
Workload Balancing in Mobile Edge Computing for
Internet of Things: A Population Game Approach

Dongqing Liu∗†, Abdelhakim Hafid∗, Lyes Khoukhi†
∗Department of Computer Science and Operational Research

University of Montreal, QC, Canada
Email: ahafid@iro.umontreal.ca

†Environment and Autonomous Networks Lab (ERA)
University of Technology of Troyes, France
Email: {dongqing.liu, lyes.khoukhi}@utt.fr

Abstract—Mobile edge computing (MEC) is an emerging
paradigm that provides radio access networks with augmented
resources to meet the requirements of Internet of Things (IoT)
services. MEC allows IoT devices to offload delay sensitive and
computation intensive tasks to edge clouds deployed at base
stations (BSs). Offloading tasks to edge clouds can alleviate
the computing and battery limitations of IoT devices. However,
task offloading in MEC for IoT may face serious transmission
latency and computation latency problems with massive number
of IoT devices. Moreover, some edge clouds can be overloaded
due to the spatially inhomogeneous distributions of IoT tasks.
To solve these problems, we investigate the workload balancing
problems to minimize the transmission latency and computation
latency in task offloading process while considering the limited
bandwidth resources of BSs and computation resources in edge
clouds. We formulate the workload balancing problem as a
population game in order to analyze the aggregate offloading
decisions. We analyze the aggregate offloading decisions of
mobile users through evolutionary game dynamics and show
that the game always achieves a Nash equilibrium (NE). We
further propose two workload balancing algorithms based on
evolutionary dynamics and revision protocols. Simulation results
show that our proposed workload balancing algorithms can
achieve better performance than existing solutions.

Index Terms—Task offloading, Population Game, Mobile edge
computing, Internet of Things.

I. INTRODUCTION

IoT is proposed to equip everyday objects with electron-
ics, software, sensors, and network connectivity, and bring
the vision of a connected world into reality [1]. How-
ever, computation-intensive applications, such as e-health,
automatic driving, and industrial automation, consume large
amounts of computing and storage capabilities of IoT devices.
These sophisticated applications have stringent requirements
of computation resources and processing delay on IoT Devices
(IoTDs). However, IoTDs are resource-constrained and have
limited computational capacities and battery life. Running
computation intensive applications on IoTDs would result
in high energy consumption and long processing delay [2].
The conflict between computation intensive applications and
resource constrained IoTDs brings a significant challenge
for future mobile development. MEC is envisioned to be a
promising solution to address this challenge, with the objective
to provide cloud computing capabilities to IoTDs through

radio access network [3]. By offloading computation intensive
tasks to edge cloud (or MEC server) in proximity, the local
energy consumption on IoTDs can be reduced and the local
processing delay may be shortened [4].

To offload computation intensive tasks to edge cloud, task-
related data should be transferred between IoTDs and edge
cloud through base station (BS). If BS is congested by large
amounts of IoTDs choosing to offload tasks simultaneously,
the quality of experience and quality of service of IoTDs
will not be guaranteed [5, 6]. Moreover, facing the rapid
increase of IoTDs and massive offloading tasks, the resource
bottleneck of edge cloud becomes significant, since edge cloud
has relatively limited resources compared to cloud computing
[7]. Thus, lack of proper offloading coordination among
large amounts of self-interested IoTDs may lead to serve
interferences in wireless transmission and load unbalance in
edge clouds. [8, 9]. As a result, designing an energy-efficient
offloading mechanism while satisfying the processing delay
requirements becomes a challenging problem, especially when
large amounts of IoTDs compete for limited resources.

In this paper, we propose a population game based approach
to investigate workload balancing problem for MEC in the
context of IoT. Population game is envisioned as a powerful
tool to model strategic interactions among large amounts
of agents [10, 11]. Specifically, we model the offloading
decision making problem among large amounts of competing
IoTDs as a population game, wherein IoTDs are self-interested
agents that make offloading decisions individually. The main
contributions of this paper are summarized as follows:
• Population game model formulation: We formulate MEC

workload balancing problem as a population game and
propose an IoT Device classification model. We design
an inference affected queueing model that can capture
the inference among IoTDs. We use α− utility function
to implement different kinds of workload balancing.

• Evolutionary game dynamics analysis: We calculate
Nash Equilibrium (NE) dynamically, i.e., IoTDs can
change their offloading decisions through some learning
mechanism. The learning mechanism is defined as a revi-
sion protocol that allows IoTDs to adjust their offloading
decisions based on decisions of other IoTDs in proximity.



BS 1

Edge Cloud

BS 2

Edge Cloud

BS 3

Edge Cloud

IoTD 1

IoTD 2

IoTD 3

IoTD 4

IoTD 5

Fig. 1. MEC workload balancing model. n IoTDs offload computation
intensive tasks to m edge clouds by BSs. The available offloading strategies
depend on the location of IoTDs, e.g., IoTD1 can only offload tasks to BS1,
while IoTD2 can offload tasks to BS1 or BS2, since IoTD can only access
BSs in proximity.

The evolutionary process of IoTDs’ offloading strategies
can be modeled by evolutionary game dynamics (i.e., a
differential equation). The evolutionary game dynamics
describes the variation of IoTDs’ offloading decisions
until an NE is obtained.

• Workload balancing algorithms: We propose two work-
load balancing algorithms, namely centralized workload
balancing algorithm and decentralized workload balanc-
ing algorithm, based on the concept of evolutionary
dynamics and revision protocols, respectively. We show
that these algorithms can achieve an NE. Simulation
results illustrate the evolutionary dynamics and show that
the proposed algorithms can achieve efficient workload
balancing in BSs and edge clouds.

The remainder of this paper is organized as follows. Section
II introduces the system model of MEC workload balanc-
ing. Section III proposes α−utility function based workload
balancing model. Section IV proposes two population game
based workload balancing algorithms. Section V shows the
evolutionary dynamics of three revision protocols and evaluate
the performance of our proposed algorithms. Section VI
concludes the paper.

TABLE I
BASIC NOTATION

Elements

Bm Base Station m
Em Edge Cloud m, collocated with Bm

Dq Internet of Thing Device q
Cn Class n, Set of Internet of Thing Devices
D∗n The IoTD with minimum data size in Class n
Dm

n An IoTD in Class n choosing Bm

Sets

B = {Bm}m∈M Set of Base Stations, |M| =M
D = {Dq}q∈Q Set of Internet of Thing Devices, |Q| = Q
C = {Cn}n∈N Set of Classes or Partitions of D, |N | = N
Bn = {Bm}m∈Mn Subset of Base Stations that are available for Cn

Parameters

Lq ∈ R2 The location of Dq

Bq The length of data flow from Dq

Eq The length of computation flow from Dq

λq Task generation rate from Dq

Zn The number of IoTDs in Cn, |Cn| = Zn

Ẑn The number of IoTDs in Cn after replacement
Cn Computational density per unit size of data in Cn

Ln ∈ R2 The location of Cn

Bn The length of data flow from D∗n
En The length of computation flow from D∗n
λn Task generation rate from D∗n
θn Traffic generation density from D∗n
ηn Computation generation density from D∗n

Variables

anm The number of IoTDs in Cn choosing Bm

an Class state vector an = [anm]m∈Mn

a Population state vector a = [an]n∈N

II. SYSTEM MODEL

We consider a cellular network consisting of a set of BSs,
denoted by B = {Bm}m∈M, where M = {1, 2, · · · ,M}.
We denote IoTDs within the coverage area of these BSs
by a set D = {Dq}q∈Q, where Q = {1, 2, · · · , Q}. A
partition of set D is denoted by C = {Cn}n∈N , where
N = {1, 2, · · · , N}. D can be partitioned into N subsets; each
subset of D, e.g., Cn, is called a class in population game.
IoTD makes the offloading decision (i.e., choosing optimal
BS) based on network condition and task information. The
aggregate offloading behaviors of IoTDs can be captured by
class state and population state. We first define the class state
as a distribution of the number of IoTDs choosing different
BSs, denoted by vector an = [anm]m∈Mn . Note that anm
represents the number of IoTDs offloading tasks from Cn

to Bm. Then, we can represent the population state (i.e., the
offloading decisions of all IoTDs) with the class states. The
population state a = [an]n∈N is a Cartesian product of all
class states. Table I summarizes the basic notation used in the
paper. We next consider the partition rule for C.

A. IoT Device Classification

We classify IoTDs into different classes according to their
locations and task information. The location of Dq is denoted
by Lq , where Lq belongs to Cartesian plane R2. Assume



that the length of data flow from Dq follows an exponential
distribution with average value Bq , the length of computation
flow from Dq follows an exponential distribution with average
value Eq and the task generation rate from Dq follows
a Poisson Point Process with rate λq [12, 13]. We use
Jq , (Bq, Eq, λq) to denote the task of Dq . More specifically,
Bq represents size of data including computational input
data and execution codes. Eq denotes the required CPU
cycles to execute task Jq . Based on IoTD’s location and task
information, class Cn is defined as follows.

Cn = {q ∈ Q | Eq
Bq

= Cn, λq = λn, and Lq = Ln}. (1)

IoTDs from class Cn should satisfy three conditions char-
acterized by Cn, λn and Ln. Cn requires that IoTDs in
Cn should have same computational density per unit size
of data. λn ensures that IoTDs in Cn have the same task
generation rate. Ln requires that IoTDs in Cn should be in
the same location, since IoTDs in the same location face
similar network environment (e.g., network traffic and link
capacity). Note that IoTD can only offload mobile tasks to BSs
in proximity. Let Bn = {Bm}m∈Mn denote the available BSs
that can execute tasks for Cn. The number of IoTDs in Cn

is denoted by Zn.
∑
m∈Mn anm = Zn and

∑
n∈N Z

n = Q
ensures that the class size and population size remains stable.
As illustrated in Fig. 2, all IoTDs in a same class fall in a same
line; the slope of the line denotes the computational density
of the class.

E

B

CN

Cn

C1

Eq1

Bq1

Eq2

Bq2

Eq3

Bq3

Eq4

Bq4

Fig. 2. Illustration of IoTDs classification model. We consider that four
IoTDs Dq1 ,Dq2 ,Dq3 and Dq4 are located in the same place, i.e., Lq1 =
Lq2 = Lq3 = Lq4 . Due to different computational density per size of data,
e.g., C1 =

Eq3
Bq3

=
Eq4
Bq4

and CN =
Eq1
Bq1

=
Eq2
Bq2

, IoTDs are classified into
two classes. Note that each line can represent a class and the slope of the
line denotes the computational density of the class. Thus, q1, q2 ∈ CN and
q3, q4 ∈ C1.

Population game requires that all IoTDs from the same class
are homogeneous. Previous classification cannot preserve this

property, since two IoTDs may have different data sizes even
if they are in the same class. In order to solve this problem,
we need to reconsider IoTDs’ tasks and recalculate the class
size. The basic idea is to divide the larger size data (and
CPU cycles) into a number of minimum size data (and CPU
cycles). We first select the IoTD with minimum data size (and
corresponding minimum CPU cycles) in Cn as a benchmark,
denoted as D∗n. Then, we consider that all the other IoTDs
are composed of multiple D∗ns. For example, if the data size
of D′n is 1.5 times of that D∗n, then D′n can be replaced by
1.5 D∗ns. Since all IoTDs in a class are replaced by D∗n, the
homogeneous property is preserved. We can recalculate the
class size and population size as follows:

Ẑn =
∑
q∈Cn

Bq
Bn

, Q̂ =
∑
n∈N

Ẑn, (2)

where Bn = minq∈Cn
Bq is the data size of D∗n. Ẑn and Q̂

denote the class size and population size after replacement,
respectively. Note that Ẑn may not be integer while Zn

is integer. Unless otherwise specified, we will use this new
population model in the rest of the paper.

B. Task Execution Model

Tasks generated by IoTDs will be transferred to BSs and
then executed in the corresponding edge cloud, as shown in
Fig. 3. We assume that IoTDs in Cn generate tasks according
to a Poisson Point Process with rate λn. We further assume
that the data size and CPU cycles of Cn follow the exponential
distributions with average values of Bn and En, respectively.
Note that Bn and En correspond to the data size and CPU
cycles of D∗n. We define the traffic generation density of D∗n
as θn = λnBn. Thus, the traffic generation density of Cn

is Ẑnθn, which is simply the multiplication of the number
of IoTDs and the traffic generation density of D∗n. Similarly,
we can define the computation generation density of D∗n as
ηn = λnEn.

We first introduce the communication model between
IoTDs in Cn and Bm. We consider that IoTDs in the same
class have the same data rate, while IoTDs in different classes
can have different data rates. The data rate between D∗n and
Bm is defined as follows:

Rnm(a) =
Wm

anm
log2

(
1 +

anmP
n
l H

n
m

δ +
∑
k∈Nn

m
akmP

k
l H

k
m

)
, (3)

where

Nn
m =

{
k ∈ N \ {n} : m ∈Mk

}
, anm 6= 0.

Wm denotes the total bandwidth of Bm. Pnl and P kl rep-
resent the average transmission power of IoTDs in Cn and
Ck, respectively. Hn

m and Hk
m are the average channel gain

between Bm and IoTDs in Cn and Ck, respectively. We
use δ to denote the noise power. The interference from other
classes is

∑
k∈Nn

m
akmP

k
l H

k
m, where Nn

m denotes the set of
classes whose available BSs include Bm. We don’t consider



load
balancing

BS 1

BS 2

BS 3

Edge
Cloud 1

Edge
Cloud 2

Edge
Cloud 3

IoTD 1

IoTD 2

IoTD 3

Queue at BS 1

Queue at BS 2

Queue at BS 3

Queue at Edge Cloud 1

Queue at Edge Cloud 2

Queue at Edge Cloud 3

Fig. 3. Queueing model for MEC workload balancing. This figure illustrates that three classes of IoTDs offload tasks to three edge clouds. The processing
delay consists of transmission delay in BS and computation delay in edge cloud. Load balancing mechanism can shorten the processing delay.

interference among IoTDs in a same class, since these IoTDs
may come from a single IoTD before replacement. If no IoTD
in Cn selects Bm, i.e., anm = 0, there is no need to calculate
Rnm(a). Thus, we assume that anm 6= 0 in Eq. (3).

The traffic load density of Bm serving an IoTD from Cn

is defined as Ṫnm(a) = θn

Rn
m(a) , and denotes the time fraction

of Bm serving Cn. The utilization of Bm is the aggregation
of traffic load density of Bm serving Cn, which is defined as

ρ̇m(a) =
∑
n∈N

Ṫnm(a)anm =
∑
n∈N

θnanm
Rnm(a)

=
∑
n∈N

θn(anm)2

Wm log2

(
1 +

anmP
n
l H

n
m

δ+
∑

k∈Nn
m
akmP

k
l H

k
m

) . (4)

We then introduce the computation model when offloading
tasks from Cn to Em. The computation load density of Em
(connected to Bm ) serving an IoTD from Cn is defined
as T̈nm = ηn

Fm
, where Fm is the computational capability (in

CPU cycles/second) of Em. T̈nm represents the time fraction of
Em serving Cn. The utilization of Em is the aggregation of
computation load density of Em serving Cn, which is defined
as

ρ̈m =
∑
n∈N

T̈nma
n
m =

∑
n∈N

ηnanm
Fm

. (5)

C. Workload Balancing Model

The utilization levels of Bm and Em are described by
ρ̇m(a) and ρ̈m, respectively. In order to implement different
load balancing for BSs and edge clouds, we take advantage of
α-fair utility function [14] that we will maximize as follows:

T(α,ρ) =


−
∑

m∈M

(1− ρm)
1−α − 1

α− 1
, α 6= 1,

−
∑

m∈M
ln

(
1

1− ρm

)
, α = 1,

(6)

where ρ = {ρm}m∈M denotes the utilization status of BSs
(when ρm = ρ̇m(a)) or edge clouds (when ρm = ρ̈m). The
load balancing factor α can have four different values resulting
in four load balancing policies. For example, if α = 0,
then T(α,ρ) =

∑
m∈M ρm. The offloading decision is only

based on IoTDs’ perspective and this policy is called rate-
optimal policy. If α = 2, then T(α,ρ) = −

∑
m∈M

ρm
1−ρm .

Note that ρm
1−ρm can represent the length of queue in Bm

or Em. The negative sign is used to maximize α-fair utility
function, since we aim to minimize the total length of queue∑
m∈M

ρm
1−ρm . When α = 2, T(α,ρ) is called delay-optimal

policy. Moreover, α = 1 and α = ∞ denote throughput-
optimal policy and equalizing-load policy, respectively [14].
The authors in [15] show that α ≥ 0 can take more values
except for the above cases. Thus, we can implement many
kinds of load balancing in BSs and edge clouds by using
different values of α.

III. POPULATION GAME BASED WORKLOAD BALANCING

In this section, we first propose a social welfare maximiza-
tion problem that can implement efficient load balancing in
BSs and edge clouds. Then, we define the payoff function
of population game and introduce three basic evolutionary
dynamics that can capture the evolution of population state.

A. Social Welfare Maximization

Our social welfare maximization aims to jointly implement
load balancing in BSs and edge clouds and is defined as
follows:

max T(α̇, α̈, ρ̇(a), ρ̈) = T(α̇, ρ̇(a)) + ξT(α̈, ρ̈) (7)
s.t. ρ̇m(a) < 1 ∀m ∈M (8)

ρ̈m < 1 ∀m ∈M (9)∑
m∈Mn

anm = Ẑn ∀n ∈ N . (10)



The α̇-fair utility function for BSs is denoted by
T(α̇, ρ̇(a)). By replacing the input parameters of Eq. (6), we
obtain that

T(α̇, ρ̇(a)) =


−
∑

m∈M

(1− ρ̇m(a))
1−α̇ − 1

α̇− 1
, α̇ 6= 1,

−
∑

m∈M
ln

(
1

1− ρ̇m(a)

)
, α̇ = 1.

(11)
Similarly, we can obtain the α̈-fair utility function for edge
clouds as follows:

T(α̈, ρ̈) =


−
∑

m∈M

(1− ρ̈m)
1−α̈ − 1

α̈− 1
, α̈ 6= 1,

−
∑

m∈M
ln

(
1

1− ρ̈m

)
, α̈ = 1.

(12)

Since we jointly optimize the load balancing for BSs and edge
clouds, ξ > 0 is a trade-off between these two objectives.
Larger ξ implies higher priority in load balancing for edge
clouds.

Constraints (8) and (9) indicate that the utilization of BSs
and edge clouds can not exceed the maximum bandwidth and
computational capability, respectively. Constraint (10) requires
that the number of IoTDs in a class remains stable. Instead
of solving this optimization problem directly, we propose a
population game based method to solve the load balancing
problem.

B. Population Game Formulation

In order to solve the optimization problem (7), we describe
IoTDs’ offloading decisions as a population state a. The core
of population game is the so-called payoff function. Payoff
function defines IoTDs’ payoffs based on a population state
and is composed of a collection of marginal payoff functions,
i.e., F (a) = {Fnm(a) : m ∈ Mn, n ∈ N}, Fnm(a) denotes
the payoff of IoTD in Cn offloading task to Bm and is defined
as follows:

Fnm(a) = −

 ηnξ

Fm(1− ρ̈m)α̈
+
θn
(

2− g( ̂SINRnm)
)

Rnm(a)(1− ρ̇m(a))α̇

 ,
(13)

where

g( ̂SINRnm) =
̂SINRnm

( ̂SINRnm + 1) ln( ̂SINRnm + 1)
, (14)

̂SINRnm =
anmP

n
l H

n
m

δ +
∑
k∈Nn

m
akmP

k
l H

k
m

. (15)

̂SINRnm denotes the Signal-to-Interference-plus-Noise Ratio
(SINR) between Bm and Dn

m. g( ̂SINRnm), called inference
function, represents the effect of ̂SINRnm on load balancing

among BSs. To better understand the definition of Fnm(a), we
consider one simple case where α̇ = α̈ = 0. In this case,

F̂nm(a) = −

ηnξ
Fm

+
θn
(

2− g( ̂SINRnm)
)

Rnm(a)

 .
Recall that Ṫnm(a) = θn

Rn
m(a) denotes the time fraction of Bm

serving Cn and T̈nm = ηn

Fm
is the time fraction of Em serving

Cn (see Section II-B). We further obtain

F̂nm(a) = −
[
ξT̈nm + Ṫnm(a)

(
2− g( ̂SINRnm)

)]
,

which has a similar structure of Eq. (7) except that the effect of
SINR is obvious now. F̂nm(a) is the payoff of IoTDs from Cn

choosing Bm and Em (or the payoff of anm ). We observe that
the time for transmission is affected by SINR and the loads
of BSs and edge clouds are not considered in this case. When
α̇ > 0 and α̈ > 0, the load of BSs and edge clouds will affect
the payoff of IoTDs, since ρ̈m and ρ̇m(a) will be reserved in
payoff function. Moreover, we propose theorem 1 to analyze
the effect of

(
2− g( ̂SINRnm)

)
in payoff function.

Theorem 1. Time fraction T̂nm(a) = θn

Rn
m(a)

(
2−g( ̂SINRnm)

)
increases from θn

Rn
m(a) to 2θn

Rn
m(a) , when ̂SINRnm increases from

0 to +∞.

Theorem 1 implies that when ̂SINRnm = 0, T̂nm(a) =

Ṫnm(a). As ̂SINRnm increases, time fraction T̂nm(a) increases.
This is because higher ̂SINRnm implies higher data rate from
IoTDs in Cn; thus resulting in higher bandwidth utilization of
Bm. However, T̂nm(a) should be less than 2θn

Rn
m(a) , even if the

transmission power is much larger than inference and noise
power. The proof of Theorem 1 is given in Appendix A.

Definition 1. A population game F : RN×M+ → RN×M is
a potential game if there exists a continuously differentiable
function T : RN×M+ → R, called a potential function,
satisfying ∇T(a) = F (a) for all a ∈ RN×M+ , or ∂T

∂anm
(a) =

Fnm(a) for all m ∈M and n ∈ N .

Definition 1 shows that the partial derivatives of the poten-
tial function are the payoff functions of the population game.

Theorem 2. Our proposed population game F (a) =
{Fnm(a) : m ∈ Mn, n ∈ N} is a potential game. The
potential function is T(α̇, α̈, ρ̇(a), ρ̈).

Potential game always reaches an NE and has the finite
improvement property. The proof of Theorem 2 is given in
Appendix B.

C. Evolutionary Dynamics

NE is the solution concept of population game. By using
the framework of evolutionary dynamics [16], we can analyze
how population state evolves in time and converges to NE. The
evolutionary dynamics is defined as follows:



˙anm =
∑
k∈Mn

ankρ
n
km(a,F (a))− anm

∑
k∈Mn

ρnmk(a,F (a)),

(16)
whereρnkm(a,F (a)), called revision protocol, represents

the switching rate of IoTDs in Cn change offloading decision
from Bk to Bm based on population state a and payoff
function F (a). Larger value of ρnkm(a,F (a)) implies higher
probability that IoTDs in Cn changing offloading decision
from Bk to Bm. The first term and second term of Eq. (16)
denote the inflow rate of IoTDs choosing Bm and the outflow
rate of IoTDs choosing any BS except Bm, respectively. Thus,
the difference of inflow rate and outflow rate describes the
evolution of anm.

We consider three types of revision protocols, namely
Smith, Logit and BNN [11, 16]. For simplicity, we use Dn

m

to represent an IoTD in Cn choosing Bm. Thus, anm is the
number of Dn

ms. The function [x]+ returns x if x ≥ 0.
Otherwise, it returns 0. Smith protocol, defined in Eq. (17),
describes that the switching rate of Dn

k changing current
offloading decision from Bk to Bm is the payoff difference
between Dn

m and Dn
k . For example, if Dn

k knows that Dn
m

has higher payoff, i.e., Bm is a better choice than Bk for
Cn, then Dn

k will change his offloading decision to Bm

with switching rate ρnkm(a,F (a)). Dn
k will not change his

offloading decision if Dn
m has lower payoff.

ρnkm(a,F (a)) = [Fnm(a)− Fnk (a)]+ . (17)

Logit protocol is defined in Eq. (18), where ω > 0 is the
noise level. ω represents the rationality of IoTDs. For ω = 0,
IoTDs are completely rational and choose the best offloading
decision. As ω increases, IoTDs become less rational and may
choose non-optimal decision.

ρnkm(a,F (a)) =
exp

(
ω−1Fnm(a)

)∑
k∈Mn exp (ω−1Fnk (a))

. (18)

BNN protocol, defined in Eq. (19), describes that Dn
k com-

pares Dn
m’s payoff with the average payoff of Cn. If Dn

m’s
payoff exceeds the average payoff, then Dn

k will change his
offloading decision to Bm with switching rate ρnkm(a,F (a)).

ρnkm(a,F (a)) =
[
Fnm(a)− 1

Ẑn

∑
l∈Mn

anl F
n
l (a)

]
+
. (19)

Note that these protocols describe how IoTDs change their
offloading decisions until an NE is reached. Smith uses less
decision information compared to Logit and BNN. Smith
needs only the payoff of one BS, while Logit and BNN need
the payoffs of all BSs in Bn. In general, Smith has lower
convergence speed than Logit and BNN. By substituting these
revision protocols into Eq. (16), we can get Smith dynamics,

Logit dynamics and BNN dynamics in Eqs. (20), (21) and
(22), respectively.

˙anm =
∑
k∈Mn

ank [Fnm(a)− Fnk (a)]+

− anm
∑
k∈Mn

[Fnk (a)− Fnm(a)]+ . (20)

˙anm =
anm exp

(
ω−1Fnm(a)

)∑
k∈Mn ank exp (ω−1Fnk (a))

− anm. (21)

˙anm =
[
F̂nm(a)

]
+
− anm

Ẑn

∑
k∈Mn

[
F̂nk (a)

]
+
, (22)

where F̂nm(a) = Fnm(a)− 1

Ẑn

∑
l∈Mn

anl F
n
l (a).

These evolutionary dynamics can generate an NE in iteration
methods. We will propose a load balancing algorithm based
on evolutionary dynamics in next section.

IV. WORKLOAD BALANCING ALGORITHMS

In this section, we proposes two workload balancing al-
gorithms, namely, CWB (Centralized Workload Balancing)
algorithm and DWB (Decentralized Workload Balancing) al-
gorithm. CWB is based on the evolutionary dynamics and
DWB is based on Theorem 2.

A. Centralized Workload Balancing

Our CWB algorithm consists of two phases. The first phase
(Steps 1 − 10) is to calculate an NE based on evolutionary
dynamics. Smith, Logit and BNN dynamics can converge to
an NE with different convergence speeds (as shown in Section
V-A). However, the resulting NE only shows the number
of IoTDs in Cn, that will choose Bm, i.e., anm, without
specifying which IoTD in Cn will choose Bm. Thus, we
use the second phase (Steps 11 − 23) to implement IoTDs’
offloading decisions. The basic idea is to randomly select
IoTDs from Cn for Bm; the number of IoTDs should be no
more than anm. The randomness of selection can implement
fair offloading decisions for IoTDs. Note that we need to
replace D∗n with original IoTD when calculating offloading
decisions (Steps 18− 20).

B. Decentralized Workload Balancing

Our DWB algorithm is a distributed algorithm consisting
of two parts of algorithms running in IoTDs and BSs sepa-
rately. Each IoTD can change his current offloading decision
whenever “stochastic update clock” rings. IoTD randomly
chooses several candidate BSs and choose the BS with highest
switching rate. IoTD only changes his offloading decision
when the highest switching rate is positive, which implies
higher payoff. With the property of potential game, any better
update of offloading decision is guaranteed to reach an NE.
Note that IoTD’s algorithm (Part 1 in Algorithm 2) does not
exactly follow the switching rates of Smith, Logit and BNN
protocols. However, it captures the main features of these
revision protocols: 1) randomness is ensured by Step 2, K can



Algorithm 1 CWB (Centralized Workload Balancing)
Phase 1: Calculate an NE.

1: Initialize a with arbitrary value satisfying Constraint (10)
2: ā← 0
3: while ā 6= a do
4: ā← a
5: for all n ∈ N do
6: for all m ∈Mn do
7: anm ← Update ānm with Eqs. (20), (21) or (22)
8: end for
9: end for

10: end while
Phase 2: Calculate offloading decisions.

11: Initialize decision vector A← 0
12: for all n ∈ N do
13: C← Cn

14: for all m ∈Mn do
15: a← anm
16: while C 6= ∅ ∧ a > 0 do
17: i← Next(C)
18: if Bi

Bn ≤ a then
19: a← a− Bi

Bn , C← C \ {i}, A(i)← m
20: end if
21: end while
22: end for
23: end for

be any value between 1 and |Bn|, we choose K =
⌊
|Bn|
2

⌋
; 2)

higher switching rate implying higher probability of chang-
ing offloading decision is guaranteed by Steps 3 − 9. BS’s
algorithm (Part 2 in Algorithm 2) is to first collect current
IoTDs’ offloading decisions and then broadcast the utilization
level of BSs and edge clouds to IoTDs. IoTDs will use this
information to improve their offloading decisions.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our proposed
workload balancing algorithms by numerical studies. We com-
pare our work with other two contributions: BRUTE [12] and
TWB (Towards Workload Balancing) [13]. BRUTE uses α−
fair function to implement energy-efficient traffic allocation
among BSs. BRUTE considers the energy consumption in BSs
without considering the load in edge clouds. TWB considers
the traffic load in BSs and computation load in edge clouds.
However, none of them considers the effect of SINR in load
balancing.

Without loss of generality, We randomly select the param-
eter’s value from the normal distribution for different cases.
The average value of these parameters are illustrated as in
[17–20]. The data size Bn is set to 800KB and the number
of required CPU cycles Dn is set to 1000Megacycles. We set
the allocated computational capability Fnm to 100GHz and the
bandwidth of BS to 5MHz. The channel gain between Dn

and Bm is Hn
m = (dmn )−θ, where θ is the pass loss factor

and dmn is the distance between them. θ is set to 4 and Hn
m

Algorithm 2 DWB (Decentralized Workload Balancing)
Part 1: For all Dn

m

1: for all “stochastic update clock” rings do
2: K ← randomly choose K BSs from Bn
3: for all k ∈ K do
4: Calculate ρnmk(â, F̂ (a))

with Eqs. (17), (18) or (19)
5: end for
6: if max

k∈K
ρnkm(â, F̂ (a)) > 0 then

7: k∗ = arg max
k∈K

ρnkm(â, F̂ (a))

8: Update the offloading decision of Dn
m with k∗

9: end if
10: end for

Part 2: For all Bm

11: for all “stochastic update clock” rings do
12: Collect current population state â
13: Calculate ˆ̇ρm and ˆ̈ρm by Eqs. (4) and (5), respectively.
14: Broadcast ˆ̇ρm and ˆ̈ρm to IoTDs within coverage of

Bm

15: end for

Fig. 4. Evolutionary dynamics of Smith protocol. The black dot denotes the
NE. The arrows describe the motions of different population states.

is randomly selected from [5m − 100m] [21]. The wireless
transmission power Pnl is set to 100mWatts.

A. Illustration of Evolutionary Dynamics: One Class Case

We first compare the evolutionary dynamics of Smith, Logit
and BNN. We consider the scenario where a class of 400
IoTDs compete for the communication resources of 3 BSs
and computation resources in 3 edge clouds. We observe that
Smith converges more slowly than Logit and BNN, as shown
in Figs. 4, 5 and 6. We also observe that the arrows of Smith
approach NE in a less angular, more gradual fashion. This
is because Smith changes its offloading decision based on the
payoff of one BS, while BNN and Logit change the offloading



Fig. 5. Evolutionary dynamics of Logit protocol. The black dot denotes the
NE. The arrows describe the motions of different population states.

Fig. 6. Evolutionary dynamics of BNN dynamics. The black dot denotes the
NE. The arrows describe the motions of different population states.

decision based on all the payoff of BSs. Generally, using more
payoff information to make offloading decisions can achieve
better performance. Thus, BNN and Logit converge faster
than Smith. Moreover, these three evolutionary dynamics can
achieve the same NE.

Then, we investigate the resulting NE, i.e., the percentage
of IoTDs choosing three BSs, denoted by black point in the
figures. Note that the distance between black point and the
vertex of triangle denotes the percentage of IoTDs choosing
the corresponding BS; smaller distance represents higher per-
centage. NE is (0.35, 0.45, 0.20) in our settings. We observe
that NE is located close to BS 2 (i.e., the black point is close
to vertex 2). This is because BS 2 and edge cloud 2 have the

10
0

10
1

10
2

10
3

Number of iterations

0

0.2

0.4

0.6

0.8

1

P
e

rc
e

n
ta

g
e

 o
f 

Io
T

D
s

BNN BS1

Smith BS1

Logit BS1

BNN BS2

Smith BS2

Logit BS2

Fig. 7. Percentage of IoTDs in C1 choosing B1 and B2 with respect to
the number of iterations. The initial class state a1 = (0.5, 0.5). The solid
line represents the percentage of IoTDs choosing B1, while the dashed line
represents the percentage of IoTDs choosing B2.

10
0

10
1

10
2

10
3

Number of iterations

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

P
e

rc
e

n
ta

g
e

 o
f 

Io
T

D
s

BNN BS1

Smith BS1

Logit BS1

BNN BS2

Smith BS2

Logit BS2

Fig. 8. Percentage of IoTDs in C2 choosing B1 and B2 with respect to the
number of iterations. The initial class state a2 = (0.5, 0.5).

highest communication and computation capabilities in our
settings. Consequently, more IoTDs prefer to offload tasks to
B2.

B. Illustration of Evolutionary Dynamics: Two Classes Case

We consider the scenario where two classes of 400 IoTDs
compete for the communication resources of 2 BSs and
computation resources in 2 edge clouds. Figs. 7 and 8 show
the evolutions of a1 and a2, respectively. The initial class
states of a1 and a2 are both (0.5, 0.5). The NE for C1 is
(0, 1) and the NE for C2 is (1, 0); this shows that IoTDs in
C1 will offload tasks to B2 and IoTDs in C2 will offload tasks
to B1. We observe that three dynamics converge to NE with
diverse convergence speeds. Smith has higher convergence
speed than BNN and Logit. This is because Smith dynamic
requires user to choose some BS with higher payoff. Since
there are two BSs in this scenario, IoTDs using Smith dynamic



10
0

10
1

10
2

10
3

Number of iterations

0

0.2

0.4

0.6

0.8

1
P

e
rc

e
n

ta
g

e
 o

f 
Io

T
D

s

BNN BS1

Smith BS1

Logit BS1

BNN BS2

Smith BS2

Logit BS2

Fig. 9. Percentage of IoTDs in C1 choosing B1 and B2 with respect to the
number of iterations. The initial class state a1 = (0.2, 0.8).

10
0

10
1

10
2

10
3

Number of iterations

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

P
e

rc
e

n
ta

g
e

 o
f 

Io
T

D
s

BNN BS1

Smith BS1

Logit BS1

BNN BS2

Smith BS2

Logit BS2

Fig. 10. Percentage of IoTDs in C2 choosing B1 and B2 with respect to
the number of iterations. The initial class state a2 = (0.2, 0.8).

has higher probability to choose optimal decisions. In BNN
dynamic, IoTDs choose BS randomly and compare its payoff
with average payoff in the same class; IoTDs have more
chance to choose suboptimal decision compared to Smith. The
same case happens to Logit dynamic where IoTDs change
decisions according to the payoff ratios defined in Eq. (18).
We state that the advantages of BNN and Logit increase with
the number of BSs. The intuition is that IoTDs using Smith
dynamic has lower probability to choose optimal decisions
with the increase of the number of BSs, since Smith only
ensures that the next payoff is better than current payoff, while
BNN ensures that next payoff is better than average payoff
and Logit uses the payoffs of all IoTDs in a class to make
decisions.

Figs. 9 and 10 illustrate the evolutions of a1 and a2,
respectively. We set the initial class states of a1 and a2

to (0.2, 0.8), which is different from that in Figs. 7 and
8. We observe that three dynamics converge to NE. This

1 2 3 4 5

Different BSs

0

0.1

0.2

0.3

0.4

0.5

0.6

T
ra

ff
ic

 L
o

a
d

CWB

DWB

TWB

BRUTE

Fig. 11. Traffic load versus different BSs.

1 2 3 4 5

Different BSs

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

C
o

m
p

u
ta

ti
o

n
 L

o
a

d

CWB

DWB

TWB

BRUTE

Fig. 12. Computation load versus different edge clouds.

demonstrates that diverse initial class states can reach the same
NE.

C. Performance Comparison of Different Algorithms

To investigate the performance of workload balancing of
different algorithms, we consider a scenario where 1000
IoTDs compete for communication and computation resources
of 5 BS-edge-cloud pairs. Fig. 11 shows that CWB and DWB
achieve better performance than TWB and BRUTE in traffic
load balancing. We observe that the difference of traffic load
among 5 BSs achieved by CWB and DWB are smaller than
those achieved by TWB and BRUTE. This is because CWB
and DWB use inference affected queueing model where SINR
dynamically changes with population state, while TWB and
BRUTE use static SINR model where SINR is estimated
as location-dependent static value. We further observe that
BRUTE achieves higher performance for traffic load balancing
than TWB, since BRUTE does not consider the computation
load balancing in edge clouds. Thus, BRUTE does not need



BSs Clouds

Different Schemes

0

50

100

150

200

250

300
A

v
e
ra

g
e
 L

a
te

n
c
y

CWB

DWB

TWB

BRUTE

Fig. 13. Average latency versus different schemes.

to sacrifice the load balancing among BSs to implement load
balancing among edge clouds. Fig. 12 shows the computation
load among edge clouds. We observe that CWB and DWB
achieve better performance than TWB and BRUTE in compu-
tation load balancing. This is because TWB and BRUTE do
not consider the affect of dynamic inference among IoTDs.
Furthermore, BRUTE achieves worst performance without
considering the computation load balancing in edge clouds.

Fig. 13 shows the average latency in BSs and edge clouds
with 4 schemes. We observe that CWB achieves lowest latency
and DWB achieves quasi-optimal latency due to stochastic
factor. Since BRUTE only focuses on communication latency
among BSs, it has lower communication latency than TWB. In
contrast, TWB achieves much lower computation latency than
BRUTE, since TWB considers both communication latency
and computation latency. By sacrificing slight communication
latency, TWB achieves better performance than BRUTE.
However, CWB and DWB outperform BRUTE and TWB,
since BRUTE and TWB do not consider the impact of SINR.

VI. CONCLUSION

In this paper, we analyze the workload balancing problem
for MEC in the context of IoT. IoTDs can offload computation
intensive tasks to nearby BSs. We propose a population game
based approach to investigate this problem and show that the
game always has an NE. We consider the impact of SINR
in workload balancing problem and propose an inference
function to analyze the impact of SINR. We use three kinds
of revision protocols, namely, BNN, Smith and Logit to
achieve NE. We design two workload balancing algorithms
to iteratively calculate the optimal solution. We illustrate the
evolutionary dynamics with two different scenarios. Numer-
ical results show that our schemes outperform two existing
schemes.

REFERENCES

[1] H. Shah-Mansouri and V. W. S. Wong, “Hierarchical fog-cloud
computing for iot systems: A computation offloading game,”

IEEE Internet of Things Journal, vol. 5, no. 4, pp. 3246–3257,
Aug 2018.

[2] H. Guo, J. Liu, and J. Zhang, “Computation offloading for
multi-access mobile edge computing in ultra-dense networks,”
IEEE Communications Magazine, vol. 56, no. 8, pp. 14–19,
2018.

[3] H. Guo, J. Liu, and H. Qin, “Collaborative mobile edge
computation offloading for iot over fiber-wireless networks,”
IEEE Network, vol. 32, no. 1, pp. 66–71, 2018.

[4] D. Liu, A. Hafid, and L. Khoukhi, “Population game based
energy and time aware task offloading for large amounts
of competing users,” in 2018 IEEE Global Communications
Conference (GLOBECOM), Dec 2018, pp. 1–6.

[5] D. Liu, L. Khoukhi, and A. Hafid, “Prediction-based mobile
data offloading in mobile cloud computing,” IEEE Transactions
on Wireless Communications, vol. 17, no. 7, pp. 4660–4673,
July 2018.

[6] ——, “Decentralized data offloading for mobile cloud com-
puting based on game theory,” in 2017 Second International
Conference on Fog and Mobile Edge Computing (FMEC), May
2017, pp. 20–24.

[7] J. Zhang, W. Xia, Y. Zhang, Q. Zou, B. Huang, F. Yan, and
L. Shen, “Joint offloading and resource allocation optimization
for mobile edge computing,” in GLOBECOM 2017-2017 IEEE
Global Communications Conference. IEEE, 2017, pp. 1–6.

[8] C. Wang, C. Liang, F. R. Yu, Q. Chen, and L. Tang, “Com-
putation offloading and resource allocation in wireless cellular
networks with mobile edge computing,” IEEE Transactions on
Wireless Communications, vol. 16, no. 8, pp. 4924–4938, 2017.

[9] K. Zhang, S. Leng, Y. He, S. Maharjan, and Y. Zhang, “Mobile
edge computing and networking for green and low-latency
internet of things,” IEEE Communications Magazine, vol. 56,
no. 5, pp. 39–45, 2018.

[10] J. Barreiro-Gomez, G. Obando, and N. Quijano, “Distributed
population dynamics: Optimization and control applications,”
IEEE Transactions on Systems, Man, and Cybernetics: Systems,
vol. 47, no. 2, pp. 304–314, 2017.

[11] N. Quijano, C. Ocampo-Martinez, J. Barreiro-Gomez,
G. Obando, A. Pantoja, and E. Mojica-Nava, “The role of
population games and evolutionary dynamics in distributed
control systems: The advantages of evolutionary game theory,”
IEEE Control Systems Magazine, vol. 37, no. 1, pp. 70–97,
2017.

[12] S. Moon, H. Kim, and Y. Yi, “Brute: Energy-efficient user asso-
ciation in cellular networks from population game perspective,”
IEEE Transactions on Wireless Communications, vol. 15, no. 1,
pp. 663–675, 2016.

[13] Q. Fan and N. Ansari, “Towards workload balancing in fog
computing empowered iot,” IEEE Transactions on Network
Science and Engineering, 2018.

[14] H. Kim, G. De Veciana, X. Yang, and M. Venkatachalam,
“Distributed α-optimal user association and cell load balancing
in wireless networks,” IEEE/ACM Transactions on Networking
(TON), vol. 20, no. 1, pp. 177–190, 2012.

[15] C. Guo, Y. Zhang, M. Sheng, X. Wang, and Y. Li, “α-fair power
allocation in spectrum-sharing networks,” IEEE Transactions
on Vehicular Technology, vol. 65, no. 5, pp. 3771–3777, 2016.

[16] W. H. Sandholm, “Population games and deterministic evolu-
tionary dynamics,” in Handbook of game theory with economic
applications. Elsevier, 2015, vol. 4, pp. 703–778.

[17] E. Meskar, T. D. Todd, D. Zhao, and G. Karakostas, “Energy
aware offloading for competing users on a shared commu-
nication channel,” IEEE Transactions on Mobile Computing,
vol. 16, no. 1, pp. 87–96, 2017.

[18] X. Chen, “Decentralized computation offloading game for
mobile cloud computing,” IEEE Transactions on Parallel and
Distributed Systems, vol. 26, no. 4, pp. 974–983, 2015.



[19] S. Deng, L. Huang, J. Taheri, and A. Y. Zomaya, “Computation
Offloading for Service Workflow in Mobile Cloud Computing,”
IEEE Transactions on Parallel and Distributed Systems, vol. 26,
no. 12, pp. 3317–3329, 2015.

[20] D. Liu, L. Khoukhi, and A. Hafid, “Data offloading in mo-
bile cloud computing: A markov decision process approach,”
in 2017 IEEE International Conference on Communications
(ICC), 2017, pp. 1–6.

[21] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient Multi-User
Computation Offloading for Mobile-Edge Cloud Computing,”
IEEE/ACM Transactions on Networking, pp. 1–14, 2015.



APPENDIX A
PROOF OF THEOREM 1

Proof. In order to proof Theorem 1, we need investigate the
properties of inference function g( ̂SINRnm).

A. Inference Function is a Monotonic Function

We first calculate the derivative of g( ̂SINRnm) with respect
to ̂SINRnm as follows:

g′( ̂SINRnm) =
( ̂SINRnm + 1) ln( ̂SINRnm + 1)

( ̂SINRnm + 1)2 ln2( ̂SINRnm + 1)

−
̂SINRnm(ln( ̂SINRnm + 1) + 1)

( ̂SINRnm + 1)2 ln2( ̂SINRnm + 1)
(23)

=
ln( ̂SINRnm + 1)− ̂SINRnm

( ̂SINRnm + 1)2 ln2( ̂SINRnm + 1)
. (24)

Note that the domain of g( ̂SINRnm) is { ̂SINRnm ∈
R| ̂SINRnm > 0}, since g( ̂SINRnm) has no definition
when ̂SINRnm = 0. We will discuss the case where
̂SINRnm = 0 later. Obviously, ln( ̂SINRnm+1)− ̂SINRnm <

0 for all ̂SINRnm > 0. According to Eq. (24), we know that
g′( ̂SINRnm) < 0. Thus, g( ̂SINRnm) is a strictly decreasing
function.

B. The Limit of Inference Function

We next consider the value of lim ̂SINRn
m→0

g( ̂SINRnm).

lim
̂SINRn

m→0

g( ̂SINRnm) (25)

= lim
̂SINRn

m→0

̂SINRnm
( ̂SINRnm + 1) ln( ̂SINRnm + 1)

(26)

= lim
̂SINRn

m→0

̂SINRnm
ln( ̂SINRnm + 1)

lim
̂SINRn

m→0

1

̂SINRnm + 1
(27)

= lim
̂SINRn

m→0

̂SINRnm
ln( ̂SINRnm + 1)

(Applying l’Hopital’s rule)

(28)

= lim
̂SINRn

m→0

d

d ̂SINRn
m

( ̂SINRnm)

d

d ̂SINRn
m

(ln( ̂SINRnm + 1))
(29)

= lim
̂SINRn

m→0

( ̂SINRnm + 1) (30)

= 1. (31)

Without causing ambiguity, we say that g( ̂SINRnm) = 1,
when ̂SINRnm = 0.

C. The Range of Inference Function

Since g( ̂SINRnm) is strictly decreasing and g(0) = 1, we
know that

max
̂SINRn

m≥0
g( ̂SINRnm) = g(0) = 1. (32)

Moreover, it is easy to verify that g( ̂SINRnm) > 0 for all
̂SINRnm ≥ 0 and lim ̂SINRn

m→+∞ g( ̂SINRnm) = 0. Thus,

the range of g( ̂SINRnm) is [0, 1].
Based on the above discussions, we know that g( ̂SINRnm)

decreases from 1 to 0 when ̂SINRnm increases from 0 to
+∞. Thus,

(
2 − g( ̂SINRnm)

)
increases from 1 to 2 when

̂SINRnm increases from 0 to +∞. Finally, time fraction
T̂nm(a) = θn

Rn
m(a)

(
2− g( ̂SINRnm)

)
increases from θn

Rn
m(a) to

2θn

Rn
m(a) , when ̂SINRnm increases from 0 to +∞.

APPENDIX B
PROOF OF THEOREM 2

Proof. In order to prove that T(α̇, α̈, ρ̇(a), ρ̈) is the potential
function of population game F (a), we need to derive that

Fnm(a) =
∂T(α̇, α̈, ρ̇(a), ρ̈)

∂anm
. (33)

A. Partial Derivatives of T(α̈, ρ̈)

We first calculate the partial derivatives of T(α̈, ρ̈) in two
cases based on the value of α̈.

Case 1: α̈ 6= 1,

∂T(α̈, ρ̈)

∂anm
=

∂

∂anm

[
−
∑
m∈M

(1− ρ̈m)
1−α̈ − 1

α̈− 1

]
(34)

=
1− α̈

(α̈− 1)(1− ρ̈m)α̈
· ∂ρ̈m
∂anm

(35)

=
−ηn

Fm(1− ρ̈m)α̈
. (36)

Based on Eq. (12), we have Eq. (34). According to Eq. (5), we
can obtain that ∂ρ̈m

∂anm
= ηn

Fm
. Thus, we can get Eq. (36) from

Eq. (35). Similarly, we can calculate the partial derivatives of
T(α̈, ρ̈) when α̈ = 1.

Case 2: α̈ = 1,

∂T(α̈, ρ̈)

∂anm
=

∂

∂anm

[
−
∑
m∈M

ln

(
1

1− ρ̈m

)]
(37)

=
1− ρ̈m

(1− ρ̈m)2
· −∂ρ̈m
∂anm

(38)

=
−ηn

Fm(1− ρ̈m)
. (39)

Note that Eq. (39) is equal to Eq. (36) when α̈ = 1. Thus, we
can say that

∂T(α̈, ρ̈)

∂anm
=

−ηn

Fm(1− ρ̈m)α̈
, ∀α̈ ≥ 0. (40)

B. Partial Derivatives of T(α̇, ρ̇(a))

We next calculate the partial derivatives of T(α̇, ρ̇(a))
based on different values of α̇. Case 1: α̇ 6= 1,



∂ρ̇m(a)

∂anm
=

∂

∂anm


∑
n∈N

θn(anm)2

Wm log2

(
1 +

anmP
n
l H

n
m

δ+
∑

k∈Nn
m
akmP

k
l H

k
m

)
 =

θn ln(2)

Wm
· ∂

∂anm

 (anm)2

ln

(
1 +

anmP
n
l H

n
m

δ+
∑

k∈Nn
m
akmP

k
l H

k
m

)
 (41)

=

θn ln(2)

2anm ln

(
anmP

n
l H

n
m∑

k∈Nn
m
akmP

k
l H

k
m + δ

+ 1

)
− (anm)2Pnl H

n
m

(
∑
k∈Nn

m
akmP

k
l H

k
m + δ)

(
anmP

n
l H

n
m∑

k∈Nn
m
akmP

k
l H

k
m + δ

+ 1

)


Wm ln2

(
anmP

n
l H

n
m∑

k∈Nn
m
akmP

k
l H

k
m + δ

+ 1

)
(42)

=

θn

2anm log2

(
anmP

n
l H

n
m∑

k∈Nn
m
akmP

k
l H

k
m + δ

+ 1

)
− (anm)2Pnl H

n
m

ln(2)(
∑
k∈Nn

m
akmP

k
l H

k
m + δ)

(
anmP

n
l H

n
m∑

k∈Nn
m
akmP

k
l H

k
m + δ

+ 1

)


Wm log2
2

(
anmP

n
l H

n
m∑

k∈Nn
m
akmP

k
l H

k
m + δ

+ 1

) .

(43)

∂T(α̇, ρ̇(a))

∂anm
=

∂

∂anm

[
−
∑
m∈M

(1− ρ̇m(a))
1−α̇ − 1

α̇− 1

]
(44)

=
1− α̇

(α̇− 1)(1− ρ̇m(a))α̇
· ∂ρ̇m(a)

∂anm
(45)

=
−1

(1− ρ̇m(a))α̇
· ∂ρ̇m(a)

∂anm
. (46)

Case 2: α̇ = 1,

∂T(α̇, ρ̇(a))

∂anm
=

∂

∂anm

[
−
∑
m∈M

ln

(
1

1− ρ̇m(a)

)]
(47)

=
1− ρ̇m(a)

(1− ρ̇m(a))2
· −∂ρ̇m(a)

∂anm
(48)

=
−1

1− ρ̇m(a)
· ∂ρ̇m(a)

∂anm
. (49)

Note that Eqs. (46) and (49) are equivalent when α̇ = 1. Thus,
we obtain that
∂T(α̇, ρ̇(a))

∂anm
=

−1

(1− ρ̇m(a))α̇
·∂ρ̇m(a)

∂anm
, ∀α̇ ≥ 0. (50)

C. Partial Derivatives of ρ̇m(a)

The partial derivatives ∂ρ̇m(a)
∂anm

are calculated as follows.
Eq. (41) is the result of replacing ρ̇m(a) with Eq. (4). By
using derivative rules, we get Eq. (42) from Eq. (41). With
some basic mathematical manipulation, we rewrite Eq. (42)
as Eq. (43) in order to simplify the result. For the sake of
clarity, we use ÎNn

m = δ +
∑
k∈Nn

m
akmP

k
l H

k
m to denote the

sum of noise and inference from other classes. Recall that
anmP

n
l H

n
m

δ+
∑

k∈Nn
m
akmP

k
l H

k
m

is denoted by ̂SINRnm. With these two

variables, Eq. (43) can be rewritten as Eq. (51). Note that
Wm

Rn
m(a) in Eq. (52) can be replaced by Eq. (3), thus resulting

in Eq. (53). Since ̂SINRnm =
anmP

n
l H

n
m

ÎNn
m

, we can obtain Eq.

(54). By substituting the function body of g( ̂SINRnm) (see
Eq. (14)) in Eq. (54), we get Eq. (55).

∂ρ̇m(a)

∂anm

=
Wmθ

n

[anmR
n
m(a)]2

(
2(anm)2Rnm(a)

Wm
− (anm)2Pnl H

n
m

ln(2)ÎNn
m( ̂SINRnm + 1)

)
(51)

=
2θn

Rnm(a)
− θnWmP

n
l H

n
m

ln(2)[Rnm(a)]2ÎNn
m( ̂SINRnm + 1)

(52)

=
2θn

Rnm(a)
− θnanmP

n
l H

n
m

ln(2)Rnm(a)ÎNn
m( ̂SINRnm + 1) log2( ̂SINRnm + 1)

(53)

=
2θn

Rnm(a)
− θn ̂SINRnm
Rnm(a)( ̂SINRnm + 1) ln( ̂SINRnm + 1)

(54)

=
θn
(

2− g( ̂SINRnm)
)

Rnm(a)
. (55)

Finally, we can obtain the partial derivatives of



T(α̇, α̈, ρ̇(a), ρ̈) as follows:

∂T(α̇, α̈, ρ̇(a), ρ̈)

∂anm
= ξ · ∂T(α̈, ρ̈)

∂anm
+
∂T(α̇, ρ̇(a))

∂anm
(56)

=
−ηnξ

Fm(1− ρ̈m)α̈
+

−1

(1− ρ̇m(a))α̇
·
θn
(

2− g( ̂SINRnm)
)

Rnm(a)
(57)

= −

 ηnξ

Fm(1− ρ̈m)α̈
+
θn
(

2− g( ̂SINRnm)
)

Rnm(a)(1− ρ̇m(a))α̇

 (58)

= Fnm(a). (59)

According to Definition 1, The population game F (a) =
{Fnm(a) : m ∈ Mn, n ∈ N} is a potential game and the
potential function is T(α̇, α̈, ρ̇(a), ρ̈).


