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Abstract—With the emergence of Internet of Things (IoT),
where any device is able to connect to the Internet and mon-
itor/control physical elements, several applications were made
possible such as smart cities, smart health care and smart
transportation. The wide range of the requirements of these
applications drives traditional IoT to cognitive IoT (CIoT) that
supports smart resource allocation, automatic network operation
and intelligent service provisioning. To enable CIoT, there is
a need for flexible and reliable wireless communication. In
this paper, we propose to combine Cognitive Radio (CR) with
a biological mechanism called Reaction-Diffusion to provide
efficient spectrum allocation for CIoT. We first formulate the
quantization of qualitative connectivity-flexibility tradeoff prob-
lem to determine the optimal cluster size (i.e., number of cluster
members) that maximizes clustered throughput but minimizes
communication delay. Then, we propose a bio-inspired algorithm
which is used by CIoT devices to form cluster distributedly.
We compute the optimal values of the algorithm’s parameters
(e.g., contention window) of the proposed algorithm to increase
the network’s adaption to different scenarios (e.g., spectrum
homogeneity and heterogeneity) and to decrease convergence
time, communication overhead and computation complexity.
We conduct a theoretical analysis to validate the correctness
and effectiveness of proposed bio-inspired algorithm. Simulation
results show that the proposed algorithm can achieve excellent
clustering performance in different scenarios.

Index Terms—cognitive IoT, cognitive radio, clustering algo-
rithm, bio-inspired solution, spectrum allocation.

I. INTRODUCTION

THE Internet-of-Things (IoT) is a network of interconnect-
ed objects including environmental sensors, health mon-

itoring devices, smart meters, home appliances, autonomous
cars, and many others [1]. Recently, cognitive IoT (CIoT)
emerges to meet the current and even future application
requirements and becomes the development trend of IoT. The
main idea of CIoT is to enable the IoT to possess the features
of smart resource allocation, automatic network operation
and intelligent service provisioning [2]. One embodiment of
cognition in CIoT is to adapt itself to changes or uncertainties;
this requires CIoT devices, that are connected using wireless
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communication, to have the capability of efficient spectrum
utilization [3].

Cognitive radio (CR) technology, as a promising solution
to increase the utilization of scarce radio spectrum, has been
widely studied for 5G networks [4][5], Machine-to-Machine
(M2M) communications [6] and other scenarios in IoT [7].
The basic concept of CR is dynamic spectrum management,
for allocating radio frequency bands [8], which enables wire-
less devices to have dynamic access to the entire available
spectrum. For high-density CIoT deployments, CR could help
not only alleviating the issue of spectrum scarcity, but also
adapting to the changes of spectrum environment. In this case,
CIoT devices can satisfy the communication requirements of
varied applications as well as achieve high robustness in a
dynamic environment.

However, though CR technology can bring CIoT more
flexibility to the dynamic environment, the connectivity of
networks may decrease due to the fact that CIoT devices
are allocated on varied spectrum bands (channels). Hence,
to provide the tradeoff between connectivity and flexibility
of the networks, cluster-based spectrum allocation algorithms
are proposed [9]. Table I compares the existing representative
clustering algorithms regarding spectrum allocation with the
proposed bio-inspired algorithm in different aspects. [10] and
[11] both use centralized methods to form cluster due to
that they need global information. Comparing to centralized
spectrum allocation, distributed spectrum allocation can pro-
vide more flexibility in the sense it can quickly adjust to the
network changes, especially in the distributed scenario where
there exits no central controller. Furthermore, according to
[12], in most cases, network changes may affect only a local
area; in this case, a distributed spectrum allocation can address
these changes without performing a large scale adjustment
of allocated spectrum. Hence, distributed methods like [13]-
[18] are proposed. However, these method require accurate
neighbors’ information (e.g., neighbors’ available channel list)
based on perfect information exchange mechanism (e.g., ideal
neighbor discovery scheme) which is not specified in these
works. Besides, the requirement for accurate exchanged infor-
mation will cost wireless devices unacceptable long time to
collect enough information when taking into consideration the
possible collisions during communications. Particularly, [13]
and [14] also require time-synchronization among wireless
devices, which is hardly to implement in distributed scenario;
[15] requires a reliable signalling mechanism which is imprac-
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TABLE I
SUMMARY OF REPRESENTATIVE CLUSTERING ALGORITHMS

Algorithm Objective Method Neighbors’
Information Global Information Communication

Requirement
Other

Requirement

[10] Enhance the coverage and
capacity of cellular networks Centralized No Layout of femtocell

and channel gains
Perfect

information exchange No

[11] Maximize the sum capacity Centralized No CSI Perfect
information exchange No

[13] Maintain connectivity
in spectrum heterogeneity Distributed Yes No Perfect

information exchange Synchronization

[14] Tradeoff between spectrum
availability and number of clusters Distributed Yes No Perfect

information exchange Synchronization

[15] Tradeoff between spectrum
availability and number of clusters Distributed Yes No Perfect

information exchange
Reliable signalling

mechanism

[16] Maximize cluster size
in spectrum heterogeneity Distributed Yes No Perfect

information exchange
Two

transceivers

[17] Maximize cluster size
in spectrum heterogeneity Distributed Yes No Perfect

information exchange Synchronization

[18] Maximize the sum capacity
Minimize transmission power Distributed Yes No Perfect

information exchange No

The
proposed

Maximize clustered throughput
Minimize communication delay Distributed No No No No

tical in dynamic scenario. Other requirement like need of two
transceiver per device is claimed in [16], which will result in
extra cost like power. Besides, though [17] specifies that neigh-
bor discovery and information exchange can be completed by
channel-hopping (CH) mechanism, the assumption of time-
synchronization is still impractical; and the algorithm in [17]
and [18] may result in isolated node problem [19] which
means that the formed cluster only contains one node. The
isolated node problem drastically decrease the connectivity
of the network. Hence, the limitations of these clustering
algorithms lead to the lack of practicability.

Challenges in communication and networking (e.g., com-
plexity vs. network size, dynamic nature, resource constraints,
heterogeneous architectures, absence or impracticality of cen-
tralized control and infrastructure and etc.) have been suc-
cessfully dealt with by Nature. Indeed, as a result of millions
of years of evolution, Nature has yielded many biological
systems and processes with intrinsic appealing characteristics
that include adaptivity to varying environmental conditions,
inherent resiliency to failures and damages, successful col-
laborative operations based on a limited set of rules [20].
Compared to conventional techniques, bio-inspired algorithms
may lead to more effective solutions in areas that include
networking, maintenance, control and optimization [21]. In-
deed, bio-inspired techniques have been studied for different
research fields in communication and networking such as
network synchronization [22], cooperation and division [23],
resource allocation [24] and routing [25]. With respect to
distributed spectrum allocation, there also exist a few notable
contributions that use bio-inspired methods in the context of
cognitive networks [26]-[28]. For more detailed review of bio-
inspired methods, there are two useful survey articles [20],
[29]. A theoretical survey article is [20], while [29] focuses
more on the practical relevance of bio-inspired solutions. To
the best of our knowledge, our proposal is the first that uses
a bio-inspired method for cluster-based spectrum allocation
with practical assumptions (in opposition to existing methods);
these assumptions include (a) there is no central controller; (b)

limited received information, by nodes, may be limited (i.e.,
not complete); and (c) communication collisions may happen.

In this paper, we propose a bio-inspired algorithm to address
the limitations and drawbacks of existing algorithms (Table
I) in cluster-based distributed spectrum allocation. The main
contributions are as follows.

• We formulate the quantization of qualitative connectivity-
flexibility tradeoff problem by considering both clustered
throughput and communication delay. We also derive the
specific expression of utility function, by which we can
compute the optimal cluster size.

• We propose a bio-inspired algorithm to implement dis-
tributed cluster formation with tending to optimal clus-
ter size. The proposed algorithm is based on realis-
tic/practical assumptions that include (a) there is no con-
troller; (b) users only use limited received information;
and (c) communication collisions can happen.

• We compute the optimal parameter configuration of the
proposed algorithm to increase the adaption of CIoT to
different scenarios, and to decreases convergence time,
communication overhead and computation complexity.

• We provide theoretical analysis and simulations to vali-
date the correctness and effectiveness of proposed algo-
rithm, and proof that the isolated node problem can be
addressed in the proposed algorithm.

The rest of this paper is organized as follows. Section II
models CIoT and formulates the clustering problem. In Section
III, we analyze the problem based on CSMA/CA, and derive
the optimal cluster size. We present the bio-inspired algorithm
in Section IV. Section V gives analysis and derivation of
optimal parameter configuration of the proposed algorithm.
In Section VI, we present the theoretical analysis to validate
the algorithm. Section VII presents simulation results. Section
VIII concludes the paper.
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II. DISTRIBUTED CLUSTER FORMATION PROBLEM

A. Network Model

We consider a high-density CIoT with set U =
{U1, . . . ,UN} of users (in this paper, user and CIoT de-
vice will be used interchangeably), numbered by set N =
{1, . . . , N}. The total network bandwidth comprises set C =
{C1, . . . ,CM} of non-overlapping channels, numbered by set
M = {1, . . . ,M}. Denote by CUi ∈ C the set of locally
available channels at each user Ui ∈ U, i ∈ N. The spectrum
heterogeneity of the environment implies that any two sets
CUi and CUj (i 6= j) may be different. It is assumed that
there exists at least one common available channel between
Ui and Uj for i, j ∈ N, i.e., CUi ∩ CUj 6= ∅.

In order to be more resilient to the changes, users in
the system employ random access scheme like Distributed
Coordination Function (DCF)-based Carrier Sense Multiple
Access with Collision Avoidance (CSMA/CA) in IEEE 802.11
Standard [30] to transmit messages; thus, time synchronization
is not necessarily required among users. It is assumed that
each user stays in the system for a long enough duration
to accomplish spectrum allocation. Each user operates fully
autonomously (without any central controller) and has neither
precise knowledge about global information (e.g., channel s-
tate and network traffic) nor other users’ states (e.g., occupying
channel and available channels). That is, each Ui, i ∈ N,
selects its occupying channel (cluster) independently based
only on its own local observations (or the parameters that
can be measured locally, such as local throughput, local link
gains). The only information users can acquire from each other
is the information transmitted successfully during the spectrum
allocation process.

B. Problem Formulation

The objective is to form cluster-based network where each
cluster occupies one channel which is commonly available to
all cluster members. Denote by {CS1, . . . ,CSK} the set of
clusters in which CSk, k ∈ K = {1, . . . ,K} represents the
set of users belonging to cluster k. Note that each user only
belongs to one cluster.

To achieve the maximal throughput, each user needs to
choose the ‘best’ channel (e.g., lower noise and larger band-
width) in its available channel set. On the one hand, it is
likely for a large number of users to choose the same ‘best’
channel. In this case, users intending to achieve maximal
throughput actually receive low throughput because of intense
collisions. Considering multi-user transmission contention, the
more users occupying the same channel, the more collisions
will happen. The expected throughput of Ui in CSk on Cm is

E[Sk,i] = χm,iΓ(|CSk|)Bmlog2(1 + γm,i), (1)

where

χm,i =

{
1, Ui occupies Cm
0, otherwise

,

|CSk| is the cluster size (i.e., number of users in cluster k),
Bm is the bandwidth of Cm and γm,i is the SINR (Signal
to Interference and Noise Ratio) in Cm measured by Ui; E[·]

denotes the expectation function; Γ(·) is the decreasing func-
tion reflecting the impact of the number of cluster members on
the user’s throughput. Intuitively, Eq. (1) indicates that users
employing random access scheme can achieve high throughput
in small-size clusters.

However, on the other hand, the ‘best’ channels of neigh-
bouring users may be different, which means the commonly
available channel of neighbouring users is not the ‘best’
channel. Hence, occupying the ‘best’ channel may lead to
small cluster sizes and a large number of clusters. In this case,
cluster management and inter-cluster communications will
generate considerable overhead, especially the communication
access delay for inter-cluster communications1. This indicates
that the larger the cluster size is, the less the communication
access delay is. The expected access delay of Ui in CSk can
be expressed as follows:

E[Dk,i] = Υ(|CSk|), (2)

where Υ(·) is the function mapping the number of cluster-
members to communication access delay.

We define the utility function Uk of CSk as

Uk =
∑

{i|Ui∈CSk}

E[Sk,i]− E[Dk,i]. (3)

The cluster formation problem can be formulated to maximize
the overall utilities of all clusters. More specifically,

max
|CSk|

∑
k∈K

Uk, (4a)

s.t.
∑
k∈K

|CSk| = N, (4b)

CSk ∩ CSq = ∅, ∀k 6= q, k, q ∈ K, (4c)∑
m∈M

∑
Ui∈CSk

χm,i = |CSk| , (4d)

|K| ≤ |M|. (4e)

Eq. (4b) indicates that every user must join a cluster. Eq. (4c)
ensures that each user belongs to only one cluster. Eq. (4d)
indicates that the members of a cluster can occupy only one
commonly available channel. Eq. (4e) ensures that the number
of clusters cannot be larger than the number of channels.

III. ANALYSIS OF OPTIMAL SOLUTION

We conduct the analysis based on DCF-based CSMA/CA in
IEEE 802.11 Standard [30], which is widely used in distributed
wireless networks and easy to be adopted and developed.

A. Cluster Throughput
According to Xiao’s research [31], which considers backoff

counter freezing probability based on Bianchi’s model [32], a
user employing DCF based CSMA/CA scheme transmits data
in cluster k with the probability

τk =
1− pkr+1

(
r∑
i=0

[1 + 1
1+pk

Wi−1∑
j=1

Wi−j
Wi

]pki)(1− pk)

1The most common scheme for inter-cluster communication in distributed
multi-channel networks is using channel-hopping algorithms [17].
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where r is the maximum number of retransmissions before
dropping a packet; it is also the maximum backoff stage
number. The contention window size Wi at backoff stage i
is defined as

Wi = 2iCWmin ∀i, 0 < i ≤ r

where CWmin is the minimum contention window size;
pk (k ∈ K) is the the probability that a transmitting user
encounters a collision in CSk. Since each cluster only occupies
one channel, there are |CSk| users contending for the same
channel in CSk, the probability pk can be expressed as

pk = 1− (1− τk)|CSk|−1.

The probability Pk that a successful transmission occurrs
in the CSk is given by the probability that exactly one user
transmits in the CSk, on the condition that at least one user
transmits, i.e.,

Pk =
Ps,k
Pb,k

=
|CSk| τk(1− τk)|CSk|−1

1− (1− τk)|CSk|
.

where Ps,k = |CSk| τk(1 − τk)|CSk|−1 and Pb,k = 1 − (1 −
τk)|CSk|; the unknown τk, which can be solved using numerical
techniques, is proved to have a unique solution [32].

The expected throughput of CSk can be expressed as

Sk =
∑

{i|Ui∈CSk}

χm,iPkBmlog2(1 + γm,i). (5)

B. Network Access delay

In the case that the source user and destination user are in
the same cluster, let E[ADintra,k] be the expected access delay
in CSk; it is defined as the time duration spent for successful
packet delivery. According to [31],

E[ADintra,k] = Ikδ +BkTB + FkTF ,

where Ik, Bk and Fk are the average numbers of idle slots (i.e.,
backoff slots), busy slots (i.e., frozen slots) and retransmissions
caused by failed transmission, respectively. δ, TB and TF are
the time durations of a backoff slot, a freezing backoff counter
and a failed transmission, respectively. We have

Ik =
r∑
i=0

pk
i(1− pk)

1− pkr+1

i∑
j=0

Wj − 1

2
,

Bk =
Ik

(1− pk)
pk,

Fk =
r∑
i=0

ipk
i(1− pk)

1− pkr+1

and
TB =

Ps,k
Pb,k

TS +
Pb,k − Ps,k

Pb,k
TF ,

where TS is the time duration of a successful transmission.
Note that, δ, TS and TF can be obtained according to com-
munication protocol specification.

In the case that the source user and the destination user
are not in the same cluster, they use CH to perform inter-
cluster communications. To find the destination user, the

source user has to hop between different channels until it finds
the destination user. For example, Liu et al. [17] require all
the cluster heads hop between different channels periodicity to
allow inter-cluster communication and coordination. However,
the performance of the CH scheme in [17] is neither evaluated
nor analyzed. Hence, we consider recent SJ-RW CH algorithm
[33] as an example to analyze the inter-cluster access delay due
to its outstanding performance. According to [34], which also
considers the SJ-RW CH algorithm [33], the average access
delay TAD can be expressed as

TAD = Tslot[ATTR+ 1 +
1− PBL
PBL

(ATSR+ 1)] + ω,

where Tslot is the length of time slot used for CH scheme;
ATTR represents the average number of time slots that users
take for achieving the first rendezvous2;ATSR denotes the
average number of time slots taken for successive rendezvous
(i.e., average interval duration of two successive rendezvous);
PBL is the probability that pairwise users establish a commu-
nication link during Tslot; and ω is the average time duration
consumed for contention in the rendezvous time slot. Because
of space limitation, we do not present the detailed analysis
and expressions of these parameters. Simply, ATTR and
ASTR relate to the number of available channels (linear
increasing relation). PBL and ω relate to not only the number
of available channels but also to the number of contending
users; more specifically, a large number of available channels
and/or contending users will decrease PBL but increase ω 3.

The number of contending users outside CSk is N −|CSk|.
Hence, the average time spent for the source user and des-
tination user achieving rendezvous using CH can be defined
as

Tinter = TAD(N − |CSk|,

∑
{i|Ui∈CSk}

|CUi|

|CSk|
),

where |CUi| is the number of available channels of Ui. Note
that [33] proposes a routing scheme with CH to help the
source user and destination user communicate by the aid of
the routing user, for the sake of analysis, we considers the
case of one time routing with routing delay being 2Tinter.
Indeed, the more channels that are available to the source
user, the larger the probability that the source user can make
a direct communication with the destination user. Hence, the
average time duration needed by the source user to locate the
destination user can be expressed as

E[ADinter,k] =

∑
{i|Ui∈CSk}

|CUi|

M |CSk|
Tinter

+ 2(1−

∑
{i|Ui∈CSk}

|CUi|

M |CSk|
)Tinter.

The expected access delay of CSk can be expressed as

Dk =
|CSk|
N

E[ADintra,k] +
N − |CSk|

N
E[ADinter,k]. (6)

2In CH schemes, a sender and a receiver are described as Achieve Ren-
dezvous if they hop on the same channel in the same time slot.

3Referring to [34] for more details.
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Accordingly, Eq. (3) can be written into

Uk =
∑

{i|Ui∈CSk}

χm,iPkBmlog2(1 + γm,i)

− |CSk|
N

E[ADintra,k]− N − |CSk|
N

E[ADinter,k].

(7)

Thus, the theoretically optimal solution corresponds to the
resolution of the optimization problem (Eq. (4)) after replacing
Uk (in Eq. (4a)) by the expression in Eq. (7).

C. NP-hardness

The optimal cluster configuration of Eq. (4) which yields
the highest system utility could be found using an exhaustive
search. For N users and M channels, the number of possible
solutions to form clusters is given by

MBN ≈ O(MNN )

where BN is the Bell Number of N .
The number of possible cluster configurations grows ex-

ponentially with the number of users. Accordingly, the com-
putation complexity will also increase exponentially with the
number of users when computing the optimal cluster config-
uration. Hence, it is impractical to do exhaustive search for
computing the optimal cluster configuration.

If we only take channel throughput into consideration, the
cluster formation problem can be constructed by a weighted
bipartite graph G(V, E ,W,B) on the basis of the given users.
The set of vertices V is partitioned into two disjoint sets U
and C with U ∪C = V , such that U corresponds to users while
C corresponds to the set of channels. E is the set of edges
between these two disjoint sets U and C. B is the weight
set of C which corresponds to the bandwidth of channels.
W is the weight set in which each weight is a non-negative
value assigned to each edge. Hence, the weighted edge wm,i
represents the channel throughput χm,iBmlog2(1 + γm,i) of
Ui on Cm. The optimal clustering problem can be formulated
as follows:

max
∑
m∈M

∑
i∈CSk

wm,i (8)

However, Eq. (8) has been proved to be an NP-hard problem
[35]. Note that Eq. (4) is a harder problem than Eq. (8), which
indicates Eq. (4) is also an NP-hard problem.

IV. BIO-INSPIRED SUBOPTIMAL CLUSTERING
ALGORITHM

In a high-density CIoT, it is practically essential to find
a reasonably good solution that can be obtained fast. In
biological systems, the pattern formation is spontaneous and
can adapt to changes in the environment. In this section,
we propose a bio-inspired distributed clustering algorithm,
which enables distributed implementation and guarantees con-
vergence to a reasonably good solution. More specifically, we
consider a biological mechanism called reaction-diffusion [36]
to perform distributed clustering.

is
Inputs from 

other cells

( )i iu f s=

mu

nu

ku

Fig. 1. A typical cell in CNN.

A. Conventional Reaction-diffusion Model
Let us start with a brief introduction of the conventional

reaction-diffusion mechanism. Reaction-diffusion was pro-
posed by Turing [36] in 1952 to explain the formation of
patterns in biological systems, especially to explain spatial
concentration patterns with features known from biological
systems involving two substances: the activator and the in-
hibitor, which both diffuse within the system boundaries. The
state of each point of the system depends on the relative con-
centration of the activator and inhibitor at its location. Denote
by a(x, y, t) and h(x, y, t) the concentration of the activator
and inhibitor respectively in the system at location (x, y) and
time t, the reaction-diffusion mechanism is described in terms
of second order partial differential equations ([36],[37]) of the
form

∂a

∂t
= f(a, h) +Da∇2a+ S

∂h

∂t
= g(a, h) +Dh∇2h

where∇2 is the Laplacian operator with respect to the location
(x, y), f and g are nonlinear functions describing reaction
dynamic, Da and Dh are the diffusion rate of the activator
and the inhibitor respectively. S is the amount of stimulus.

The reaction-diffusion mechanism can be applied to sim-
pler cellular automaton models such as the Cellular Neural
Network (CNN) [38]. A CNN is an array of identical systems,
which are only locally connected. A typical cell in a CNN can
be depicted in Fig. 1, in which, the state si, of cell i at time
t+ 1 depends on its output ui at time t and on the activatory
and inhibitory inputs it gets from neighboring cells.

B. Modified Model for Distributed Clustering
A conventional reaction-diffusion model applied in CNN

system can be modified to model distributed cluster forma-
tion in high-density CIoT, as follows. In our model, a cell
corresponds to a user, and the output ui represents the utility
of the current cluster (channel) evaluated by Ui. To get the
‘inputs’ from other users on the current channel, any user must
broadcast the evaluated utility of the current channel. To relief
broadcast collisions caused by simultaneous transmissions, we
use backoff scheme in 802.11 DCF to regulate broadcasts. That
is, each user randomly choose a backoff counter number from
[0, CWbc,m]. If the backoff counter decreases to zero, the user
starts to broadcast, or it will freeze its backoff counter when it
senses other user transmitting. Due to the absence of feedback
regarding the reception of a broadcast message,4 users contin-
ue to send broadcast messages intermittently, regardless of the

4In fact, in typical wireless communications, broadcast messages are not
acknowledged in order to avoid the ACK implosion problem.
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success of their transmissions. Note that any user re-chooses
a new backoff counter number after operating a broadcast and
continues the backoff-transmit process.

To update the utility of the current channel, we modify
the original Reaction-Diffusion equations to a simple but
controllable and effective one that can be formulated as

um,i(t+ ∆m) =um,i(t)−Dmum,i(t)+∑
j 6=i,j∈Nm,i(t+∆m)

ρijum,j (9)

where Nm,i(t + ∆m) is the set of users that Ui receives
broadcast messages successfully from on Cm during t to
t+ ∆m, Dm is the diffusion rate on Cm, ∆m is the diffusion
interval which is the time duration each user waits to update
the utility by using Eq. (9), and ρij is the stimulus coefficient
which can be expressed as

ρij = κij +
Bm∑

n∈CUi

Bn

where κij is the preference factor; it reflects the intention
that Ui wants to stay with Uj . Bm is the bandwidth of Cm
that Ui currently stays on; um,j is the utility estimated and
transmitted by Uj on Cm. The reaction-diffusion principles are
translated in the process of updating the utility. That is, the
more broadcast information Ui successfully receive, the more
accumulated ‘stimulus’ will be added on its um,i(t + ∆m),
which means the better the current channel is. On the contrary,
if broadcast collisions occur frequently or if few broadcasts
are transmitted on the current channel, the added ‘stimulus’
cannot counteract the diffused utility, the um,i(t + ∆m) will
decrease. Furthermore, if the traffic of Ui heavily relies on
user Uj or the quality of communication link between Ui and
Uj is better, ρij is large and more ‘stimulus’ will be added
on um,i(t+ ∆m), which attracts Ui to join the cluster of Uj .

C. Description of the Proposed Algorithm

To achieve optimal cluster configuration, each user need to
hop between different channels to evaluate the quality of the
current cluster and decide whether to join it or hop to another.
We use the stay probability Pm,i to describe the intention that
Ui wants to stay on channel Cm after updating um,i(t+∆m),
which can be formulated as

Pm,i =

{
1, um,i(t+ ∆m) ≥ um,i,

1− exp (|u∗m,i(t+ ∆m)|), um,i(t+ ∆m) < um,i.
(10)

where u∗m,i(t+ ∆m) =
um,i−um,i(t+∆m)

um,i−Dmum,i(t) .
In Eq. (10), um,i is the utility value threshold that is

um,i =
ustm,m[xm,i − zα2

√
xm,i(1− xm,i

S∗m
)]

D∗m
,

where xm,i is the number of stimulus utility during (t−∆m, t)
on Cm, S∗m and D∗m will be detailed in Section V, zα

2
is α-

percentile of standard normal distribution, more specifically,
zα

2
= 3.291 for α = 1% and zα

2
= 1.960 for α = 5%; and

ustm,m is an average value of stimulus utility computed by a

sliding window which consists of the last s diffusion intervals,
i.e.,

ustm,m =

s−1∑
i=0

∑
j 6=i,j∈Nm,i(t+∆m−i∆m)

ρijum,j

s−1∑
j=0

|Nm,i(t+ ∆m − j∆m)|
.

Eq. (10) indicates that, when the quality of the current channel
tends to get stabilized or better (i.e., the evaluated utility is
larger than the dynamic threshold), Ui wants to stay. On the
contrary, if the quality of the current channel gets worse, Ui

prefers to leave, and the worse the state is (i.e., the more the
reduced utility is), the stronger the desire that Ui wants to
leave (i.e., the less the Pm,i is). Note that, if the user needs
to hop to another channel with 1 − Pm,i, it will hop on the
channel that has the maximum updated utility value expect the
current channel.

V. OPTIMAL CONFIGURATION OF PARAMETERS

In order to make the proposed distributed clustering algo-
rithm more tractable, necessary parameters should be comput-
ed and optimized. In the proposed algorithm, the necessary
parameters to be determined are CWbc,m, ∆m and Dm.

According to Eq. (7), the main factor that affects the utility
of the cluster is the cluster size. Indeed, Eq. (7) can be divided
in to two parts: the expected throughput and the expected
access delay. The ideal solution is to find a optimal cluster
size that maximize Sk but minimize Dk. Then, the optimal
cluster size |CSk∗| that maximize Uk can be represented as

|CSk∗| = argmaxUk = argmax(Sk − Dk). (11)

|CSk∗| can be computed by any user using numerical tech-
niques according to Eq. (7), due to the limited space, we do not
present details. Since Ui can only know its own local available
channels, we assume that during the clustering process Ui

holds the belief that users in the same cluster with it have the

similar available channels. Hence, we replace

∑
{i|Ui∈CSk}

|CUi|

|CSk|
with |CUi| when computing |CSk∗|.

On the one hand, in order to achieve the optimal cluster
configuration, users pursue large utility value by using Eq.
(10), which increases the amount of the diffused utility ac-
cording to Eq. (9); on the other hand, to maintain cluster-based
network stability, the received stimulus utility is supposed to
counteract the diffused utility. Let us assume that users form
an optimal cluster by satisfying Eq. (11), then the size of
the formed cluster is |CSk∗|. Let P ∗bc,s,k be the probability
that a collision-free broadcast occurs with the cluster size
of |CSk∗|. Different from intra-cluster communication after
cluster formation, during the cluster formation process, users
broadcast their estimated utility by Eq. (9) on (in) the current
channel (cluster) with a backoff counter chosen randomly from
[0, CWbc,m], without binary exponential backoff, then the
probability P ∗bc,s,k can be represented as

P ∗bc,s,k = Ps,k(r = 0, |CSk| = |CSk∗|).
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A. Optimal CWbc,m

The parameter CWbc,m mainly affects the probability
P ∗bc,s,k during the cluster formation process, that is, for the
same cluster size, different CWbc,m can decrease or increase
P ∗bc,s,k, which further leads to a decrease or increase on the
amount of stimulus utility. A large P ∗bc,s,k can result in a large
amount of stimulus utility, and thus will increase the evaluated
utility of CSk. Besides, according to Law of Large Numbers,
∀ε ∈ N+, lim

S→∞
P (|X − P ∗bc,s,kS| < ε) = 1, which indicates

that the more frequency of receiving stimulus utility, the more
precise the X is statistically (i.e., to determine X = P ∗bc,s,kS),
and the more accurate estimation on |CSk| is 5. Hence, with
the optimal cluster size |CSk∗|, the optimal CWbc,m is

CW ∗bc,m = argmaxP ∗bc,s,k(|CSk∗|). (12)

Eq. (12) can be solved by numerical techniques after |CSk∗|
being worked out.

B. Optimal ∆m

During the cluster formation process, users update the utility
every duration of ∆m. Intuitively, users may receive more
stimulus utility using large ∆m or less stimulus utility using
small ∆m. To better evaluate current cluster and achieve
higher utility, it seems better for users to choose a large ∆m.
However, a large ∆m can decrease the frequency of updating
utility, which costs long time for completing cluster formation.
To end this up, we calculate the optimal ∆m, denoting ∆∗m,
with guaranteeing required confidence level.

Let us assume the event that a successful (i.e., collision-
free) broadcast occurs be B and the event that others (i.e., a
failed broadcast or no broadcast) occur be O. Then, in every
relative slot (the length of relative slot is varied according to
occurring event), during cluster formation process, either B
occurs in CSk∗ with the probability P ∗bc,s,k or O occurs with
the probability 1− P ∗bc,s,k. Let us define Xi be

Xi =

{
1, B occurs
0, O occurs

,

then Xi ∼ b(Xi, P
∗
bc,s,k), where b(x, p) is the 0-1 distribution.

Let us define that X =
S∑
i=1

Xi, which means X is the

frequency of B occurring during S relative slots. Then, X
follows the Binomial Distribution, i.e., X ∼ B(S, P ∗bc,s,k).
According to Central Limit Theorem, when S is large enough,
X tends to follow Normal Distribution, i.e., X ∼ N (µ, σ2),
where the expectation µ is P ∗bc,s,kS and the variance σ2 is
P ∗bc,s,k(1− P ∗bc,s,k)S.

Let us define that Y = X
S , according to the characteristics

of normal distribution, we have Y ∼ N (µS ,
σ2

S2 ). This can be
transformed into standard normal distribution as

Y − P ∗bc,s,k√
P∗bc,s,k(1−P∗bc,s,k)

S

∼ N (0, 1).

5Actually, the proposed algorithm does not need to directly estimate |CSk|,
but indirectly estimate |CSk| by evaluating whether the amount (mainly the
frequency) of stimulus utility reaches the required level (i.e., the diffused
utility is equal to or less than the received stimulus utility).

Let us define H0 and h0 be the event that Y = P ∗bc,s,k and
the event that Y is supposed to be P ∗bc,s,k, respectively. Then,
the P{h0|H0} can be represented as

P{h0|H0} =

∫ θ

θ

1√
2π$

exp

(
−

(x− P ∗bc,s,k)2

2$2

)
dx = 1−α.

(13)

where $ =

√
P∗bc,s,k(1−P∗bc,s,k)

S , θ = zα
2
$ + P ∗bc,s,k and θ =

−zα
2
$ + P ∗bc,s,k.

Hence, when the confidence level is 1-α, the

confidence interval is (−zα
2

√
P∗bc,s,k(1−P∗bc,s,k)

S +

P ∗bc,s,k, zα2

√
P∗bc,s,k(1−P∗bc,s,k)

∆m
+ P ∗bc,s,k). More specifically,

Eq. (13) indicates that when the statistic Y fluctuates within

(−zα
2

√
P∗bc,s,k(1−P∗bc,s,k)

S + P ∗bc,s,k, zα2

√
P∗bc,s,k(1−P∗bc,s,k)

S +
P ∗bc,s,k), we believe that statistic X , referred as the frequency
of receiving stimulus utility, is equal to P ∗bc,s,kS with the
probability of 1 − α. Let us define φ = X−µ

S be the
statistically frequency error ratio of receiving stimulus utility,
thus the frequency error ratio threshold can be represented as
φ. Then, the optimal number of S∗ can be derived as

S∗ = d
zα

2

2P ∗bc,s,k(1− P ∗bc,s,k)

φ
2 e. (14)

If we believe that X = P ∗bc,s,kS
∗ when X fluctuates

within (P ∗bc,s,kS
∗ − zα

2

√
P ∗bc,s,k(1− P ∗bc,s,k)S∗, P ∗bc,s,kS

∗ +

zα
2

√
P ∗bc,s,k(1− P ∗bc,s,k)S∗), the number of backoff slots and

failed transmission slots will be (1 − τ∗bc,k)|CSk∗|S∗ and
(P ∗bc,b,k − P ∗bc,s,k)S∗, thus ∆∗m can be represented as

∆∗m =dδbc(1− τ∗bc,k)|CSk∗|S∗

+ Tbc,F (P ∗bc,b,k − P ∗bc,s,k)S∗ + Tbc,SP
∗
bc,s,kS

∗e,
(15)

in which
τ∗bc,k = τk(r = 0, CWmin = CW ∗bc, |CSk| = |CSk∗|),
P ∗bc,b,k = Pb,k(r = 0, CWmin = CW ∗bc, |CSk| = |CSk∗|);

Tcb,S and Tbc,F are time duration spent for successful and
failed transmission of broadcast message, which can be ob-
tained from specific communication configuration.

Eq. (14) and (15) indicate that, if we want a more precise
estimation on the frequency of receiving stimulus utility, we
need to use smaller φ which will result in larger ∆∗m.

C. Optimal Dm

According to Subsection V.B, users in the formed cluster
receive totally P ∗bc,s,kS

∗ times of stimulus utility during dif-
fusion interval ∆∗m. Hence, we can compute D∗m by

D∗m = (κi +
Bm∑

n∈CUi

Bn
)P ∗bc,s,kS

∗, (16)

where κi is the average value of Ui’s |CSk∗| largest preference
factors.

Note that the optimal parameters are computed once user
complete sensing the environment (e.g., available channels
and corresponding bandwidths, etc.), thus makes these optimal
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parameters fixed during the cluster formation process, which
drives users to reach the optimal cluster configuration.

VI. THEORETICAL ANALYSIS

In this section, we first study the correctness and effec-
tiveness of the proposed distributed cluster-based spectrum
allocation algorithm; then we show the computation and
communication complexity of proposed algorithm. Finally, we
proof that the proposed algorithm can solve the isolated node
problem in clustering.

A. Correctness and Effectiveness

Any user will encounter in total three kinds of updating
states when using Eq. (9) for cluster formation: i) the stable
utility, ii) the increasing utility and iii) the decreasing utility;
which are correspondingly caused by three cases: a) the accu-
mulated stimulus utility during ∆∗m counteracts the diffused
utility, b) the accumulated stimulus utility exceeds the diffused
utility and c) the accumulated stimulus utility is less than the
diffused utility.

Theorem 1: The proposed algorithm guarantees that users
will finally form an stable cluster configuration no matter how
they go through these three kinds of updating states.

Proof: According to Eq. (9), the discrete utility updating
process can be viewed as the number sequence u that satisfies
u(n + 1) = Du(n) + U where U ∈ R+ and D ∈ (0, 1).
Then, the general term of the sequence can be expressed as
u(n) = (u(0) + U

D−1 )Dn − U
D−1 . Due to the fact that D is

less than 1, lim
n→∞

u(n) = U
1−D . Hence, the final utility of Cm

can be derived as

lim
t→∞

u(t) =

∑
j 6=i,j∈Nm,i(t)

ρijum,j

Dm
.

Theorem 2: The proposed algorithm always drives users to
a suboptimal clustering configuration no matter how they go
through these three kinds of updating states.

Proof: As can be easily found, the unstable states ii) and
iii) that respectively cased by cases b) and c) mainly relate to
insufficient received stimulus utility during ∆∗m. According
to the subsection V.B, the frequency of receiving stimulus
utility is Pbs,s,kS

∗. Thus, the more Pbs,s,kS
∗ will be, the

more received stimulus utility will be. Eq. (12) guarantees
that Pbs,s,k will reach its maximum value P ∗bs,s,k when using
CWbc

∗ under configuration of |CSk∗|. That is to say, for fixed
CWbc

∗, P ∗bs,s,k will decrease when the cluster size tends to be
either more or less than |CSk∗|. Then, starting from the initial
updating, the initial cluster configuration may contain three
kinds: |CSk| = |CSk∗|, |CSk| < |CSk∗| and |CSk| > |CSk∗|.
According to Eq. (10), the first kind will result in state i) but
the last two kinds will lead to state iii). If it is |CSk| > |CSk∗|,
in average |CSk|Pm,i will leave Cm, which will increase
Pbs,s,kS

∗ and therefore the utility of Cm will increase, until
it reaches its maximum value. If it is |CSk| < |CSk∗|, either
state ii) or iii) will happen. That is, if other users continue to
hop on this channel, Pbs,s,kS∗ will increase to the maximum;

or all users on Cm will hop on other channels due to the
utility continuously decreasing. In this case, the channel that is
available to more users is more likely to form a stable cluster.

B. Computation Complexity

Let us assume that users spend averagely Kc slots on
each channel to update the utility before getting convergent.
According to the analysis in Section V, when |CSk| trends to
be |CSk∗|, the utility of Ck trends to be maximized and CSk
trends to be stable. Hence, the closer |CSk| is to |CSk∗|, the
less slots users spend for formation of stable cluster. Besides,
nearly all the users need to visit all their respective available
channels to determine the optimal cluster configuration, thus
users totally spend MKc slots for getting convergent. Hence,
except for the computation of the optimal parameters at the
initial stage, users need to update the utility MKc times
by computing Eq. (9). Then, the computation complexity is
O(M |N −

∑
k∈K
|CSk∗| |).

C. Communication Complexity

We refer to the communication complexity as the amount
of communication involved in the cluster formation process
before convergence. According to the proposed algorithm that
users need to broadcast messages intermittently by randomly
choosing a backoff counter number from [0,CWbc,m], the
average interval of broadcasting is CWbc,m

2 . Let us assume
that users broadcast average kbc,m times during ∆∗m on Cm,
then the average amount of broadcasting on each channel is∑
m∈M

kbc,m

M , which is assumed to be represented as Kbc. Based
on the fact that the more users on the current channel, the more
collisions will occur, and the more frozen slots users spend
to backoff; thus users broadcast less messages on the current
channel. Hence, total broadcast amount can be represented as
MKbc
N . As Kbc will increase when the computation amount of

updating utility increases, the communication complexity can
be represented as O(M

2

N |N −
∑
k∈K
|CSk∗| |).

D. Isolated Node Problem

The proposed algorithm can solve the isolated node prob-
lem that is mentioned in [19]. The isolated node problem,
which can be viewed as the single-node cluster, will reduce
connectivity of networks . As is a fact that in the proposed
algorithm, stable clusters maintained by enough amount of
received stimulus utility. That meas, when a single user hops
on a channel where there exist no stimulus, the utility of this
channel will decrease to zero if no other users will hop on this
channel. According to Eq. (10), before the user’s utility of the
channel decreasing to zero, it will hop to another channel on
which it can receive stimulus (i.e., broadcast message).

VII. PERFORMANCE EVALUATION

In this section, we demonstrate the practicability of the
proposed algorithm in adapting to different scenarios. We
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first investigate the performance of the proposed algprithm
with considering both spectrum homogeneity and spectrum
heterogeneity; then, we compare the proposed algorithm with
two spectrum allocation algorithms regarding clustering in
communication overhead and convergence time.

A. Simulation Setup

We employ DCF based CSMA/CA to operate broadcast in
proposed scheme, as well as in comparing algorithms [17][18].
The main simulation parameters and corresponding values are
shown in Table II. All users are located randomly in a field of
500×500 m2, and each has a transmission range of 700 m.

TABLE II
MAIN SIMULATION PARAMETERS AND VALUES

Parameter Value
SINR threshold -7 db

Power of Gaussian white noise -174 dBm/Hz
Tx power of user -50 dbm

Backoff slot 20 µs
Short inter-frame space (SIFS) 10 µs

Distrubited inter-frame space (DIFS) 50 µs
Length of broadcast message 128 bit

B. Example

We show an example of cluster formation process using the
proposed bio-inspired algorithm in Fig. 2, where there exist
100 users and 5 channels. The channel bandwidth is shown

on the figure, e.g., ‘CH3=25M’ means that the bandwidth of
Channel 3 is 25MHz. In Fig. 2, the black number in the colored
circle represents the number of users located on the channel
characterized by this color and the grey number represent the
value rounded to integer of average utility. Fig. 2 (a), (b),
(c) and (d) represent clustering results of first iteration, 5
iterations, 15 iterations and 25 iterations, respectively. In first
iteration, the utility is initialized to maximize Eq. (7). Then
the utility is updated by using Eq. (9) to evaluate the quality
of the cluster (channel).

C. Adaptive Cluster Formation Simulations

We consider different scenarios where there exist 5 channels
(i.e., M = 5) and 10 channels (i.e., M = 10) respectively, and
both are with the numbers of users are 100 (i.e., N = 100) and
150 (i.e., N = 150). The bandwidth of these channels are not
all the same. More specifically, in M = 5 scenario, there are
three 10M-channels, two 15M-channels and one 25M-channel;
in M = 10 scenario, there are five 10M-channels, three 15M-
channels and two 25M-channels. Besides, we also consider
both spectrum homogeneity and spectrum heterogeneity; in
spectrum homogeneity all users have same available channels
but in spectrum heterogeneity users have different available
channels. Specifically, the ration of user’s available channels
to total channels is 0.6 in spectrum heterogeneity and there
exists at least one common channel between different users.

Fig. 3 (a) and (b) show the simulation results of cluster
size and average utility variation with increasing iterations in

(a) Iteration=1 (b) Iteration=5 (c) Iteration=15 (d) Iteration=25

Fig. 2. Example of cluster formation process where N = 100 and M = 5

0 5 10 15 20 25 30
Iterations

0

25

50

75

100

125

150

C
lu

st
er

 S
iz

e

CH1=10M N=100
CH2=15M N=100
CH3=25M N=100
CH4=15M N=100
CH5=10M N=100
CH1=10M N=150
CH2=15M N=150
CH3=25M N=150
CH4=15M N=150
CH5=10M N=150

(a) Cluster size variation with increasing iterations in M = 5
scenario

0 5 10 15 20 25 30 35 40 45 50
Iterations

0

20

40

60

80

100

120

140

160

A
ve

ra
ge

 u
i(t

)

CH1=10M N=100
CH2=15M N=100
CH3=25M N=100
CH4=15M N=100
CH5=10M N=100
CH1=10M N=150
CH2=15M N=150
CH3=25M N=150
CH4=15M N=150
CH5=10M N=150

(b) Average utility variation with increasing iterations in M = 5
scenario

Fig. 3. Simulations of M = 5 scenario in spectrum homogeneity
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spectrum homogeneity scenario where M = 5s , respectively.
The average utility is computed by the users on the channel,
which indicates the average utility is zero if no user is located
on the channel. From Fig. 3 (a), one can find that (1) cluster
size of Channel 3 (CH3) drops and (2) cluster size of other
channels increase. Such results can be interpreted as follows.
All users first choose the ’best’ channel (i.e., CH3) that has
largest initial utility, but when they all step into the cluster
formation process using update rules (i.e., Eq. (9)), some of
the users hop on other channels according to Pm,i in Eq. (10).
Besides, the number of each cluster in N = 150 is larger
than that in N = 100, which shows the adaption performance
of the proposed scheme. In Fig. 3 (b), the average utility of
every channel first decreases then increases. The reason is
that, according to Eq. (9) and Eq. (16), the updated utility
will decrease if the cluster size is not the optimal (i.e., the
diffused utility is larger than the received stimulus utility);
then, according to Theorem 2, users tend to form a subopti-
mal cluster which will result in receiving more stimulus, and
thus the average utility increases. It can be observed that the
average utility of every channel in N = 150 is less than that
in N = 100. This is due to the fact that when N = 150,
the number of users need to be located on each channel is

much larger than the optimal cluster size computed by Eq.
(11). Correspondingly, it costs more iterations to accomplish
cluster formation when N = 150, which can also be observed
in Fig. 3 (a) and (b).

Fig. 4 (a) and (b) show the simulation results about cluster
size and average utility variation with increasing iterations in
spectrum homogeneity scenario where M = 10, respectively.
In Fig. 4 (a), when N = 100 the final cluster configuration is
composed of CH3, CH4, CH5, CH6 and CH7, which indicates
the other channels are ‘empty channel’ that no user is located
on to form clusters. This is because the number of user (i.e.,
N = 100) matches the total sum of optimal cluster size of
CH3-CH7. However, when N = 150, only the CH10 is the
‘empty channel’ that is failed to form a cluster6. The reason is
similar with that in N = 100, which is that the number of user
(i.e., N = 150) matches the total sum of optimal cluster size
of CH1-CH9. Besides, one can find from Fig. 4 (b) that the
convergence time of N = 100 is less than that of N = 150.
This is mainly because that more users need to be located
on more channels to form clusters and thus results in more

6In fact, the ‘empty channel’ can be any channel with bandwidth of
10M. This indicates the ‘empty channel’ may be not CH10 in some other
simulations.

0 5 10 15 20 25
Iterations

0

10

20

30

40

50

60

70

80

C
lu

st
er

 S
iz

e

CH1=10M N=100
CH2=10M N=100
CH3=15M N=100
CH4=15M N=100
CH5=25M N=100
CH6=25M N=100
CH7=15M N=100
CH8=10M N=100
CH9=10M N=100
CH10=10M N=100

CH1=10M N=150
CH2=10M N=150
CH3=15M N=150
CH4=15M N=150
CH5=25M N=150
CH6=25M N=150
CH7=15M N=150
CH8=10M N=150
CH9=10M N=150
CH10=10M N=150

(a) Cluster size variation with increasing iterations in M = 10
scenario

0 10 20 30 40 50 60 70
Iterations

0

20

40

60

80

100

120

140

160

A
ve

ra
ge

 u
i(t

)

CH1=10M N=100 CH2=10M N=100 CH3=15M N=100 CH4=15M N=100
CH5=25M N=100 CH6=25M N=100 CH7=15M N=100 CH8=10M N=100
CH9=10M N=100 CH10=10M N=100 CH1=10M N=150 CH2=10M N=150
CH3=15M N=150 CH4=15M N=150 CH5=25M N=150 CH6=25M N=150
CH7=15M N=150 CH8=10M N=150 CH9=10M N=150 CH10=10M N=150

(b) Average utility variation with increasing iterations in M =
10 scenario

Fig. 4. Simulations of M = 10 scenario in spectrum homogeneity
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Fig. 6. Simulations of M = 10 scenario in spectrum heterogeneity

iterations of updating utility.

Fig. 5 (a) shows the cluster size variation with increasing
iterations when M = 5 in spectrum heterogeneity scenario,
in which the cluster size fluctuates more in general than that
in spectrum homogeneity scenario; while the average utility
changes less than that in homogeneity scenario in Fig. 5 (b).
The can be explained by the fact that not all users choose
the same channel at first due to the spectrum heterogeneity.
Hence, users on all other channels except CH3 receive more
stimulus at first than that in spectrum homogeneity. However,
the spectrum heterogeneity leads to more updates of utility to
regulate users hopping on the final cluster.

Fig. 6 (a) shows the cluster size variation with increasing
iterations when M = 10 in spectrum heterogeneity scenario.
Comparing Fig. 6 (a) with Fig. 4 (a), one can find that the final
cluster size is generally larger in Fig. 6 (a) than that in Fig.
4 (a) due to that limited channels in spectrum heterogeneity
makes users failed to ‘choose’ the ideal one. Fig. 6 (b) shows
the variation of average utility with increasing iterations, in
which during first several iterations the average utilities of
10M-channels fluctuate more than that in Fig. 4 (b), which can
also be explained by the limited channel choices in spectrum
heterogeneity.

D. Evaluations of throughput and delay

In this subsection, we evaluate the throughput and delay
performance respectively in both spectrum homogeneity and
heterogeneity scenarios with M =5, N = 100 and 150 (i.e.,
the scenarios are same with Fig. 3 and Fig. 5).

Fig. 7 shows the variation of throughout (a) and delay (b)
with channel bandwidth. We observe that the throughput and
delay performance, when N =100 in spectrum homogeneity,
is most close to the expected performance. The expected
performance is achieved by allocating optimal number of
users, which is computed by Eq. (11) on the channel (cluster).
When N =150, due to the limited number of channels
(M = 5), the proposed algorithm allocates more users, than
the optimal number of users, on the channel (cluster); this
results in more collisions causing, thus, a throughput decrease
and a delay increase. Fig. 7 (a) shows that throughput increases
with bandwidth (see Eq. (5)). Fig. 7 (b) shows that the delay
increases with bandwidth; this can be explained by the fact
that larger bandwidth attracts more users to form larger size
clusters causing, thus, more collisions. In the case of spectrum
heterogeneity (i.e., different available channels for users), the
cluster size may be not as ‘optimal’ as in the case of spectrum
homogeneity. Hence, in general the performance in spectrum
homogeneity is better than that in spectrum heterogeneity.
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Fig. 7. Simulations of Channel Bandwidth vs. Throughput and Delay
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E. Communication Overhead and Convergence Time

In this subsection, we compare the proposed bio-inspired
algorithm with two classic algorithms which are called RBL
[18] and SOC [17], in communication overhead and conver-
gence time, respectively. In RBL, D2D users share the spec-
trum source distributedly by using Bayesian coalition game
combined with reinforcement learning, in which a coalition
can be viewed as a cluster. The coalition formation process can
be summarized to three stages: (1) each user should broadcast
its information (e.g., occupied channel, mode, desired base
station and etc.) to all other users; (2) one proposer user is
randomly selected to propose a new coalition configuration
to cluster members, the cluster members need to accept or
reject the proposal according to the expected reward computed
by using reinforcement learning; (3) the proposer user needs
to broadcast the decided coalition configuration to all other
users. The stage (2) and stage (3) compose the repeated
game loop. In SOC, the clustering problem is formulated as
a bipartite graph problem, for which two kinds of tradeoff
between number of common channels in a cluster and the
cluster size are proposed by using principles of maximum
edge biclique graphs and maximum one-sided edge biclique
graphs, respectively. To fit the research context in this paper,

we choose the SOC algorithm using the principle of maximum
one-sided edge biclique graphs. The cluster formation process
in SOC is as follows. At first, each user needs to search for
its neighbors by channel-hopping and informing the channel
availability; then, each user broadcasts its biclique information
to its neighbors. After receiving biclique information from
neighbors, the user computes the best biclique and informs its
neighbors of the updated cluster membership and the common
channel list. Finally, the user whose biclique is selected by
its neighbors broadcast all received biclique information to
avoid the information inconsistency problem due to limited
transmission rang of users in a cluster, and the cluster is
formed.

Fig. 8 (a) and (b) show the simulation results of convergence
time vs. number of users in both spectrum homogeneity and
heterogeneity scenarios. From Fig. 8, one can find that the
proposed bio-inspired algorithm consumes the least time to
converge comparing with the other two algorithms, especially
when the number of user is larger than 200. Generally speak-
ing, the SOC consumes less time to converge than BRL in both
spectrum homogeneity and heterogeneity scenarios for M = 5
and M = 10. The main reason is that, users in BRL need to
propose and responds to the proposal, which involves more
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Fig. 8. Simulations of convergence time vs. number of users
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communications (this can be also reflected by simulations in
Fig. 9) and thus will lead to more collisions (the collision is
severer in M = 5 than that in M = 10 due to higher user
density on each channel in M = 5) and communication delay.
Besides, in spectrum homogeneity scenario convergence time
of M = 5 is nearly equal to that of M = 10 in SOC. This
is because of the channel-hopping scheme designed in SOC
that all users need to be time-synchronized so that they can
hop on the same channel in same time slot. Hence, all users
are in same channel when they exchange information, which
indicates that they do not need to hop on different channels.
However, in spectrum heterogeneity scenario, users with SOC
in M = 10 consume more time to converge than that in M = 5
due to the fact that they need to hop on different channels to
exchange information.

Fig. 9 (a) and (b) show the simulation results of communi-
cation overhead vs. number of users in spectrum homogeneity
and heterogeneity scenarios. The communication overhead is
represented by the communication traffic of negotiation before
convergence, specifically, it means the average number of
exchanged messages involved in cluster formation process.
From Fig. 9, even though the communication overhead of the
proposed algorithm is little more than that in SOC when N
is less than 200, the overhead is much less comparing with
the other two algorithms when N is larger than 200. The
main reason that the proposed algorithm consumes less time
is that, users using proposed algorithm do not entirely rely
on the precise information exchange among them to operate
clustering, they also acquire knowledge from ‘collisions’,
which means that more collisions represent worse channel
quality.

Generally speaking, the simulation results show that in
high-density networks, the proposed algorithm outperforms the
other two algorithms in both convergence time and communi-
cation overhead.

VIII. CONCLUSION

This paper proposes a novel bio-inspired algorithm to
distributedly allocate spectrum in cluster-based architecture
for CIoT. The connectivity-flexibility tradeoff problem is first
formulated by the aim of maximizing clustered throughput
and minimizing communication delay. Then, the optimal clus-
ter size is computed by maximizing the formulated utility
function that considers possible communication collisions in
practice. The bio-inspired algorithm is proposed to regulate
CIoT devices to be allocated on spectrum by forming cluster
distributedly with tending to optimal cluster size. To provide
the adaption of the CIoT to different scenarios and better
clustering performance, the optimal parameter configuration
is analyzed and derived. Theoretical analysis and simulations
validate the proposed algorithm.
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