
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 18, NO. 9, SEPTEMBER 2017 2539

Dynamic Hierarchical Aggregation
for Vehicular Sensing

Jagruti Sahoo, Member, IEEE, Soumaya Cherkaoui, Senior Member, IEEE,
Abdelhakim Hafid, and Pratap Kumar Sahu, Member, IEEE

Abstract— Vehicular sensing has gained prominence in recent
years with its use in entities, including traffic management
centers, forensic authorities, and air pollution control units.
It also provides end users with real-time street images, parking
summaries, and road congestion status. To reduce bandwidth
usage and improve the content value, the sensed data must be
aggregated. Data aggregation is said to be efficient when the
destination (i.e., a node that serves as a data collection point
in the network) is capable of receiving sensed data from a
significant proportion of vehicles. However, when a large number
of vehicles attempt to send sensed data, the network becomes
congested eventually causing packet losses and collisions. Thus,
if aggregation is performed without considering key factors, such
as number of vehicles and network dynamics, it is difficult to
ensure the efficient collection of sensed data at the destination.
In this paper, we propose a dynamic hierarchical aggregation
scheme in which sensed data is aggregated using a hierarchy.
Moreover, the hierarchy is dynamically updated based on theo-
retically estimated delivery efficiency. In particular, we perform
partition and merge operations within the hierarchy to achieve
an improved value of delivery efficiency. The simulation results
show that the proposed scheme ensures efficient data collection
even with stringent delay requirements and achieves scalability
with respect to a number of vehicles in the network.

Index Terms— Aggregation, road-side unit, vehicular sensing.

I. INTRODUCTION

IN THE last decade, vehicular networks have drawn
considerable attention from academia and industry because

of their immense potential in areas ranging from vehicular
safety, to traffic management, driver assistance, navigation,
and infotainment. Besides these applications, vehicular sensing
has gained significant interest recently because of the inter-
actions between sensor-equipped vehicles and the physical
world. Indeed, vehicles can accommodate a wide variety of
sensors such as GPS, still/video cameras, accelerometers and

Manuscript received January 1, 2016; revised August 14, 2016 and
December 7, 2016; accepted December 17, 2016. Date of publication May 2,
2017; date of current version August 28, 2017. The Associate Editor for this
paper was D. Wu.

J. Sahoo is with South Carolina State University, Orangeburg,
SC 29115 USA (e-mail: jagrutisahoo@ieee.org).

S. Cherkaoui is with the Department of Electrical and Computer Engi-
neering, University of Sherbrooke, Sherbrooke, QC JIK 2RI, Canada (e-mail:
Soumaya.Cherkaoui@USherbrooke.ca).

A. Hafid is with the Department of Computer Science and Operation
Research, University of Montreal, Montreal, QC H3C 3J7, Canada (e-mail:
ahafid@iro.umontreal.ca).

P. K. Sahu is with the CONNECT Centre, Trinity College Dublin, Dublin
2, Ireland (e-mail: pratap.k.sahu@ieee.org).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TITS.2017.2650991

pollution detectors; thus, vehicular sensing offers tremendous
opportunity to visualize the dynamics of the environment
at any instant, or over a period of time. Vehicular sens-
ing in urban environments has many dimensions namely
capturing surveillance videos of streets through image/video
sensing [1]–[3], discovering available parking spaces [4],
measuring the concentration of carbon dioxide (CO2) [5], [6],
sensing traffic related events [6], discovery of location and
number of available Road Side Units (RSUs) such as WiFi
Access Points (APs) [7], [8]. The last application uses
compressive sensing techniques and is useful in provisioning
various services such as Internet Access and information
sharing in vehicular networks.

Some of the sensing applications involve generation of huge
amount of sensed data. One such application is multimedia
sensing application [3]. Multimedia data is of paramount
importance in intelligent transportation systems as they can be
used in advanced driver assistance systems [9], [10] to enhance
vehicle safety by increasing visibility of drivers. Self-driving
vehicles also rely on stereo images [11], [12] and complex
algorithms to compute 3D perception of the environment
around them. Real-time images can be used by police to track
criminal activities on roads. Images can also be used by traffic
management centers to monitor events such as accidents and
congestion.

To reduce bandwidth and achieve a scalable transmis-
sion of sensed data, various in-network data aggregation
schemes have been proposed for vehicular networks [13]–[20].
These schemes achieve bandwidth savings by compressing the
collected data using some transformation operation, known
as aggregation [21]. Aggregation serves an integral part of
sensing applications as users are generally interested in an
aggregated view of an event rather than its finer details.
There are mainly two types of aggregation: syntactic and
semantic. In syntactic aggregation proposed for vehicular
networks [19], [20], sensed data are concatenated in order
to fit in a single communication packet, resulting in lower
header overhead. On the other hand in semantic aggrega-
tion [19], [20], meaningful data is extracted by using certain
aggregation functions (e.g. Average, Count, and Maximum).
For example, a traffic information system uses the average
velocity of a road segment (The portion of street between
adjacent intersections is called a road segment) to determine
its congestion status. Syntactic aggregation allows a full
reconstruction of the original data from the aggregated data;
whereas the semantic aggregation results in complete or partial

1524-9050 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

2540 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 18, NO. 9, SEPTEMBER 2017

loss of original information. Media compression algorithms
such as JPEG [22] and MP3 [23] can be considered as a
form of semantic aggregation in the context of vehicular
sensing. Both semantic (lossy) as well as syntactic (loss-less)
aggregation can be applied to an image sensing application
where images captured by vehicles moving through the same
or even different road segments are aggregated in the network.

Although, data aggregation in sensor networks has been
addressed thoroughly in the literature, vehicular sensing is sig-
nificantly different from sensing in traditional sensor networks
in terms of the nature of sensing, node characteristics and
network dynamics. To be specific, vehicles are not constrained
by battery power and storage; they also exhibit patterned
mobility behavior. Furthermore, the topology in vehicular
networks changes very rapidly due to large velocity differences
among vehicles. As far as sensing is concerned, vehicles can
generate data in huge scale; (e.g., image/video sensing gener-
ates considerable volumes of data). Thus, vehicular sensing
requires specific and innovative data aggregation solutions
quite different from those developed for traditional sensor
networks.

Vehicle-to-Vehicle (V2V) communication has been lever-
aged to design proactive and reactive methods for sensing
applications in vehicular networks. On the one hand, in V2V
based proactive data collection methods [1], [24], the sensed or
aggregated data is usually broadcasted periodically to inform
other vehicles of the event being sensed, causing significant
packet losses [25]. On the other hand, V2V based reactive
methods [26] are not efficient because users only have access
to the instantaneous content and cannot obtain information of
events that occurred earlier. The limitations of both methods
can be overcome by using an infrastructure-based approach
where vehicles upload sensed data to a base station directly
using cellular networks. The sensed data is then aggregated
and stored in servers and later downloaded by vehicles when
needed. The major drawback of the above approach is that
a large number of vehicles trying to upload/download data
overload the cellular networks.

In this paper, we propose an in-network aggregation
scheme for a vehicular sensing application in which the
sensed data is collected, aggregated and then sent to an RSU.
The collection of the sensed data in real-time is critical to
the performance of vehicular sensing applications. Therefore,
the objective of the proposed aggregation scheme is to ensure
data collection within a specified delay. In our work, we rely
on DSRC RSUs [27] which are connected to a server through
a backhaul network. Although, few works on aggregation
use DSRC RSUs, they are designed for highway scenarios.
In contrast, we focus on data collection in an urban scenario.
Using V2V communications, sensed data can be aggregated
in the network and using Vehicle-to-Infrastructure (V2I)
communications [28], the aggregated data can be uploaded to
RSU. However, the greater the number of vehicles involved in
sensing, the higher the contention among V2V communication
paths (usually the shortest path). Contention increases the
delay in delivering data to RSU. As a consequence, a
destination RSU may receive a small fraction of the data
being sensed within the specified delay.

The proposed in-network aggregation scheme is a novel
approach in the sense that it establishes a hierarchy in a
dynamic manner for data collection and aggregation in a
given region. The dynamic nature of the hierarchy suits the
dynamic behavior of vehicular network. We introduce a metric,
called delivery efficiency (to be defined later) to measure
the efficiency of data collection. Moreover, the hierarchy
is updated by performing partition and merges in order to
achieve an improvement in delivery efficiency. The important
contributions of this paper are as follows:

• A state transition method that controls the dynamic
update of the hierarchy. Moreover, it also ensures a stable
hierarchy when the network condition remains same.

• A novel graph partition algorithm that partitions a given
region represented as a connected graph into two smaller
regions, also represented as connected graphs.

• Analytical Estimation of delivery efficiency metric.
The rest of the paper is organized as follows. Section II
presents related work. Section III describes the proposed
scheme. Section IV presents the analytical estimation method.
Section V evaluates the proposed scheme via simulations.
Finally, Section VI concludes the paper and presents future
works.

II. RELATED WORKS

In infrastructure-based approaches, vehicles perform sens-
ing as they move along roads and send sensed data to a central
server if internet connectivity is available. The server either
proactively disseminates the sensed data or disseminates it in
response to queries by users. SOCRATES (System of Cellular
Radio for Traffic Efficiency and Safety) [29] is one of the
earliest contributions that propose the use of 1/2G cellular
technology to predict traffic flow based on traffic informa-
tion received from vehicles. Every vehicle periodically sends
its position, speed and travel times to a traffic information
center (TIC) that processes the sensed data and sends the
current traffic conditions back to the vehicles. Cocar [30] is
a client-server system that evaluates the suitability of UMTS
for traffic sensing. In order to limit the number of reports sent
to the TIC, a vehicle reports an incident (e.g. road accident)
to the TIC only if it has not received a similar report within a
certain period. ParkNet [3] is another centralized architecture
that collects on-street parking information sensed by vehicles
moving in streets. One major common drawback of these
systems [3], [29], [30] is that the capacity of cellular links is
not taken into consideration. When a large number of vehicles
attempt to upload their sensed data, voice/video services might
suffer in terms of quality of service.

CarTel [31] is a sensing platform that does not require
vehicles to use cellular links, rather uses opportunistic relaying
through WiFi or Bluetooth to connect to the Internet. It offers
a versatile solution by not being constrained by the type
of sensed data and hence makes it easy to integrate new
sensors. In addition to traffic monitoring, it is also used for
environmental monitoring, automotive diagnostics and geo-
imaging. A CarTel node can use storage devices such as USB
keys and flash memories as “data mules”; it relies on those
mules to deliver sensed data in best-effort manner. Because of

SAHOO et al.: DYNAMIC HIERARCHICAL AGGREGATION FOR VEHICULAR SENSING 2541

its delay-tolerant nature, CarTel cannot be used for real-time
acquisition of sensed data.

PeerTIS [32] is an overlay infrastructure-based approach
adopted for traffic sensing applications. Vehicles create a
peer-to-peer (P2P) overlay over the Internet. They generate
travel time reports (timestamp, road segment ID and mea-
sured travel time) which are stored in their local storage.
To search travel time of a road segment, a lookup scheme
similar to the one used in a structured P2P architecture is
used. The requested traffic data is published in a particular
node according to the lookup mechanism. In an improved
version of PeerTIS [33], the street network is represented by
a graph, which is partitioned into sub-graphs on detecting
a new vehicle in the system. When vehicles perform route
planning, they generate queries to obtain travel reports. These
queries result in implicit subscription of vehicles to road
segments whose travel reports are requested. Vehicles are
informed about change in travel time of road segments they
are subscribed to. Although, P2P based solutions provide
better performance than the approaches using cellular links,
maintaining the overlay structure is cumbersome in the highly
dynamic vehicular network.

In [34]–[36], infrastructures or RSUs are used to collect
traffic data (e.g. traffic density, mean vehicle speed and travel
times) sensed by vehicles. RSUs send the collected data to
a central server. In [35], few RSUs as task organizers (TO)
are deployed along the road. To collect traffic data, a TO
broadcasts a message containing its position. Vehicles on
receiving the message from TO trigger the sensing task and
send the sensed data back to the TO. In order to collect city
wide traffic data, this scheme requires RSUs to be deployed
along all roads which is not feasible.

To reduce the amount of data transmitted to the RSUs,
Salhi et al. [34] and Miloslavov and Veeraraghavan [36]
propose an in-network aggregation scheme to create fewer
content-rich reports out of many sensor readings. In [34], a
cluster-based architecture is proposed for the collection of
aggregated traffic data along a straight road. A given straight
road is divided into a number of small segments; a cluster head
(i.e. a vehicle) is elected for each segment. The cluster head
aggregates the data sensed within the segment and sends it to
the cluster head of the adjacent segment closer to RSU. In the
last segment (i.e. the segment closest to RSU), the cluster
head sends the aggregated data to this RSU. Using the above
schemes [34], [36], it is not possible to collect sensed data in
a complex environment (e.g. entire city), as it would involve a
huge cost to deploy RSUs on all road segments. In [6], a cyber-
physical sensing framework is proposed for urban sensing
using drone swarms. The urban sensing scheme proposed
in [6] allows independent depots to deploy drones and assign
sensing tasks (sensing traffic information, air pollution and
noise). A drone can store the sensed data locally which is
collected by the depot when the entire swarm returns to the
depot. The sensed data is also disseminated to drones in other
swarms to relay the data to the depot. In [7], a WiFi lookup
scheme is proposed. Vehicles such as bus, patrol cars, and
private cars use compressive sensing technique to localize
nearby WiFi APs along their routes and upload the WiFi

AP lookup data to a server. At the server, the data collected
from different vehicles is refined and aggregated to estimate
WiFi AP distribution. Vehicles that require Internet access
can download the WiFi AP distribution from the server and
connect to a nearby WiFi AP in an opportunistic manner.

In infrastructure-less approaches [1], [24], [26], vehicles
cooperate to collect, aggregate and disseminate the sensed
data in the network. In such approaches, the sensed data
is broadcasted up to a certain distance. Each vehicle can
aggregate the received data and broadcasts the aggregated data
in the network. In case of proactive dissemination [37], [38],
the broadcast storm problem results in packet losses; thus,
sensed data cannot be delivered to all vehicles especially
the ones that are far from the place of the sensed event.
Broadcast storm problem is a critical problem for Vehicular
Ad Hoc networks (VANET). It results in serious redundancy,
contention, and collision when a large number of vehicles
try to broadcast the packet at the same time. The broadcast
storm problem has been studied extensively in VANETS.
Various suppression schemes by combining probabilistic
and time-delay-based methods have been discussed in [39].
In most of the works, the main focus relies on improving reli-
ability of periodic beacons (one hop broadcast) [40] and emer-
gency message transmissions (multi-hop broadcast) [40]–[42].
Unlike beacons and emergency messages, the aggregated
information is generally broadcasted periodically over multiple
hops. Thus, the broadcast storm mitigation schemes need to be
revisited from an aggregation perspective. In [43], probabilistic
data aggregation is used to eliminate the impact of broadcast
storm problem on data transmission and reduce bandwidth
consumption. Recently, a broadcast storm mitigation scheme is
proposed for safety information broadcast in VANETs, where
the mathematical models of single lane and multiple lane roads
are used to design a probabilistic flooding scheme [44].

On the other hand, in reactive approaches [26], [45],
requested data is obtained with longer delays because of the
time spent in collecting sensed data from distant vehicles and
performing aggregation. Vehicles only exchange data when
data is requested. As a result, it is difficult to obtain data of
a past sensed event and the temporal scope of sensed data is
limited to a few seconds rather than hours, days or weeks.
Furthermore, none of these approaches presents aggregation
schemes that can adapt to vehicular density variations.

In [46], a hierarchical aggregation scheme is presented.
Although the hierarchy is updated, the need for an update is
identified using a simple metric: total number of transmissions.
Moreover, the metric does not indicate the efficiency of data
collection within a certain delay. Our work is closely related to
the Delay Bounded Vehicular Data Gathering (DB-VDG) [47].
The protocol focusses on data collection in urban vehicular
sensor networks within a certain delay, also specified as the
query life time. Basically, the data collection area is a circular
region centered at the base Station. Vehicles moving in the
area transmit their sensed data towards the base station by
selectively using one of the two methods: data muling and
next hop forwarding. A vehicle on receiving data from other
vehicles performs aggregation and carries the aggregated data
or forwards it to a suitable forwarder. Data muling refers

2542 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 18, NO. 9, SEPTEMBER 2017

to a carry-forward paradigm where the data is carried by a
vehicle as the vehicle moves along a road. A vehicle chooses
data muling method if the time taken by the vehicle to reach
the base station is smaller than the remaining query life
time. Otherwise, next-hop forwarding is selected in which
the vehicle forwards it data to a neighbor that has lowest
aggregation level (amount of data carried). The limitation
of DB-VDG is that in-network aggregation is performed by
vehicles independently and without considering the current
network load. As a result, the potential of aggregation in
reducing bandwidth is not leveraged properly.

For data transmission, the aggregation schemes rely one
of the following protocols: unicast routing protocols [26],
broadcast protocols [26], [37] and geocast protocols [47].
In some reactive schemes, the protocol to be used is specified
in the query packet. Unicast routing protocols are basically
used in case of reactive schemes where the data needs to be
dissemination from the vehicle carrying the requested data to
the requesting vehicle. On the other hand, broadcast protocols
are leveraged to disseminate sensed information both in one
hop and over several hops. Geocast protocols provide an
efficient way to disseminate information to a large number
of vehicles in a specific destination region [20].

III. PROPOSED SCHEME

A. Basic Idea

In this paper, we propose hierarchical in-network data
aggregation scheme called Dynamic Hierarchical Aggregation
for Vehicular Sensing (DHAVS). Aggregation is performed
by a number of vehicles termed as aggregators. An aggregator
is elected based on the following two criteria. First, it must
be located in close proximity of a higher number of vehicles
to prevent a large proportion of data packets from travelling
over longer number of hops, thereby avoiding congestion in
the network. Second, it must stay on a road segment for
the longest amount of time among other candidate vehicles
to avoid frequent selection of aggregators, thereby ensuring
stability. The detail of the aggregator selection scheme is
provided in Section-III. G. The final aggregation takes place at
an aggregator that lies within the transmission range of RSUs
through which the aggregated data is uploaded to an RSU. The
concept of DSRC RSUs has been formalized in [27] accord-
ing to which an RSU can communicate with the on-board
unit (OBU) of vehicles located in its range. RSU is connected
to the backhaul network and provides internet connectivity
to vehicles. For multi-hop data (i.e. sensed/aggregated infor-
mation) dissemination, vehicles use intersection based unicast
routing. A list of intersections is provided in the header.
The list is essentially a shortest hop-count path that will be
traversed by the data packet. The packet is thus forwarded
following the list until it reaches the destination. More details
on the routing protocol are provided in Section-III.H.

We consider that sensing is performed in a given region,
called sensing region. A sensing region is defined as a set of
geographically connected road segments. In a city, a number
of sensing regions can be determined in a way that each sens-
ing region must contain one RSU. Determination of sensing
regions is a non-trivial problem and can be solved using an

Fig. 1. Aggregation Hierarchy (height = 2).

approach similar to the one described in [48]. In our work,
we consider that the sensing regions of a city are predeter-
mined. We represent each sensing region as a connected graph
G = (V , E), where each vertex v ∈ V denotes an intersection
and each edge e ∈ E denotes a road segment. If RSU of
the sensing region is located on an edge (u, v), the edge is
divided into two edges (u, k) and (k, v), where k denotes the
position of the RSU. If the RSU is located at an intersection,
its position is referred to using the vertex that denotes that
intersection.

A naïve and simple way to deal with aggregation for a sens-
ing region is to send the sensed data directly to the aggregator
located within the transmission range of the RSU. However,
the eventual many-to-one communication would make packets
from multiple vehicles share either the same path or a portion
of it along their way to the aggregator. This would result
in heavy contention among vehicles attempting to transmit
or forward data. Moreover, in a highly dynamic vehicular
scenario, vehicle density is likely to fluctuate rapidly. As a
result, the number of vehicles in a sensing region is subject to
change, making the sensing application produce the required
data to the aggregator with large delays in some regions. This
problem can be solved by using a hierarchy for collection
and aggregation of sensed data within a sensing region.
In the remainder of this paper, we restrict our discussion to
one sensing region as the proposed schemes can be applied to
each sensing region independent of the other.

The hierarchy is a binary tree which is established by
partitioning the identified sensing region into smaller regions.
The identified sensing region is denoted as the root of the
hierarchy. When the sensing region is partitioned, two smaller
regions are produced which are represented as the child nodes
of the root. Each resultant region can again be partitioned into
two smaller regions. An aggregator is selected for each node
in the hierarchy. Aggregators at the lowest level of hierarchy
i.e. leaf aggregators, collect sensed data from vehicles. Leaf
aggregators perform aggregation on the collected sensed data
and send the aggregated data to their parent aggregators.

At each level, aggregated data received from the lower levels
are combined to form new aggregated data. The aggregated
data ascend the hierarchy until they reach the root aggregator.
The final aggregation takes place at the root aggregator which
then sends the aggregated data to the corresponding RSU.
Fig.1 shows aggregation hierarchy of height 2. Fig. 2 depicts
aggregation at all levels of this hierarchy. The hierarchy needs
to be updated with time because changes in network condi-
tions, number of vehicles, topology, etc. affect the delivery

SAHOO et al.: DYNAMIC HIERARCHICAL AGGREGATION FOR VEHICULAR SENSING 2543

Fig. 2. Aggregation at (a) level 2, (b) level 1, and (c) level 0 of the hierarchy shown in Fig. 1. (Black circles denote aggregators).

Fig. 3. Aggregation Scenario

of data at the root aggregator. The dynamic update of the
hierarchy is achieved by applying one of two operations:
a partition operation or a merge operation. In the partition
operation, the leaf nodes are partitioned into two child regions;
whereas in the merge operation, two leaf nodes are merged
back with the parent node making it a leaf node in the
hierarchy. The partition and merge operations are described
in detail in Section III. E.

In order to decide whether a hierarchy update is necessary,
we use the notion of delivery efficiency the formal definition of
which is given in section III.C. In section IV, we introduced an
analytical model to estimate delivery efficiency. The necessity
of estimating delivery efficiency arises mainly because we aim
to adapt the hierarchy as quickly as possible. Thus, we estimate
the status of the data collection in the next time interval and
provide an updated hierarchy at the beginning of the next
interval. Detecting performance degradation beforehand helps
to update the hierarchy in a timely manner. The dynamic
update of hierarchy is achieved using a state transition method
described in Section-III. D. It provides triggering rules for
partition and merge operations based on delivery efficiency
values. Fig. 3 shows some entities used in the proposed scheme
and in the analytical estimation. TABLE-I defines all entities.

TABLE I

DEFINITION OF ENTITIES

B. Assumptions

1) Vehicles are equipped with various sensors, GPS and
digital road map.

2) An urban area is considered for the vehicular sensing
application.

3) In our work, we consider one RSU that hosts a vehicular
sensing application. RSUs are deployed at the city inter-
sections. We select one of the RSUs for our application.
Each vehicle senses data periodically with an interval,
called data collection interval (denoted as Timg). We
also assume that the application needs to collect sensed
data from all vehicles in the designated urban area
within a specified delay equal to the duration of data
collection interval. Any data received after the delay is
discarded.

4) All vehicles are synchronized to the boundaries of
data collection interval. The required synchronization is
achieved through GPS [49].

5) Each vehicle generates one sensed data packet of fixed
size in each data collection interval. Vehicles moving
on a same segment may sense same or different events.
We assume that each vehicle sends its kinematic profile

2544 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 18, NO. 9, SEPTEMBER 2017

along with its sensed data. However, at leaf aggregator
these profiles are discarded.

6) Certain vehicles are designated as aggregators which
perform aggregation operation on the data packets
from different vehicles or from different aggregators.
The aggregation operation is basically a compres-
sion operation that reduces the amount of data to be
transmitted.

C. Hierarchical Aggregation

In the proposed hierarchical aggregation scheme, vehicles
start sending their sensed data to the leaf aggregators at the
beginning of a data collection interval. The leaf aggregators
perform aggregation and send the aggregated data to their
parent aggregator, if any. Further aggregation is performed at
each parent aggregator on reception of aggregated data from
its two child aggregator. Aggregation is thus performed at each
level of the hierarchy until the aggregated data reaches the root
aggregator which performs the final aggregation operation and
sends the aggregated data to the RSU.

Let the root of hierarchy be considered at level 0. The
aggregators at level l of the hierarchy will be denoted as
ak and the amount of data they transmit to their parent
aggregator is denoted as Sk , where k=2l, 2l+1,…2l+1-1. Due
to aggregation at each level of the hierarchy, the amount of
data transmitted by an aggregator ak to its parent aggregator
is smaller than the amount of data the aggregator receives
from its two child aggregators. In our aggregation scheme, the
aggregation operation is a compression operation that reduces
the amount of data. Note that the aggregation can be semantic
or syntactic based on loss-less or lossy nature of the compres-
sion operation. We assume a loss-less compression; however
the specific compression algorithm depends on the type of
event sensed and the requirements of the sensing applications;
hence is beyond the scope of this paper. For example, when
the sensed data includes images, a suitable loss-less image
compression algorithm can be used. We consider that the
aggregation operation reduces data using a ratio, called as
aggregation factor, denoted as ρ. The aggregation factor is
the ratio of the amount of data generated after aggregation
to the amount of data before aggregation. For example, in
case of images, ρ represents the compression ratio used by
an image compression algorithm. For sake of simplicity, we
assume a constant value of ρ (e.g. 0.1 and 0.2 are used in our
experiments).

The amount of data after the aggregation operation at a leaf
aggregator ak is calculated as

Sk = ρ ∗ s ∗ N (1)

where N is the vehicle count (i.e. number of vehicles) of the
region of leaf aggregator ak . s is the fixed size of data packet.
If ak is a non-leaf aggregator, Sk is given by:

Sk = ρ ∗ (Si + Si+1) (2)

where Si and Si+1 denote the amount of data transmitted
by ak’s child aggregators ai and ai+1 respectively.

In our scheme, we measure the efficiency of data collection
at the root of the hierarchy using a metric, called delivery
efficiency. The formal definition of delivery efficiency is given
below:

Definition 1: The delivery efficiency for a time interval is
defined as ratio of number of vehicles whose sensed data is
received at the root aggregator within a delay Tsto the number
of vehicles that transmitted sensed data during the interval.
It is expressed as follows:

β(S, Ts) = Nrecv

Ntot
(3)

where S denotes the region of the root aggregator,
Nrecv denotes number of vehicles whose sensed data is
received at the root aggregator within a delay Ts and Ntot

denotes the number of vehicles that transmitted sensed data.
Let Tu denote the delay incurred in sending aggregated data

from root aggregator to the RSU. The delay Ts is given by:

Ts = Timg − Tu (4)

Many factors such as changes in network conditions, num-
ber of vehicles and topology may result in lower delivery
efficiency. It is necessary to update the hierarchy in order to
achieve higher value of delivery efficiency. When the number
of vehicles increases in a region, contention increases which
in turn increases the number of collisions. Consequently,
higher retransmission delays occur during transmission of
sensed data which may not be delivered to RSU within the
required delay. The higher retransmission delay can be avoided
by partitioning region into two smaller regions. One more
example of the topology change that lowers delivery efficiency
is the scenario where the numbers of vehicles within leaf
regions remain same, but are more concentrated near the parent
of the leaf aggregator. Because of the aggregation hierarchy,
these vehicles must still send their sensed data to the leaf
aggregators rather than sending them directly to the parent
aggregator which is located in close proximity of them. As a
result, sensed data will reach RSU with a significantly higher
delay than the required delay. This condition can be avoided
by merging the two region into one region and removing the
corresponding leaf nodes from the aggregation hierarchy.

However, it is not wise to engage in any kind of update
(partition or merge) of the hierarchy if a very small improve-
ment in delivery efficiency is achieved. In this regard, we
devise specific conditions that trigger the update. The state
transition method in the next section describes these conditions
in detail.

D. State Transition Method

We propose a state transition method that controls the
dynamic update of the hierarchy. Moreover, it also ensures
a stable hierarchy when the network condition remains same.
According to this method, at any data collection interval, the
aggregation hierarchy remains in one of the four states: initial,
partitioned, merged and steady. At the beginning, the hierarchy
contains only root and is in the initial state. Afterwards, the
state of the hierarchy changes from initial state to either
partitioned or merged state. Transition from one state to

SAHOO et al.: DYNAMIC HIERARCHICAL AGGREGATION FOR VEHICULAR SENSING 2545

Fig. 4. State Transition Diagram

another is triggered by certain conditions. A transition to
the partitioned state is preceded by a partition operation in
which a given region is partitioned into two smaller regions.
Similarly, a transition to the merge state is preceded by
merge operation in which two regions are combined to form
a single region. A steady state indicates a stable hierarchy
where no update (partition or merge) is performed. The state
may change from steady to any of the other three states if
the triggering conditions are satisfied. Note that initial state
indicates a hierarchy with only root. Thus, a merge operation
on a hierarchy of height 1 with partitioned/merged/steady as
its current state will lead to initial state. The state transition
diagram is shown in Fig. 4. The triggering conditions for
change of state are denoted as Ci, i=1,2..7. The triggering
conditions are derived based on observed and estimated value
of delivery efficiency.

The hierarchy is updated by one or more entities, referred
to as updating entity. When the hierarchy consists of a root
node only, the root aggregator itself serves as the updating
entity. Otherwise, the parents of leaf aggregators serve as the
updating entity.

The delivery efficiency is observed at the root aggregator at
the end of a data collection interval t and is shared with all
updating entities. At the beginning of the data collection inter-
val t+1, the updating entities estimate the delivery efficiency
expected for the data collection interval t+1. Then, using the
observed value for interval t and estimated value for t+1, the
updating entities decide the update operation as well as state
of the hierarchy for interval t+1. Specifically, the updating
entities determine the estimated values of delivery efficiency
expected for interval t+1 for three update operarations:1) No
operation, 2) partition, 3) merge, that can be performed on
the hierarchy. Then, the update operation as well as the next
state of the hierarchy is determined by checking the triggering
conditions. TABLE-II shows the delivery efficiency values and
some thresholds used in the triggering conditions. TABLE-III
shows the triggering conditions (please see Fig. 4) and their
meaning.

TABLE II

MEANING OF VARIABLES USED IN TRIGGERING
CONDITIONS FOR STATE TRANSITION

TABLE III

MEANING OF SYMBOLS THAT DENOTE TRIGGERING CONDITIONS

E. Update Operations

1) Merge Operation: The merge operation involves simple
set operations on two input leaf nodes (i.e. regions)
of the hierarchy. It produces a connected graph whose

2546 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 18, NO. 9, SEPTEMBER 2017

vertex set and edge set is given by the union of the
vertex sets and edge sets of two leaf nodes.

2) Partition Operation: We propose Partition
Algorithm (PA) to perform the partition operation. The
objective of PA is to divide a region into two smaller
regions. The region to be partitioned is represented by a
connected graph. PA is a bi-directional search algorithm.
Bi-directional search was investigated thoroughly by
Pohl in [50]. It consists of a search in the forward
direction from an initial node and a search in the
backward direction from a goal node. It has several
applications including finding a shortest path between
two points. Running Breadth-First-Search (BFS) in
forward and backward directions can lead to an
intersection point. Once the searches meet, the shortest
path from the initial node to the goal node is obtained
by tracing through the vertices that have been visited.
In PA, the initial node and goal node are selected as
two vertices that are farthest apart in the connected
graph. There are several design choices to design
the bi-directional BFS. Two choices are described as
follows: 1) alternating through the searches, visiting
one vertex at a time; 2) running a search till a certain
depth and then running the other search till it intersects
the first search. The objective of PA is to ensure the size
of two regions to be as close as possible (assuming a
uniform grid topology for the region to be partitioned).

Thus, we adopt first design choice in the proposed PA.
Algorithm 1 shows the pseudo-code of PA. The objective
is to traverse edges of the input region in order to produce
two connected sub-graphs as the output regions. Note that the
input region is represented as a connected graph G = (V , E),
where V and E denotes the set of vertices and set of edges
in graph G respectively. For each output region, we select a
vertex in V at which the traversal begins. A pair of vertices
is selected such that the distance between the vertices is
the largest among any pair of vertices. For each of the two
vertices, an edge is randomly selected among all edges that
are incident on it. The traversal starts at the selected edges.
E1 and E2 denote the set of edges for two output regions.
Two queues Q1 and Q2 are used to store the edges for
the two searches. During the execution of the while loop in
Algorithm 1, edges are enqueued and dequeued to and from
the queues. After an edge is dequeued from a queue, it is added
to the edge set of the corresponding output region. Then, its
neighboring edges that are not yet visited are enqueued to the
queue. The set of neighboring edges of an edge e is denoted
as N(e).

In Algorithm 1, each edge is enqueued and dequeued exactly
once. The Enqueue and Dequeue operation take place in O(1)
time. Thus, Algorithm 1 requires O(|E |) time to enqueue and
dequeue all edges of the input graph G. We assume that an
edge-adjacency list is used in which the neighbors of an edge
are found in O(1) time. As a result, the total time needed for all
edges is O(|E |). The overall time complexity of Algorithm 1
is O(|E |). The space complexity of Algorithm 1is O(|E |).
This is because the queues as well as the edge-adjacency list
have a space requirement of (O(|E |) each. Fig. 5(a) shows

Algorithm 1 Partition Algorithm (PA)
Initialization:

1. Select a vertex u1 and vertex u2 s.t. Dist (u1, u2) is
maximum

2. Randomly select edge e1 incident on u1
3. Randomly select edge e2 incident on u2
4. E1=E2=φ
5. Q1 = Q2 = φ
6. for ∀w ∈ E − {e1, e2}
7. vi si ted[w] = false
8. end for
9. Enqueue(Q1,e1)
10. Enqueue(Q2,e2)
11. vi si ted[e1] = true
12. vi si ted[e2] = true

13. while either Q1 or Q2 is not empty
14. e = Dqueue(Q1)
15. E1 = E1 ∪ {e}
16. for ∀w ∈ N(e)
17. if vi si ted[w]! = true then
18. Enqueue(Q1,w)
19. vi si ted[w] = true
20. end if
21. end for
22. e = Dqueue(Q2)
23. E2 = E2 ∪ {e}
24. for ∀w ∈ N(e)
25. if vi si ted[w]! = true then
26. Enqueue(Q2,w)
27. vi si ted[w] = true
28. end if
29. end for
30. end while

a connected graph in which vertex A and vertex L have the
maximum separation distance among all pairs of vertices. For
A and L, the start edges e1 and e2 are selected. When we
apply breadth-first traversal to edges e1 and e2, we obtain the
output regions r1 and r2 respectively. Regions r1 and r2 are
shown in Fig. 5(b). In Fig. 5 (c), execution of PA partitions r1
into regions r1,1 and r1,2. Similarly, r2 is partitioned into
regions r2,1 and r2,2.

1) Example: An example of merge and partition operations
is illustrated in Fig. 6. In Fig. 6 (a), once a3 decides a
partition operation; it communicates its decision to the
leaf aggregator a6 and a7 which then initiate aggregator
selection for their newly formed regions by broadcast-
ing a message. Once aggregators are chosen, vehicles
will send their sensed data to the new aggregator.
Fig. 6 (b) shows a merge operation. Once a3 decides
merge operation, it broadcasts this decision as well as its
own position in regions of the leaf aggregator a6 and a7.
Vehicles in these on receiving the broadcast message are
informed of the new aggregator (i.e. a3) to which they
will send their sensed data.

SAHOO et al.: DYNAMIC HIERARCHICAL AGGREGATION FOR VEHICULAR SENSING 2547

Fig. 5. Partition Algorithm (PA) (a) Connected Graph, (b) Output regions r1 and r2 by partition operation on connected graph (c) Output regions r1,1
and r1,2 by partition of r1 and output regions r2,1 and r2,2 by partition of r2.

Fig. 6. Execution of DUA at aggregator a3 of hierarchy shown in Fig. 1.
Sub-tree rooted at a3 (a) after partition operation, (b) after merge Operation.

F. Delivery Efficiency Calculation

As described in Section-III.D, the triggering rules of state
transition are based on two types of delivery efficiency: actual
value observed at the root aggregator at the end of data
collection interval and an estimated value that is expected
for the next data collection interval. Once the actual value
is obtained, the root aggregator shares it with all updating
entities; whereas the estimated values are computed by the
updating entities independently.

The root aggregator computes the actual value of delivery
efficiency using the values of Nrecv (i.e. number of vehicles
whose data have been received at the root aggregator) and Ntot

(i.e. number of vehicles that transmitted their sensed data).
In order to allow root aggregator know Nrecv each aggregator
computes the total number of vehicles whose messages are
aggregated and send this information its parent aggregator.
The parent aggregator on receiving such information from its
two child aggregators computes the sum and sends it to its
parent. Similarly, to allow root know Ntot , each leaf aggregator
sends the total number of vehicles in its region to its parent
aggregator. Root aggregator computes Ntot as the sum of the
information about number of vehicles received from its two
child aggregators. In order to compute the estimated delivery

Algorithm 2 Delivery Efficiency and Delay Estimation (DEE)
1. for each vertex u ∈ VL

2. N[u] = 1
3. end for
4. nmin = 1
5. while(true)
6. for i = 1,2....nslot

7. for each vertex u ∈ VL

8. if N[u] ≥ 1 and SL[u] = i then
9. N[u] = N[u]-nmin
10. N[Next[u]] = N[Next[u]] + nmin
11. if Next[u] = udst then
12. Nrecv = N[Next[u]]
13. end if
14. Dret [u] = FindDelayRet (u)
15. end if
16. end for
17. Td [i] = Tslot + FindMaxDelayRet (i)
18. Tdelay = Tdelay + Td [i]
19. if Tdelay ≥ TS then
20. return Nrecv

21. end if
22. end for
23. nslot = Update_Contention()
24. nmin = FindMin()
25. end while

efficiency, the updating entities requires the predicted vehicle
count of all road segments within its region for the current data
collection interval. Note that the leaf aggregators piggyback
this information when they send their aggregated data to their
parent.

The method to predict vehicle count is described later in
this section. Using the received predicted vehicle counts, the
updating entities use algorithm DEE (i.e. Algorithm 2) to com-
pute the estimated value of delivery efficiency. In particular,
they will compute the fraction of vehicles whose sensed data
can reach the root aggregator after being aggregated in the
hierarchy within a certain delay, Ts .

2548 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 18, NO. 9, SEPTEMBER 2017

Vehicle Count Prediction: Estimation of delivery efficiency
requires vehicle count information of all road segments in the
next data collection interval. We propose a simple method
that uses vehicle’s kinematics profile in the current data
collection interval and moving average of vehicle arrival rate
to predict vehicle count in the next data collection interval.
The kinematic profile of a vehicle includes its position, speed
and acceleration. If n(t) denotes the vehicle count of a road
segment at current data collection interval t , vehicle count at
time t+1 is given as:

n(t + 1) = n(t) + λa(t + 1) + λd (t + 1) (5)

where, λa(t+1) represents the number of vehicles that arrive
at the road segment in the time interval t+1 and λd (t+1)
represents the number of vehicles that depart the road segment
in the time interval t+1. λa(t+1) is obtained as the simple
moving average [51] of most recent kobservations on vehicle
arrival rates. In order to calculate the initial moving average,
we allow first few data collection interval to pass before
vehicles start to sense data. n(t) is thus determined using the
kinematic profiles. Also, using speed and acceleration values,
vehicles that will no longer stay in the same road segment in
the next data collection interval can be identified and hence
λd (t+1) can be obtained.

G. Aggregator Selection

The road segment, where aggregation is performed, termed
as aggregation road segment, is selected using a method that
considers vehicle count of all road segments. According to
the multi-hop dissemination strategy, data packets carrying
aggregated/sensed data are broadcasted along the shortest
hop-count path; thus, multiple data packets are disseminated
along the same road segment. If the aggregator is located
in a region of high vehicle density, then delivery efficiency
will increase; indeed, in this case, a large proportion of
data packets will travel few hops resulting in packets being
delivered in shorter delays. Based on this observation, we
adopt a COG (Centre-of-Gravity) method to compute the
position of aggregator. Let nist denotes the number of
intersections. For intersection i, the coordinates are denoted
by (Xi , Yi). The number of data packets, denoted by Wi ,
that travels through intersection i is measured by looking at
the path specified in the packet header. The weighted COG
is denoted by (Xc, Yc) and is calculated as follows:

Xc =

nist∑

i=1
Wi Xi

nist∑

i=1
Wi

, Yc =

nist∑

i=1
Wi Yi

nist∑

i=1
Wi

(6)

If point (Xc,Yc)lies on a road segment, then the latter is
chosen as the aggregation road segment. If (Xc,Yc) does not lie
on a road segment, then the road segment closest to (Xc,Yc)is
selected as the aggregation road segment. Let (Xs, Ys) denotes
a point on a road segment where the perpendicular drawn
from (Xc, Yc) intersects the road segment. Then, the closest
segment is determined as the segment whose perpendicular
has the smallest distance to (Xc,Yc)among the candidate road

segments. Once the aggregation road segment is selected, we
select an aggregator by considering a small cell around the
center of the aggregation road segment. Vehicles located in
the cell exchange messages (e.g. one hop beacons) to elect
one of them as aggregator. In particular, a vehicle which is
expected to stay in the cell for the longest time period is
elected as aggregator. Vehicle having lowest velocity can stay
longer compared to other vehicles. The size of the cell is
determined based on maximum velocity of vehicles, and the
duration of data collection interval. We consider that the length
of the cell is given by the distance (e.g., 100 m) travelled by
a vehicle at the maximum speed (e.g., 20m/sec) for a time
period of few (e.g. 1) data collection intervals (e.g., 5 sec).
Vehicles located in the cell exchange messages with each other
to elect one of them as the aggregator. The aggregator informs
existing vehicles in the cell to elect a new aggregator before
it leaves the cell. The procedure to elect a new aggregator
is based on case 2 of the coordinator selection procedure
proposed in [49]. Once a new aggregator is elected, the current
aggregator transfers all data collected to the new aggregator if
the data have not yet been sent to the parent aggregator and
other information such as vehicle arrival observations.

H. Multi-Hop Communication

In our scheme, multi-hop communication is needed, when
1) when a vehicle sends its sensed data to an aggregator,
2) when one aggregator sends aggregated data to another
aggregator. Unicast routing protocol is best suited for our
multi-hop scenario as the communication takes place between
two distinct entities. In this regard, we use Backbone-Assisted-
Hop Greedy (BAHG) routing protocol [52] which is proposed
in one of our previous works. BAHG is an intersection-
based unicast routing protocol in which a routing path is
computed as a sequence of intersections. BAHG selects a
routing path that has shortest hop-count as well as highest
connectivity. Thus, it offers higher performance than other
intersection-based unicast routing protocols that rely on road-
metric distance, connectivity [53] or both [54]. This is because
a routing path selected using only connectivity metric may
involve more hops leading to longer delays. Similarly, routing
path having shortest road-metric distance may not necessarily
provide lowest hop-count because of numerous intermediate
intersections in urban scenario.

IV. ESTIMATION OF DELIVERY EFFICIENCY

The parameter Ntot in the expression of delivery efficiency
given by Eq. (3) is computed as:

Ntot = s ∗ n(t + 1) (7)

where n(t+1) is obtained using Eq. (5) and s is the fixed size of
data packet. Nrecv is computed using DEE algorithm described
in this section. Since we use CSMA/CA (in 802.11p/DSRC
standard [55]) as the underlying channel access scheme,
we need to take into account contention that may result in
packet collisions causing longer delays. In a sensing region
with a high number of vehicles, the delivery efficiency will be

SAHOO et al.: DYNAMIC HIERARCHICAL AGGREGATION FOR VEHICULAR SENSING 2549

TABLE IV

SUMMARY OF NOTATIONS

low as packets from all vehicles cannot reach the aggregator
within the required delay.

The network dynamics that occur in CSMA/CA can be
captured by a combination of perfect scheduling MAC and
expected number of collisions in the network. In a perfect
scheduling MAC, no two transmissions are allowed to interfere
with each other. First, we estimate the delay considering a
perfect scheduling. Then, by adding the retransmission delay
due to packet collisions to the above delay, the delay incurred
using CSMA/CA is obtained. TABLE-IV shows the meaning
of important parameters used in this section.

A. Transmission Using Perfect MAC Scheduling

A region S is a connected sub-graph GS = (VS , ES),
VS ⊂ V , ES ⊂ E of graph G = (V , E). Graph G denotes the
entire sensing region under consideration, where each vertex
v ∈ V and each edge e ∈ E denote an intersection and
a street (i.e. road segment) respectively. Let us refer to the
vehicles that generate data as the source vehicles/source ver-
tices. Each source vehicle computes a path to the destination
vehicle/destination vertex (i.e. the aggregator). The path is a
sequence of vertices ui ∈ VS . If the source vehicle and/or
destination vehicle are not located at the intersections, but
located along a road segment, then they are represented using
the vertex that denotes their closest intersection.

Definition 2: A Communication Link Graph (CLG) is
defined as the graph GL=(VL, EL), where each vertex is either
a group of vehicles or a forwarder.

CLG is constructed from GS as follows. We denote the
Euclidean distance between two vertices u ∈ VS and v ∈ VS

as Dist(u, v). For each source vertex, the path Pi is the shortest
hop-count path from the source vertex to the destination vertex.
Pi is represented as a sequence of vertices. For any two
consecutive vertices ui and u j along path Pi , if Dist(ui ,
u j) > R we consider that forwarders are placed R distance
apart where R is the transmission range of a vehicle and
hence we introduce a new vertex denoted by zn , where
n = 1, 2,

⌊
Dist (ui , u j)/R

⌋
. Then, the path segment

Fig. 7. Communication Link graph CLG (a) Dist(u j , u j+1) > R (Without
Wk vertices), (b) Dist (u j , u j+1) > R (with Wk vertices).

between vertices ui and u j including them is the sequence
< ui , z1, z2…z�Dist (ui ,u j)/R	, u j >.

We repeat this procedure for all source vertices. Please note
that, paths of two or more source vertices may have common
pair of consecutive vertices. Thus, the above procedure is
repeated once for each distinct pair of consecutive vertices.
Next, we consider the group of vehicles located between
two consecutive vertices in the above sequence as a new
vertex wk . These are the vertices that generate data packets.
Since each vehicle generates one data packet in each data
collection interval, the number of packets generated at vertex
wk is equal to the number of its constituent vehicles. Thus,
the new sequence will be < ui , wk , z1, wk+1, z2, wk+2,….
z�dist (ui ,u j)/R	, wk+�dist (ui ,u j)/R	, u j >.

Packets received by a forwarder located at ui are forwarded
to u j through forwarders located at z1, z2..,z�dist (ui ,u j)/R	.
Similarly, packets originated at vertex wk are also forwarded
until the packets reach u j . Fig. 7 (a) and (b) show the graph
CLG obtained from a sub-graph GS when Dist(ui , u j) >R.

We schedule transmissions in a way that interferences from
hidden terminals are avoided. The required schedule depends
on the number of hidden terminals which varies based on
whether the packet is intended for a forwarder along a road
segment or is intended for a forwarder at an intersection.
Packet collisions in these two cases are described using the
CLG as follows:

Case 1: Collisions along a road segment: Along a road seg-
ment, collisions occur only at intermediate forwarders. Given
three forwarders, zn , zn+1and zn+2 along a road segment,
zn and zn+2 are hidden to each other. Hence, transmissions
by zn and zn+2, at the same, will result in collisions at zn+1.
Furthermore, some vehicles located between zn and zn+1 are
hidden to some of the vehicles located between zn+1 and zn+2;
thus, packets forwarded to zn+1 by a vehicle located between
zn and zn+1 may be lost due to simultaneous transmission
from vehicles located between zn+1 and zn+2.Thus in
CLG, wk and wk+1 are also considered hidden to each
other.

2550 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 18, NO. 9, SEPTEMBER 2017

Fig. 8. Scheduling (i.e. time slot assignment).

Case 2: Collisions at intersection: Collisions occur at an
intersection, when forwarders or vehicles located on different
road segments transmit packets simultaneously to forwarder(s)
at the intersection that connects those road segments. Even
if forwarders/vehicles of different road segments may be
physically located within each other’s carrier sense range,
obstacles, such as buildings, may prevent them from hearing
or detecting each other’s transmissions. For example, in CLG
shown in Fig.7. (b), z1, z2, z3 and z4 are hidden to each other.

Definition 3: We define conflict Graph GC=(VC, EC) where
VC= {u: u∈ VL} and EC= {(u, v): u and v are hidden to each
other}

Definition 4: A time slot, Tslot is a duration needed to
transmit a given load (size of a given number of packets
indicated as number of bits).

To achieve perfect scheduling i.e. to avoid collisions, the
communication link graph CLG is transformed into a conflict
graph CG as follows. All vertices of CLG will remain in CG.
However, edges are added between vertices which are hidden
from each other according to the collision scenarios illustrated
in case 1 and case 2. For each vertex u, an edge is added
from u to vertex v, if u and v are hidden to each other. After
constructing CG, the schedule is obtained by finding a solution
to the vertex coloring problem. Vertex coloring problem is the
problem of assigning colors to vertices of a graph in a way
that no two adjacent vertices share the same color; each color
corresponds to a distinct time slot. It is known that vertex
coloring problem is NP-complete. Thus, we adopt iterative
greedy heuristic algorithm [56] to find a schedule. Once the
schedule is obtained, we assign time slots to the vertices in CG.
Fig. 8 shows the assignment of time slots for the graph shown
in Fig. 7 (a).

1) Algorithm in Detail: We use DEE algorithm to find the
value of Nrecv . We compute the amount of data received at the
destination within a given delay. Transmissions start at source
vertices wk , wk+1,..and the packets are forwarded through
vertices z1, z2.... along a road segment of the computed shortest
paths.

Algorithm 2 shows the pseudo-code of DEE. Using a per-
fect MAC schedule (see details above), multiple transmission
rounds are needed to send packets to the destination, where the
duration of a transmission round is given by the total number
of time slots in the schedule. In CLG, the source vertices
wk have different number of packets to send as they might
have different number of constituent vehicles. As a result,

different forwarders have different load. In each transmission
round, the number of packets transmitted by each vertex is
equal to the smallest number of packets transmitted by a
vertex. We denote the minimum load as nmin . For a given
transmission round, the duration of time slot i.e. Tslot is
computed as the time needed to transmit the minimum load.
In each transmission round, vertices that have been assigned
time slot for transmission transmit exactly nmin /s packets (s is
the packet size). When a vertex transmits nmin /s packet, its
load is updated by subtracting nmin from its current load;
similarly, when nmin /s packets transmitted by a vertex is
received by its next-hop forwarder, the load of the latter
is updated by adding nmin to the latter’s current load. If a
vertex is an aggregator, then the load due to packets received
from vehicles or from other aggregators is reduced by the
aggregation factor.

In each transmission round, the retransmission delay (see
next sub-section for details) is obtained for each vertex that
has been assigned time slot to send data. The function
FindDelayRet(u) in step 14 of Algorithm 2 uses (12) to obtain
the retransmission delay for a vertex u. Retransmission occurs
when a packet is not transmitted successfully due to collision.
The function FindMaxDelayRet(i) in step 17 of Algorithm 2 is
used to find the maximum value of retransmission delay during
time slot i . The actual delay of transmission is obtained by
adding the maximum retransmission delay to the time slot
duration Tslot . When the delay is greater than or equal to
the required delay Ts , the number of packets received at the
destination is returned as Nrecv . Delivery efficiency is then
obtained by using the value of Nrecv in (3).

At the end of each transmission round, the conflict graph
is updated by eliminating the vertices (group of vehicles)
that have already transmitted their packets. A new schedule
is computed on the basis of the updated conflict graph. The
function Update_Contention () in step 23 of Algorithm 2 is
used to update the conflict graph as described in Section-IV.A.
Once the conflict graph is updated, a collision free schedule
is determined using a greedy vertex coloring algorithm. The
function Update_Contention () returns the total number of
time slots (nslot) in the schedule. In step 24 of Algorithm 2,
the function FindMin() is used to determine the minimum
load (nmin) which is the smallest value of current load among
all vertices (i.e. N[u]).

Updating the conflict graph and finding a schedule (using
greedy vertex coloring algorithm [56]) are the most expensive
operations in Algorithm 2. Both have the time complex-
ity O(|VL |2), where |VL | is the total number of vertices in
the conflict graph. In Algorithm 2, the above two operations
are repeated for each hop (i.e. a transmission round). Thus,
the time complexity of Algorithm 2 is O(H∗|VL|2), where
H is the maximum number of hops along the path between a
source vertex and a destination vertex. The space complexity
of Algorithm 2 is O(|VL |).
B. Retransmission Delay

In the following, we present the details to compute retrans-
mission delay for vertex u in the graph CLG. We consider the
following assumptions.

SAHOO et al.: DYNAMIC HIERARCHICAL AGGREGATION FOR VEHICULAR SENSING 2551

1) A collision involves two packets. In [57], it is shown that
the number of collisions involving 3 or more packets is
negligible.

2) Each packet is transmitted with probability p =1/cw
where cw is the contention window.

3) Vertex u has m hidden terminals. The numbers of
packets transmitted by the hidden terminals are denoted
by n1, n2,nm .

4) During a time slot, vertex u sends n packets.
5) P(i) denotes the probability that i packets of vertex u

undergo collision.
6) nret is the average number of times a packet is retrans-

mitted following a collision.
7) tx is the transmission time of sending a packet in

wireless channel. It includes propagation delay, packet
transmission time, Distributed Coordinated Function
Inter-frame Space (DIFS) and Short Inter-frame
Space (SIFS) periods and a small back-off delay.

The expected number of packets sent by vertex u that undergo
collisions can be expressed as:

Ncol =
n∑

i=1

i ∗ P(i) (8)

P(i) is closely related to the number of hidden terminals of
vertex u and the number of packets transmitted by its hidden
terminals. Thus, the probability that only one packet of vertex
u undergoes collision is given by:

P(1) =
(

n
1

)

∗
m∑

i=1

(
ni

1

)

∗ p2 (9)

P(2) is obtained as:

P(2) = P(1) ∗
(

n − 1
1

)

∗
m∑

i=1

(
ni − 1

1

)

∗ p2 (10)

The general expression for P(i) is thus given as:

P(i) = P(i − 1) ∗
(

n − i + 1
1

)

∗
m∑

i=1

(
ni − i + 1

1

)

∗ p2

(11)

The retransmission delay for vertex u is obtained as follows:

Tret = nret ∗ Ncol ∗ tx (12)

C. Numerical Results

In this section, we show the limitation of having no hier-
archy using numerical results. Let us consider a hierarchy
that consists of only the root. In particular, we investigate
the impact of required delay, total vehicle count (i.e. total
number of vehicles in the network) and size of the region on
the delivery efficiency at the root. For evaluation, we consider
two scenarios: region 1 which is an 800 × 800 m2 grid
road network with 25 intersections and region 2 which is
an 800 × 400 m2 grid road network with 25 intersections.
The length of each road segment is equal to 200m. In order
to validate the proposed analytical expression of delivery

Fig. 9. Delivery efficiency vs Total vehicle count (Region 1, Ts =450 units).

Fig. 10. Delivery Efficiency vs Required Delay (Region 2).

efficiency, we run simulations to compute delivery efficiency.
Details about simulation are provided in Section-V.A.

Fig. 9 shows the variation of delivery efficiency with the
number of vehicles for region 1. We observe that there is an
almost perfect match between the analytical and simulation
based results; this proves the accuracy of the proposed ana-
lytical expression to compute delivery efficiency. Fig. 9 also
shows that delivery efficiency decreases significantly when
the number of vehicles increases; for example, increasing the
number of vehicles from 200 to 240, in the sensing region,
degrades delivery efficiency from 0.98 to 0.7.

Fig. 10 shows delivery efficiency for different values of
required delay, Ts for region 2. It also shows delivery effi-
ciency for different numbers of vehicles for each value of Ts .
The parameter Ns in Fig. 10 denotes the number of vehicles.
We observe that, for a given number of vehicles, delivery
efficiency improves as Ts increases. This is expected as packets
have a higher lifetime and the packets whose transmissions are

2552 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 18, NO. 9, SEPTEMBER 2017

Fig. 11. Delivery Efficiency vs Total vehicle count (Ts =500 units).

delayed in the network, either due to congestion or large hop-
counts, will eventually reach aggregator.

Fig. 11 shows the variation of delivery efficiency with the
size of sensing region. We observe that delivery efficiency
in 800 × 800m2 region is smaller than that obtained in
800 × 400m2 region for any number of vehicles. This strongly
supports the adoption of aggregation hierarchy in which a
region is partitioned into smaller regions in order to achieve
higher delivery efficiency. A large region attains lower delivery
efficiency due to transmission of sensed data over a large
number of hops. Instead, if the region is partitioned and the
sensed data within each resultant region can be aggregated
before forwarded to a final aggregator, the delivery efficiency
will improve.

V. PERFORMANCE EVALUATION

A. Simulation Setup

In this section, we investigate the performance of the
proposed scheme DHAVS using ns-2 simulator [58]. We used
version ns-2.33, which is modelled after the MAC and PHY
layer specifications of 802.11p [55]. We compare DHAVS
with a baseline scheme in which a static hierarchy is used
for data collection and a state-of-the-art aggregation scheme
DB-VDG [47]. We refer to baseline scheme as SHAVS
(Static Hierarchical Aggregation for Vehicular Sensing). We
implemented SHAVS for two hierarchies: one with only a
root (i.e. height is 0) and the other with two levels (i.e. height
is 1). SHAVS is referred to as SHAVS (h =0) when the
hierarchy height is 0 and SHAVS (h =1) when it is 1. For
DHAVS, fth and ρ are set to 0.1 and 0.2 respectively.

The simulation scenario represents an urban road topology
which consists of 800 x 800 m2 grid. The grid has five
vertical streets, five horizontal streets and 25 intersections.
The length of each road segment (i.e. the segment between
two adjacent intersections) is 200m. Each street has two lanes,
one lane in each direction. We assume presence of one RSU
at one of the corners of the simulation area. Note that the

TABLE V

SIMULATION PARAMETERS

position of RSU is independent of the proposed scheme. We
used IMPORTANT mobility generator tool [59] to generate
vehicular mobility traces according to Manhattan mobility
model. The Manhattan mobility model was introduced in [60]
to model vehicle movement in a grid topology. This model
uses a probabilistic approach to allow vehicle movement at an
intersection, where a vehicle continues to move straight with
probability 0.5, turn left or right with probability 0.25. The
velocity of a vehicle is determined in a periodic manner with
a period length of 1s. In particular, the vehicle speed at a time
slot depends on the velocity and acceleration of the vehicle
in the previous time slot. More details on this model can be
found in [59] and [60].

Velocity of vehicles varies between 15m/s and 25m/s; the
acceleration is set to 10% of maximum velocity. Different
scenarios are generated by varying the number of vehicles
in the network. We run 10 experiments for each scenario and
summarize the results in graphs. We consider data sensing
application for the evaluation; it was simulated by generating
packets of high payloads. Each vehicle sends the sensed data
periodically in each data collection interval. For realistic prop-
agation, we used a Nakagami-m channel model to reflect the
wireless channel in an urban setting. The “m” parameter of the
Nakagami distribution is responsible for controlling the fading
intensities and its value depends on the distance between the
transmitter and the receiver [61]. We used dataset 2 provided
in [61] for the “m” parameters of Nakagami distribution. Other
simulation parameters are listed in TABLE-V.

B. Performance Metrics

1) Average Delivery Efficiency: It is defined as the average
of delivery efficiency observed at the root aggregators
for all data collection intervals.

2) Maximum Height of Hierarchy: It is the maximum
height attained by the aggregation hierarchy during the
simulation period.

3) Total Number of Bits Transmitted: It is defined as the
total number of bits transmitted during the simulation
period. This metric considers the data packets that carry
sensed data or aggregated data.

SAHOO et al.: DYNAMIC HIERARCHICAL AGGREGATION FOR VEHICULAR SENSING 2553

Fig. 12. Average Delivery Efficiency (Number of Vehicles =320).

Fig. 13. Average Delivery Efficiency Data Collection Interval=10Sec).

C. Results and Discussions

Fig. 12 shows the average delivery efficiency of DHAVS
and DB-VDG with respect to data collection intervals for a
scenario of 320 vehicles. We observe that with increase in the
duration of data collection interval, an elevation in average
delivery efficiency occurs. The reason for this behaviour is
that a higher delay threshold allows data packets to reach root
aggregator even if using increased number of hops. Overall,
DHAVS outperforms DB-VDG irrespective of the duration
of data collection interval. This is due to use of aggregation
hierarchy in DHAVS which gets updated dynamically in order
to improve the delivery efficiency. The reason for lower
delivery efficiency in DB-VDG is that it neither employs
a hierarchy nor uses a systematic aggregation scheme with
meticulously selected aggregators.

Fig. 13 shows the impact of number of vehicles on average
delivery efficiency of DHAVS, SHAVS(h=0), SHAVS(h=1)
and DB-VDG. For SHAVS (h=0) and SHAVS (h=1), we
observe a reduction in average delivery efficiency with

Fig. 14. Maximum Height of Hierarchy in DHAVS Scheme.

increase in the number of vehicles. In SHAVS (h=0), the
sharp decrease can be explained by the fact that many-to-one
communications result in higher contention with the increase
in the number of vehicles; thus, data packets are discarded
before they are received at the root aggregator because of
significantly higher delays. In SHAVS (h=1), large number
vehicles in the leaf regions contend in order to send data
to the one of the two leaf aggregators. As a result, some
data packets might not reach at the leaf aggregator due to
delay violations, thereby leading to less packets received at the
root aggregator. SHAVS (h=1), however, performs better than
SHAVS (h=0) due to one more aggregation level. In contrast,
we observe only a small and steady variation in performance
of DHAVS even when the number of vehicles is high, thereby
confirming the scalability of DHAVS. When the number of
vehicles is 200, the average delivery efficiency of DHAVS
is slightly higher than SHAVS (h=1). This is due to the
fact that DHAVS (dynamically) decided the hierarchy as time
progresses. Thus, when number of vehicles is 200, DHAVS
uses a same hierarchy as SHAVS (h=1) sufficient to ensure
efficient data collection at the root aggregator.

The average delivery efficiency of DB-VDG is close to
SHAVS (h=1) and less than that of DHAVS. In case of
DB-VDG, no aggregators are chosen and every vehicles is
allowed to perform aggregation on data received from other
vehicles. Since aggregation is performed independently by
multiple vehicles, the number of data packets is not reduced
effectively which results in lower value of average delivery
efficiency. Moreover, DB-VDG experiences 15% decrease
in performance as the number of vehicles increases from
200 to 400.

Fig. 14 shows the impact of number of vehicles on the
maximun height of the aggregation hierrachy used by DHAVS
for three different durations of data collection interval: 5 s,
10s and 15s. We observe an increase in the maximum height
with increase in number of vehicles. The rationale is that the
greater the height, the higher the reduction in number of data
packets. Moreover, for any number of vehicles, the maximum
height decreases with the increase in the duartion of data
collection interval. This is because of the fact that with a higher
duration the contention among vehicles has less impact on the

2554 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 18, NO. 9, SEPTEMBER 2017

TABLE VI

TOTAL NUMBER OF BITS TRANSMITTED

delivery efficiency. Hence a small height is sufficient to ensure
a high value of delivery efficiency at the root aggregator.

Table. VI shows the total number of bits transmitted in the
network during the entire simulation period for two different
scenarios: one with number of vehicles equal to 200 and
the other with number of vehicles equal to 400. We observe
that the smallest number of bits is transmitted in case of
DHAVS. This confiirms the ability of the proposed scheme to
reduce bandwidth usage. As expected, the highest number of
bits is transmitted in SHAVs (h=0). DB-VDG transmits 25%
and 52% more bits than DHAVS for 200 and 400 vehicles
respectively. This huge performance difference is attributed to
the lack of a hierarchy in DB-VDG.

VI. CONCLUSION AND FUTURE WORKS

Vehicular sensing applications are becoming more popular
as vehicles embed an increasing number of sophisticated
sensors. Sensed data when collected over time from a big
number of vehicles can generate enormous amounts of data
which apart from congesting the network, may fail to arrive
in real time to RSUs. In this paper, we address this problem
by proposing a scheme for sensed data aggregation in a hierar-
chical way in order to decrease the volume of data transferred
from the road and also to decrease the delay of delivering
sensory information. The aggregation hierarchy is dynamically
updated in order to ensure an improved performance.

In future, we would like to estimate the delivery efficiency
considering network parameters such as channel quality in
vehicular networks. Also, we will investigate probabilistic
schemes to estimate the quality (e.g. reliability) of aggregated
data. In addition, we would like to work on multimodal fusion
approaches for urban sensing, where different sensory infor-
mation such as images, traffic information, and air pollution
level of a given area can be combined to provide a complete
view of the urban environment.

REFERENCES

[1] U. Lee, E. Magistretti, M. Gerla, P. Bellavista, and A. Corradi, “Dissem-
ination and harvesting of urban data using vehicular sensing platforms,”
IEEE Trans. Veh. Technol., vol. 58, no. 2, pp. 882–901, Feb. 2009.

[2] K.-C. Lan, C.-M. Chou, and H.-Y. Wang, “Using vehicular sensor
networks for mobile surveillance,” in Proc. IEEE VTC-Fall, Sep. 2012,
pp. 1–5.

[3] R. Bruno and M. Nurchis, “Robust and efficient data collec-
tion schemes for vehicular multimedia sensor networks,” in Proc.
IEEE 14th Int. Symp. Workshops World Wireless, Mobile Multimedia
Netw. (WoWMoM), Madrid, Spain, Jun. 2013, pp. 1–10.

[4] S. Mathur, S. Kaul, M. Gruteser, and W. Trappe, “ParkNet: A mobile
sensor network for harvesting real time vehicular parking information,”
in Proc. ACM MobiHoc, May 2009, pp. 25–28.

[5] S.-C. Hu, Y.-C. Wang, C.-Y. Huang, and Y.-C. Tseng, “Measuring air
quality in city areas by vehicular wireless sensor networks,” J. Syst.
Softw., vol. 84, no. 11, pp. 2005–2012, Nov. 2011.

[6] D. Wu et al., “ADDSEN: Adaptive data processing and dissemi-
nation for drone swarms in urban sensing,” IEEE Trans. Comput.,
vol. 66, no. 2, pp. 183–198, Feb. 2017.

[7] D. Wu, Q. Liu, Y. Li, J. A. McCann, A. C. Regan, and
N. Venkatasubramanian, “Adaptive lookup of open WiFi using crowd-
sensing,” IEEE/ACM Trans. Netw., vol. 24, no. 6, pp. 3634–3647,
Dec. 2016.

[8] D. Wu, D. I. Arkhipov, Y. Zhang, C. H. Liu, and A. C. Regan, “Online
war-driving by compressive sensing,” IEEE Trans. Mobile Comput.,
vol. 14, no. 11, pp. 2349–2362, Nov. 2015.

[9] P. Gomes, C. Olaverri-Monreal, and M. Ferreira, “Making vehicles
transparent through V2V video streaming,” IEEE Trans. Intell. Transp.
Syst., vol. 13, no. 2, pp. 930–938, Jun. 2012.

[10] E. Belyaev, P. Molchanov, A. Vinel, and Y. Koucheryavy, “The use of
automotive radars in video-based overtaking assistance applications,”
IEEE Trans. Intell. Transp. Syst., vol. 14, no. 3, pp. 1035–1042,
Sep. 2013.

[11] C. Stiller and J. Ziegler, “3D perception and planning for self-driving
and cooperative automobiles,” in Proc. 9th Int. Multi-Conf. Syst., Signals
Devices (SSD), Mar. 2012, pp. 1–7.

[12] W. van der Mark and D. M. Gavrila, “Real-time dense stereo for
intelligent vehicles,” IEEE Trans. Intell. Transp. Syst., vol. 7, no. 1,
pp. 38–50, Mar. 2006.

[13] D. Zekri, B. Defude, and T. Delot, “Building, sharing and exploiting
spatio-temporal aggregates in vehicular networks,” Mobile Inf. Syst.,
vol. 10, no. 3, pp. 259–285, 2014.

[14] C. Feng, Z. Li, S. Jiang, and R. Zhang, “Data aggregation and routing
guidance with QoS guarantee in VANETs,” Int. J. Distrib. Sensor Netw.,
vol. 10, no. 7, pp. 1–11, Jul. 2014.

[15] Y. Zhu, Q. Zhao, and Q. Zhang, “Delay-constrained data aggregation in
VANETs,” IEEE Trans. Veh. Technol., vol. 64, no. 5, pp. 2097–2107,
May 2015.

[16] J. Jiru, L. Bremer, and K. Graffi, “Data aggregation in VANETs
a generalized framework for channel load adaptive schemes,” in
Proc. 39th Annu. IEEE Conf. Local Comput. Netw., Sep. 2014,
pp. 394–397.

[17] M. Milojevic and V. Rakocevic, “Location aware data aggregation for
efficient message dissemination in vehicular ad hoc networks,” IEEE
Trans. Veh. Technol., vol. 64, no. 12, pp. 5575–5583, Dec. 2015.

[18] A. S. K. Mammu, J. Jiru, and U. H. Jayo, “Cluster based semantic data
aggregation in VANETs,” in Proc. IEEE 29th Int. Conf. Adv. Inf. Netw.
Appl. (AINA), Mar. 2015, pp. 747–753.

[19] S. Dietzel, J. Petit, F. Kargl, and B. Scheuermann, “In-network aggre-
gation for vehicular ad hoc networks,” IEEE Commun. Surveys Tuts.,
vol. 16, no. 4, pp. 1909–1932, 4th Quart., 2014.

[20] S. Ilarri, T. Delot, and R. Trillo-Lado, “A data management perspective
on vehicular networks,” IEEE Commun. Surveys Tuts., vol. 17, no. 4,
pp. 2420–2460, 4th Quart., 2015.

[21] H. Samet, Foundations of Multidimensional and Metric Data Structures.
San Francisco, CA, USA: Morgan Kaufmann, 2006.

[22] Information Technology—Digital Compression and Coding of
Continuous-Tone Still Images—Requirements and Guidelines,
document ISO/IEC 10918-1, 1994.

[23] Information Technology—Generic Coding of Moving Pictures and Asso-
ciated Audio Information—Part 3: Audio, document ISO/IEC 13818-3,
1998.

[24] Y. Dieudonné, B. Ducourthial, and S. M. Senouci, “COL: A data
collection protocol for VANET,” in Proc. Intell. Vehicles Symp. (IV),
Jun. 2012, pp. 711–716.

[25] S.-Y. Ni, Y.-C. Tseng, Y.-S. Chen, and J.-P. Sheu, “The broadcast storm
problem in a mobile ad hoc network,” in Proc. ACM/IEEE MobiCom,
Aug. 1999, pp. 151–162.

[26] M. D. Dikaiakos, A. Florides, T. Nadeem, and L. Iftode, “Location-
aware services over vehicular ad-hoc networks using car-to-car commu-
nication,” IEEE J. Sel. Areas Commun., vol. 25, no. 8, pp. 1590–1602,
Oct. 2007.

[27] S. Peirce and R. Mauri, “Vehicle-infrastructure integration (VII) initia-
tive benefit-cost analysis: Pre-testing estimates,” U.S. DoT Draft Rep.,
Washington, DC, USA, Mar. 2007.

[28] D. Wu, Y. Zhang, L. Bao, and A. C. Regan, “Location-based crowd-
sourcing for vehicular communication in hybrid networks,” IEEE Trans.
Intell. Transp. Syst., vol. 14, no. 2, pp. 837–846, Jun. 2013.

SAHOO et al.: DYNAMIC HIERARCHICAL AGGREGATION FOR VEHICULAR SENSING 2555

[29] I. Catling and F. O. de Beek, “SOCRATES: System of cellular radio for
traffic efficiency and safety,” in Proc. IEEE Vehicle Navigat. Inf. Syst.
Conf., vol. 2. Oct. 1991, pp. 147–150.

[30] C. Sommer, A. Schmidt, Y. Chen, R. German, W. Koch, and F. Dressler,
“On the feasibility of UMTS-based traffic information systems,” Ad Hoc
Netw., vol. 8, no. 5, pp. 506–517, Jul. 2010.

[31] B. Hull et al., “CarTel: A distributed mobile sensor computing system,”
in Proc. ACM SenSys, Nov. 2006, pp. 125–138.

[32] J. Rybicki, B. Scheuermann, M. Koegel, and M. Mauve, “PeerTIS: A
peer-to-peer traffic information system,” in Proc. 6th ACM Int. Workshop
Veh. Internetwork., Sep. 2009, pp. 23–32.

[33] J. Rybicki, B. Pesch, M. Mauve, and B. Scheuermann, “Support-
ing cooperative traffic information systems through street-graph-based
peer-to-peer networks,” in Proc. 17th GI/ITG Conf. Commun. Distrib.
Syst. (KiVS), Mar. 2011, pp. 121–132.

[34] I. Salhi, M. O. Cherif, and S. M. Senouci, “A new architecture for
data collection in vehicular networks,” in Proc. IEEE ICC, Jun. 2009,
pp. 1–6.

[35] M. H. Arbabi and M. Weigle, “Using vehicular networks to collect
common traffic data,” in Proc. ACM VANET, Sep. 2009, pp. 117–118.

[36] A. Miloslavov and M. Veeraraghavan, “Sensor data fusion algorithms for
vehicular cyber-physical systems,” IEEE Trans. Parallel Distrib. Syst.,
vol. 23, no. 9, pp. 1762–1774, Sep. 2012.

[37] L. Wischoff, A. Ebner, H. Rohling, M. Lott, and R. Halfmann, “SOTIS—
A self-organizing traffic information system,” in Proc. 57th IEEE
Semiannu. Veh. Technol. Conf. (VTC-Spring), vol. 4. Apr. 2003,
pp. 2442–2446.

[38] T. Nadeem, S. Dashtinezhad, C. Liao, and L. Iftode, “TrafficView:
Traffic data dissemination using car-to-car communication,” ACM
SIGMOBILE Mobile Comput. Commun. Rev., vol. 8, no. 3, pp. 6–19,
Jul. 2004.

[39] N. Wisitpongphan, O. K. Tonguz, J. S. Parikh, P. Mudalige, F. Bai,
and V. Sadekar, “Broadcast storm mitigation techniques in vehicular
ad hoc networks,” IEEE Wireless Commun., vol. 14, no. 6, pp. 84–94,
Dec. 2007.

[40] R. Chen, W.-L. Jin, and A. Regan, “Broadcasting safety information in
vehicular networks: Issues and approaches,” IEEE Netw., vol. 24, no. 1,
pp. 20–25, Jan./Feb. 2010.

[41] W. Zhu, D. Gao, C. H. Foh, W. Zhao, and H. Zhang, “A collision avoid-
ance mechanism for emergency message broadcast in urban VANET,” in
Proc. IEEE 83rd Veh. Technol. Conf. (VTC Spring), May 2016, pp. 1–5.

[42] W. Benrhaiem, A. S. Hafid, and P. K. Sahu, “Multi-hop reliability for
broadcast-based VANET in city environments,” in Proc. IEEE Int. Conf.
Commun. (ICC), May 2016, pp. 1–6.

[43] R. Kumar and M. Dave, “A framework for handling local broadcast
storm using probabilistic data aggregation in VANET,” Wireless Pers.
Commun., vol. 72, no. 1, pp. 315–341, Sep. 2013.

[44] T. Saeed, M. Lestas, Y. Mylonas, A. Pitsillides, and V. Papadopoulou,
“Analysis of probabilistic flooding in VANETs for optimal rebroadcast
probabilities,” in Proc. IEEE/IFIP Netw. Oper. Manage. Symp. (NOMS),
Apr. 2016, pp. 1181–1186.

[45] U. Lee, J. Lee, J.-S. Park, and M. Gerla, “FleaNet: A virtual market
place on vehicular networks,” IEEE Trans. Veh. Technol., vol. 59, no. 1,
pp. 344–355, Jan. 2010.

[46] J. Sahoo, S. Cherkaoui, and A. Hafid, “Hierarchical aggregation for
delay-sensitive vehicular sensing,” in Proc. Int. Wireless Commun.
Mobile Comput. Conf. (IWCMC), Aug. 2015, pp. 1365–1370.

[47] C. E. Palazzi, F. Pezzoni, and P. M. Ruiz, “Delay-bounded data gathering
in urban vehicular sensor networks,” Pervas. Mobile Comput., vol. 8,
no. 2, pp. 180–193, Apr. 2012.

[48] D. Delling, A. V. Goldberg, I. Razenshteyn, and R. F. Werneck, “Graph
partitioning with natural cuts,” in Proc. IEEE Int. Parallel Distrib.
Process. Symp. (IPDPS), May 2011, pp. 1135–1146.

[49] J. Sahoo, E. H.-K. Wu, P. K. Sahu, and M. Gerla, “Congestion-
controlled-coordinator-based MAC for safety-critical message transmis-
sion in VANETs,” IEEE Trans. Intell. Transp. Syst., vol. 14, no. 3,
pp. 1423–1437, Sep. 2013.

[50] I. Pohl, “Bidirectional search,” in Machine Intelligence,
vol. 6, B. Meltzer and D. Michie, Eds. Edinburgh, Scotland:
Edinburgh Univ. Press, 1971, pp. 127–140.

[51] Y.-L. Chou, Statistical Analysis, 2nd ed. New York, NY, USA:
Holt, Rinehart and Winston, Jul. 1975.

[52] P. K. Sahu, E. H.-K. Wu, J. Sahoo, and M. Gerla, “BAHG: Back-
bone-assisted hop greedy routing for VANET’s city environments,” IEEE
Trans. Intell. Transp. Syst., vol. 14, no. 1, pp. 199–213, Mar. 2013.

[53] C. Lochert, M. Mauve, H. Füßler, and H. Hartenstein, “Geographic
routing in city scenarios,” ACM SIGMOBILE Mobile Comput. Commun.
Rev., vol. 9, no. 1, pp. 69–72, Jan. 2005.

[54] M. Jerbi, S. M. Senouci, T. Rasheed, and Y. Ghamri-Doudane, “Towards
efficient geographic routing in urban vehicular networks,” IEEE Trans.
Veh. Technol., vol. 58, no. 9, pp. 5048–5059, Nov. 2009.

[55] IEEE Standard for Information Technology—Local and Metropoli-
tan Area Networks—Specific requirements—Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifi-
cations Amendment 6: Wireless Access in Vehicular Environments,
IEEE Standard 802.11p, Jul. 2010.

[56] J. C. Culberson and F. Luo, “Exploring the k-colorable landscape
with iterated greedy,” in Cliques, Coloring, and Satisfiability: Second
DIMACS Implementation Challenge (DIMACS Series in Discrete Math-
ematics and Theoretical Computer Science), vol. 26, D. S. Johnson and
M. A. Trick, Eds. Providence, RI, USA: AMS, 1996, pp. 245–284.
[Online]. Available: http://web.cs.ualberta.ca/~/

[57] R. K. Schmidt, B. Kloiber, F. Schüttler, and T. Strang, “Degradation
of communication range in VANETs caused by interference 2.0—
Real-world experiment,” in Communication Technologies for Vehicles
(Lecture Notes in Computer Science), vol. 6596. Berlin, Germany:
Springer, Mar. 2011, pp. 176–188.

[58] The Network Simulator—ns-2, accessed Jan. 28, 2017. [Online]. Avail-
able: http://www.isi.edu/

[59] User Manual for IMPORTANT Mobility Tool Generator in
ns-2 Simulator, accessed Jan. 28, 2017. [Online]. Available:
https://www.semanticscholar.org/paper/User-Manual-for-Important-Mo-
bility-Tool-Generators-Bai-Sadagopan/f91de61e5b095036ee8b16b458b
944370bdf337a/pdf

[60] F. Bai, N. Sadagopan, and A. Helmy, “IMPORTANT: A framework to
systematically analyze the impact of mobility on performance of routing
protocols for adhoc networks,” in Proc. 22nd Annu. Joint Conf. IEEE
Comput. Commun. (INFOCOM), vol. 2. Mar./Apr. 2003, pp. 825–835.

[61] L. Cheng, B. E. Henty, D. D. Stancil, F. Bai, and P. Mudalige, “Mobile
vehicle-to-vehicle narrow-band channel measurement and characteriza-
tion of the 5.9 GHz dedicated short range communication (DSRC)
frequency band,” IEEE J. Sel. Areas Commun., vol. 25, no. 8,
pp. 1501–1516, Oct. 2007.

Jagruti Sahoo (M’14) received the Ph.D.
degree in computer science and information
engineering from National Central University,
Taiwan, in 2013. She was a Post-Doctoral Fellow
with University of Sherbrooke, Canada, and
with the Telecommunication Service Engineering
Research Laboratory, CIISE, Concordia University,
Canada. She is currently an Assistant Professor
of Computer Science with South Carolina State
University, South Carolina, USA. Her research
interests include wireless sensor networks, vehicular

networks, content delivery networks, cloud computing, and network
functions virtualization. She served as a member of the Technical Program
Committee in many conferences and as a Reviewer for many journals and
conferences.

Soumaya Cherkaoui (M’99–SM’15) was with the
industry as a Project Leader on projects targeted at
the aerospace industry. She was an Invited Professor
with University of Toronto, Monahh University, Bell
Laboratories, University of California at Berkeley,
and University of Montreal. She has over 100 publi-
cations in reputable journals, conferences, and work-
shops in the area of communication networks. She
is currently a Full Professor with the Department of
Electrical and Computer Engineering, University of
Sherbrooke, Sherbrooke, QC, Canada. Since 2005,

she has also been an Adjunct Full Professor with Lulea University, Lulea,
Sweden, and has been the Director of INTERLAB, a research laboratory that
conducts research funded both by government and industry. She has served
as a General Chair, an Editor, a Member of Technical Committee, a Session
Chair, or a Program Committee Member of many conferences or referenced
journals. She is a Professional Engineer of Quebec, Canada.

2556 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 18, NO. 9, SEPTEMBER 2017

Abdelhakim Hafid was an Assistant Profes-
sor with University of Western Ontario (UWO),
London, ON, Canada; as a Research Director with
the Advance Communication Engineering Center
(venture established by UWO, Bell Canada, and Bay
Networks), Canada; as a Researcher with CRIM,
Canada; as a Visiting Scientist with GMD-Fokus,
Berlin, Germany; and as a Visiting Professor with
University of Evry, Evry, France. He spent several
years as a Senior Research Scientist with Telcor-
dia Technologies (formerly Bell Communications

Research), NJ, USA, where he was involved in major research projects on
the management of next-generation networks, including wireless and optical
networks. He is currently a Full Professor with University of Montreal,
Montreal, QC, Canada, where he founded the Network Research Laboratory
in 2005. He is also a Research Fellow with the Interuniversity Research Center
on Enterprise Networks, Logistics, and Transportation. He has extensive
academic and industrial research experience in the area of the management
of next-generation networks, including wireless and optical networks, QoS
management, distributed multimedia systems, and communication protocols.

Pratap Kumar Sahu (M’14) received the Ph.D.
degree from National Central University, Taiwan.
He was a Post-Doctoral Researcher with the
University of Montreal, Canada, and National Cen-
tral University, Taiwan. He is currently a Research
Fellow with the CONNECT Centre, Trinity Col-
lege Dublin, Dublin. His research interests include
network coding, vehicular ad hoc networks, and
sensor networks. Mostly, he focuses on various
aspects of intelligent transportation systems. He
has many publications in his credit, such as jour-

nals like IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYS-
TEMS, IEEE TRANSACTIONS ON CLOUD COMPUTING, IEEE SENSORS,
Elsevier Vehicular Communications, and Springer Telecommunication Sys-
tems. He also has many publications in various conferences, including IEEE
GLOBECOM, IEEE ICC, IEEE LCN, and IEEE ICCCN. He served as Tech-
nical Program Committee Member for many IEEE conferences. He currently
serves as an Associate Editor of Journal of Circuits, Systems, and Computers.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

