) and bandwidth demands are satisfied
(see Fig. 9(c)). Thus, the number of winning bidders and the
offloaded traffic cannot increase with the value of budget when
B; > 25. However, the total revenue still increases when
B; > 25 (see Fig. 9(a)), since higher budget indicates higher
valuation from MSs.

Fig. 10 shows the scenario where the total bandwidth
demands of MSs is larger than the aggregate bandwidth of
APs. As shown in Fig. 10(c), when B; > 15, the offloaded
traffic cannot increase the value of budget. This implies that
all bandwidth of APs have been allocated. We observe that,
when B; > 15, the increase of budget leads to higher revenue
(see Fig. 10(a)) and smaller number of winning bidders (see
Fig. 10(b)). It is because higher budget increases the winning
probability of MSs who have higher valuations and larger
bandwidth demands. Thus, the total revenue increases while
the number of winning MSs decreases when B; > 15.

E. Robustness and Scalability Analysis

Now we illustrate the robustness and scalability of the
proposed optimal offloading method. In order to show the
robustness of the proposed method, we consider the scenario
where the assumed distributions of MSs’ valuations differ from
the practical distributions, i.e., MNO’s belief on the value of
pj and d; is different from the realized value of 7 and 47.
We compare optimal scheme with Myerson auction [34] that
is an optimal auction with reservation price. Myerson auction
calculates the reservation price by solving the following equa-
tion.

1-— FJ(’UJ) = ’Uj * fj(’l}j), (17)

where F(.) and f;(.) are the cumulative distribution function
and probability density function, respectively, of the probabil-
ity distribution that the valuation v; is sampled from. Note
that our method calculates the reservation price by solving
the bilinear programming problem (10). Thus, the reservation
prices obtained by Myerson auction are different from that
calculated by our proposed method in most cases.

Assumed expectation

Fig. 12. Robustness comparison with different

Number of MSs and APs (n,m)

Fig. 13. Scalability comparison among different
schemes

We consider a simple scenario where valuation v; follows
the normal distribution with parameters p; = 3 and 07 = 2, for
all j € M, where i} and §7 are the practical expectation and
deviation of the normal distribution, respectively. The number
of APs is 10 and the number of MSs is 30.

We first investigate the revenue achieved by MNO when the
assumed deviation d; is different from the practical deviation
5;. To evaluate the impact of different deviations, we choose
d; € {0.5,1,1.5,3,4}. Fig. 11 shows the total revenue ob-
tained by Myerson auction and our optimal scheme. The larger
value of ¢;, the lower revenue that the Myerson auction can ob-
tain. For example, when §; = 4, optimal scheme outperforms
Myerson auction by 56%. This is because the reservation price
used in Myerson auction depends on the assumed distribution.
Thus, a misspecified (e.g., non-realistic) distribution reduces
the performance of Myerson auction. Furthermore, our optimal
scheme can achieve better performance due to its insensitivity
to the assumed distribution.

We further evaluate how the assumed expectation ;5 affects
the total revenue when using the Myerson auction and our
optimal scheme. Fig. 12 shows the total revenue obtained
by Myerson auction and optimal scheme, when the value of
w; is chosen from {1.5,2,2.5,4,5}. We observe that both
methods achieve good performance when pi; < . However,
the situation changes when p; > p7, e.g., p; = 5, where both
methods achieve lower revenue due to the misspecification of
-

‘We conclude that both Myerson auction and optimal scheme
are sensitive to the misspecification of 4. Furthermore, Myer-
son auction is sensitive to the misspecification of §;, especially
when §; > 67, while optimal scheme is insensitive to the
misspecification of ;. Thus, optimal scheme has stronger
robustness than Myerson auction when the deviation of normal
distribution is misspecified.

Lastly, we evaluate the running time of the proposed
schemes on an Intel (R) Core(TM) i7-2620M CPU 2.70GHz
processor with RAM of 16.00 GB and 64-bit Linux operating
system. We measure the running time (seconds) of different
schemes with different numbers of APs and MSs. In Fig. 13,
we observe that MatchingAP achieves the lowest running time
in all cases. The running time of optimal scheme increases
faster than the two other schemes with the number of APs
and MSs. Note that when the number of APs is 100 and the
number of MSs is 200, the running time of optimal scheme is
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1.34 seconds, which is a reasonable value, since the auction
is executed every ten seconds.

VIII. CONCLUSION

This paper proposed a new trading marketplace where
mobile operators can sell bandwidth made available by their
own APs to offload data traffic of their MSs. The offload-
ing problem was formulated as a multi-item auction based
robust optimization approach to guarantee individual ratio-
nality, incentive capability and budget feasibility for realistic
scenarios in which only part of the valuation information of
MSs is known to MNO. In order to solve efficiently (i.e.,
in polynomial time) the offloading problem for large-scale
network scenarios, we also proposed two greedy algorithms.
Numerical results show that the proposed schemes capture
well the economical and networking essence of the problem,
thus representing a promising solution to implement a trading
marketplace for next-generation access networks composed of
heterogeneous systems.
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APPENDIX A
PROOF OF THE PROPERTIES OF THE PROPOSED AUCTION
MECHANISM

In this appendix, we present the proof that our proposed auction
mechanism has the following properties in sequence, i.e., incentive
compatibility (see Lemma 2), budget feasibility (see Lemma 3),
individual rationality (see Lemma 4) and worst case optimality (see
Lemma 5).

Lemma 1. If z and ™ are the optimal solution of problem (10),
then z and x™ satisfy the following conditions:

> @z <Bi, VieEN, (18)
JEM
Sla <Gy, VieM, (19)
iEN
Y @ =D, ViEN, (20)
JEM

S oaloz <> whug, VueU, VieN. QD)

jEM JEM

Spi=>> a2y (22)

keN keN jeM

Proof. Lemma 1 can be proved by considering a reduced version
of problem (10), where we set v = z. Thus, the original bilinear
optimization problem (10) is reduced to a new linear optimization
problem, since the only variable is a. The relations (18), (19), (20)
and (21) that z and x™ satisfy are derived directly from the constraints
(10b), (10c), (10d) and (10e), respectively. Eq. (22) is derived from
the objective function of problem (10). Od

Lemma 2. The proposed auction mechanism with final allocation
matrix a’ and payment vector p*, satisfies the property of incentive
compatibility. That is U,gvk’v’k) > U,Euk’v”‘" , which means that MS

k gets higher utility with truthful bidding vy.

Proof. We assume that the private valuation for MS k is v, € R™,
and the private valuation for the rest (n—1) MSsis v_j € R~V x
R™. Now if MS k chooses to bid with valuatlon ur € R™ instead
of wy; using Eq. (3), where the utility U k) g the difference of
payoff and payment, we obtain the uuhty of MS k as follows:

Uliuk»'v—k) _

2 : (up,v_k)
= akj * Vkj

JEM

o pguak»v—k). (23)

With the fact that a;; = x7; 4 y;; (Step 14 in Optimal Algorithm)
and Eq. (16), Eq. (24) can be rewritten as

U]iukv'u—k) _ Z y’(v'l;k:v—k) Cvks + Z 17;:7 vk

jeEM JEM
_Z ("-"k'” k) ij—Zij-r
M jeM
o M 24)
- D D wy ey )
i€EN\{k} jEM
(ug, ) *
2 DT e ).
i€N\{k} jEM
By substituting the following identical equation
( s ) * N\ (wp,v_g)
ZZ Uk V—k vzj—rij):Zyk?}v" Uk —
N jEM jeEM
. Je(uk,vfk) < (wp.v—p) * (25)
Doud T D0 D u T (v ),
JEM i€EN\{k} jEM

15

into Eq. (24) and some mathematical manipulations, we have

P K
Thj * Okj — Lkj " Tkj

JEM JEM

Do > v =) 26)

ieN\{k} jeEM

+Z Z (uk,v k) ’Uzj —’I“:j).

iEN JEM

(uk Wok)

Similarly, we get the utility U{**"*=* when MS k bid truthfully
as follows:

(Ve v—p) _ * *
U, E mkj Vkj — E Thj  Thj

JEM JEM

- Z Zy (vi = 73;) 27

i€EN\{k} jEM
+Z Z (v, v k) (vig — 1755).-
iEN jEM

By subtracting Eq. (26) from Eq. (27), we have

Ulivk»'vfk) U(“kv'v k) Z Z (w0 k> (vig — 775;)
iEN JEM
(up,v_p) * 28)
XY )
iEN JEM

Note that yif’“’v”‘) is the optimal solution of problem (14), while

(wp,v_k)

i is a feasible solution of problem (14). Thus, we obtain

Z yg’k’v‘k)(vu — i) > Z yf;“””‘k)(vij —r), (29

JEM JEM
which demonstrates that U,iv’“’”"“) > U]iu’“’v‘k), due to Eq. (28).
O

Lemma 3. The proposed auction mechanism with final allocation
matrix a® and payment vector p®, satisfies the property of budgert
feasibility. That is py < By, which implies that the payment of MS
k is smaller than its budget.

Proof. We first construct an allocation matrix g¥ € R™*™ based on
Yy € RO=DX™ where

v_§
gy = {yzy )
1] - 0

Thus, we can obtain the following identical equation:

SO w i) =D > ahey i), G

i€N\{k} jEM iEN jEM

Vi e N\ {k}, Vj € M,

i=k, Vj € M. 30)

Note that g* is a feasible solution to problem (15). That is, g
satisfies all the constraints of problem (15). From Eq. (15b), we obtain

San <=y a, VieM. (32)
€N ieEN
From Eq. (15c), we obtain that Vi € N\ {k},

> GG vy <Bi— Y @i (33)

JEM jEM
Note that
Do =0< Bi— Y al (34
jEM JEM

By combine Egs. (33) and (34), we obtain
ST g v < Bi— Y alyrl, VieN. (35)

jeEM JEM
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