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Abstract 
 
      There are many e-commerce applications on the 
web. A common shortcoming is the lack of customer 
service and marketing analysis tools in most e-
commerce web sites. In order to overcome this 
problem, we have constructed an intelligent agent 
based on Case-Based Reasoning (CBR) and 
collaborative filtering, which we have included in our 
product recommendation system, called PCFinder. 
      This system was four main characteristics. The first 
is applying novel methodologies based on CBR to an 
e-commerce application. We propose a heuristic to 
represent an Order-Based Similarity Measure, together 
with the method of weight modification and adaptation. 
The second is applying CBR and collaborative filtering 
techniques to make our intelligent agent more efficient 
and effective. We also apply clustering analysis 
techniques to assist our intelligent agent for grouping 
the customers according to their long-term profiles in 
order to analyse the user profiles (external attributes) 
and provide some suggestions of the items (internal 
attributes) of the product. The third is introducing a 
method for constructing product recommendation 
systems: from architecture to methodologies and from 
applied technologies to implementations. The last is 
providing a graphic-building wizard based on 
clustering analysis of the past purchasing history to the 
management staff for analysing the marketing 
tendencies. 
 
1. Introduction 
 
      Electronic commerce is steadily becoming more 
important in changing the way people exchange 
products and services. It provides a convenient and 
easy way for both the consumer to buy things and the 
merchant to sell things.  However, some problems 
remain unsolved if people wish to take complete 
advantage of this new paradigm. One of these 
problems is the lack of customer service featured in e-
commerce applications. Currently, product support 
offered by most organizations to their Internet 
customers is of comparatively poor quality, if it exists 

at all. Certainly, most organizations’ web sites offer 
their customers the possibility to query (as opposed to 
physically examine) the available products using 
catalogues, textual search engines or database 
interfaces. These tools, however, require the user to 
exert some efforts during the interaction phase. Most of 
the time, these tools are not enough for the consumer 
(i.e. the Internet user) if the number of products is 
substantial, if the products are similar to each other or 
if the consumer does not know the domain very well. 
Or many customers who could be lost and feel 
frustrated facing this large number of choices, the only 
thing they feel easy to do is just get off the site and 
never come back again [2]! 
      One of the solutions to this problem is to use 
Product Recommendation Systems (PRS), which 
proactively suggest products to the user according to 
specified user preferences or requirements. PRS 
contribute to increase customer satisfaction, therefore 
to enhance brand recognition and improved market 
performance for the organization. One of the promising 
technologies for the conception of recommendation 
systems is Case-Based Reasoning (CBR) [1]. The 
purpose of this sub-domain of artificial intelligence is 
to conceive knowledge-based systems, which, in 
solving new problems, reuse and adapt solutions to 
prior similar problems [9]. 
      In this paper, we first provide a brief overview of 
agent-based systems in e-commerce. Then we describe 
the three-tiered architecture of our prototype, 
PCFinder, whose purpose is to help a computer e-shop 
propose the most appropriate products to its clients. 
Based on that, section 4 presents the algorithms and 
methodologies used in PCFinder. It focuses on 
dynamic Order-Based Similarity Measure, weight 
modification, adaptation, profile and collaborative 
filtering, and clustering analysis. Section 5 describes 
the implementation of PCFinder. Finally, we discuss 
pros and cons of this method and propose some future 
directions. 
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2. Agent-Based Systems in e-Commerce 
 
      Electronic commerce is booming with increasing 
accessibility to the Internet in virtually every corner of 
the world. In the new generation of e-commerce, agent-
based systems are becoming an attractive paradigm. 
Agents have demonstrated their tremendous potential 
in conducting various tasks in e-commerce, such as 
searching, buying and selling products, etc. 
      An agent can be anything that perceives its 
environment through sensors and acts upon that 
environment through effectors [13]. In the case of our 
PCFinder, the environment includes two parts. One is 
the database that saves product information, customer 
profiles and historical purchasing record for searching 
and recommending. Another one is the computer 
terminal for interaction with the user. The agent’s 
percepts are the words of an HTML (Hypertext Markup 
Language) document acquired from using software 
sensors that connect through the Internet/Intranet 
utilizing HTTP (Hypertext Transfer Protocol). The 
agent’s actions are to determine whether an appropriate 
product has been found matching its criteria of seeking. 
It acts on the environment using output methods to 
update the user on the status of the search or the end 
result(s), which is hopefully the attainment of the goal. 
      According to the sources of data on which 
recommendation is based and the way in which that 
data is put into use, the majority of product 
recommendation systems are developed using content-
based [10], collaborative-based [14], constraint-based 
[8] filtering or knowledge-based [5] methods as their 
underlying technologies. Recently, Case-Based 
Reasoning (CBR) [3] as a category of knowledge-based 
methods has become a promising technology in agent-
based e-commerce systems [7][9]. 
      Our system differs from other product 
recommendation systems in that it applies novel CBR 
methods, such as the Order-Based Similarity Measure, 
weight modification and adaptation. For example, if 
the customer is not satisfied with any of the 
recommended results, the Intelligent Travel 
Recommender (ITR) [12] suggests a new query by 
tightening or relaxing some of the query constraints; 
XMLFinder [9] asks the customer to select the 
attributes he is most dissatisfied with and then modifies 
the weight of these attributes. PCFinder employs an 
alternative method to increase the weight of the most 
important attribute and also provides a method to 
automatically adapt the result based on the customer’s 
request. Another feature of PCFinder is a graphic-
building wizard based on the clustering analysis of 
purchase records allowing the management staff to 
analyze market tendencies. 

3. Architecture of PCFinder 
 
      Our PCFinder prototype uses a typical three-tiered 
architecture (see Figure 1). The first tier provides a 
way to present data to the user. The middle tier is in 
charge of retrieving the data from data sources and 
provides a well-defined interface for the first tier to 
access the data. The third tier contains the data sources. 
The three-tiered model is more flexible and scalable 
than the traditional client/server architecture, which is 
why we use it.  
      The first tier of our application includes personal 
computers with browsers. The intelligent agent, 
PCFinder, runs in the middle tier. It includes four 
modules, a management module, a search module, an 
adaptation module and a clustering analysis module. It 
also includes generative rules. The management 
module is in charge of interacting with the first tier, 
managing the others modules and maintaining the 
database in the third tier. The search module helps the 
customer to find the most appropriate product from the 
product base (case base) according to the customer’s 
query and long-term constraints. The adaptation 
module modifies products to better fulfill the 
customer’s needs when the customer thinks it is 
necessary to do so. The clustering analysis module 
analyzes and groups the information of customer 
profiles database and historical database, and generates 
rules so that management module can adjust some 
initial values, such as initial weight of the attribute. 
The third tier contains the database. It includes a case 
base that contains product data, a case constraint 
database that contains adaptation criteria, a customer 
profile database that contains customer’s background 
and long-term constraints, and a historical database that 
contains the historical purchasing records of each 
customer.  
 

 
Figure 1. Three-tiered architecture of PCFinder 
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Table 1. Local similarity measure for the “processor speed” attribute 

Serial Number (i) 1 2 3 4 5 6 7 8 9 
Processor Speed (MHz) 700 750 800 850 900 950 1000 1200 1400 
Similarity 0.6 0.8 1.0 0.8 0.6 0.4 0.2 0 0 

 
      The first tier sends HTML form queries to the 
middle tier by encoding commands and arguments in 
HTTP requests. The middle tier retrieves the data from 
the case base in the third tier or maintains the data in 
the third tier by JDBC. Then it responds with XML 
documents formatted with XSL. Using XML instead of 
HTML means that we can have dynamic content 
without sacrificing usability or interoperability.  
 
4. Methodologies and Algorithms 
 
      In this section, we introduce methods and 
algorithms used in PCFinder, including CBR, 
clustering analysis, and profile and collaborative 
filtering. 
 
4.1. Dynamic Order-Based Similarity Measure 
 
      Local similarity measures largely depend on the 
application domain, but they all serve the same 
purpose: to return an estimation between 0 and 1 and to 
indicate the similarity between a particular attribute of 
a case and its equivalent in the request [2]. 
      Here, we present a method of Order-Based 
Similarity Measure. This method is based on Order-
Based Retrieval [4]. The customer supplies a variety of 
information (preferred values, values to be avoided, 
maximum values and minimum values, for example) 
and we construct an ordering relation from this 
information. Then we can use this ordering to calculate 
the local similarity.  
       The advantage of Order-Based Similarity Measure 
is that it is easy to maintain the similarity attribute-
value pair table. We can get the similarity attribute-
value dynamically rather than from pre-initialization. 
For example, when a new attribute of some case is 
added in the case base, we do not need to update the 
similarity attribute-value pair table saved in XML 
documents or other databases. 
      Consider a set V  of values for a 

specific attribute of some case. Assume that 
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      For example, we wish to find a computer whose 
processor speed is 800MHz, but we are willing to 
consider speeds between 700MHz and 1000MHz.  The 
possible values of processor speed and the 
corresponding local similarity measure are shown in 
Table 1. In this case, speeds above 1000MHz have zero 
similarity, so that n = 7, 
V = {700,750,800,850,900,950,1000}, q = 800, m = 3, 
and therefore ,(qS .  
 
4.2. Modification of the Weight 
 
      The Global Similarity Measure is computed 
typically by taking a weighted average of the local 
similarity measures. The weights  provide some 
indication of the relative importance of the different 
attributes.  These are the quantities that we want to 
modify when the user is not satisfied with some of the 
proposed specific attributes. Following a critique from 
the user, the main task of the system consists of 
computing how much change we should make to the 
weight(s) of certain attribute(s) that the user considers 
to be the most important to him. According to this, we 
should compute the similarity with the weight, , 
of each attribute using this formula: 

iSim

Sim  

Where  and  are the iic th attributes of the query and 

the case respectively, and where  is the similarity 

measure between these attributes. Let  denote the 
similarity of the criticized attribute. Once the similarity 
of each attribute is computed, we cover one by one 
each attribute whose similarity is greater than . 
We reduce the weight of these attributes as follows: 

*Sim

*Sim

*( SimSimSim ii >−ω  
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3. Otherwise, return “cannot explicitly be 
configured”. 

      Finally, if there were at least one attribute whose 
similarity is greater than , the weight of the 
criticized attribute is increased by an amount 
equivalent to the sum of all reductions to the weights of 
the attributes that lost importance, so that the sum of all 
weights stays equal to 1: 

*Sim
Adaptation of Dependent Attributes: 
1. Search the capability of independent attribute on 

which the dependent attribute depends in the 
constraint database; 

2. If the capability is not less than the customer’s 
requirements (if there is no conflict with the 
independent attribute), adapt the similar value of 
the dependent attribute to the customer’s required 
value; and adapt the value of the relevant related 
attribute;  

**** )( SimSimiSimSim ii >∀−+← ∑ωω  
      An example of weight modification is given in 
Figures 6 and 7 (section 5.3). 
 
4.3. Adaptation 

3. Otherwise, return “cannot explicitly be 
configured”. 

 
      Our PCFinder works for the configuration of 
personal computers. It is a highly structured domain 
[15] in which it is possible to subdivide the problems 
that arise and their related solutions into more or less 
independent sub-problems and related sub-solutions.  

      For example, if the consumer is satisfied with the 
model, CPU and some other attributes but not with 
main memory, the adaptation agent will search the 
model in the constraint database to check if this kind of 
model has the capability to install the desired value of 
main memory. If yes, the adaptation agent will create a 
new case that satisfies the consumer’s demand. 
Otherwise, it will tell the consumer that the most 
similar case, which the search agent has found, is the 
most suitable for him. 

      We divide the attributes (also called sub-problems 
or sub-solutions) in the query and case base into three 
types. The first type consists of independent attributes, 
whose values can be changed without being restricted 
by other attributes, such as hard disk drive and 
computer model. The second type consists of 
dependent attributes, whose values depend on the 
independent attributes when they need to be changed, 
such as main memory and CPU. The third type consists 
of related attributes, whose values change 
automatically when the other attributes change, such as 
price. Some independent attributes have no dependent 
attributes associated with them. The relation between 
these types of attributes is illustrated in Figure 2. 

      We do not recommend adapting related attributes 
because this type of attributes is related to the other 
attributes. Its value is determined by the other 
attributes. 
 
4.4. Profile and Collaborative Filtering 
 
      The customer’s shopping habits, such as 
preferences or constraints, usually last a long time. We 
collect them in the long-term profile. This provides 
very important and useful information to us when we 
try to get the customer’s requirement. Each user is 
associated with a single profile, and each profile 
contains user information such as personal 
identification and selection information.  

 

 

      When a consumer configures his computer, he can 
provide to the search agent a preferred value, a 
forbidden value, as well as maximum and minimum 
values for each attribute. For example, a consumer 
might prefer a notebook computer that has a processor 
speed of 900MHz but not 1000MHz; and he might 
expect a price range between $1500 and $2000. 
But such preferences are temporary, and therefore we 
collect them in the short-term profile [2].  

Figure 2. The relationship among independent 
attribute, dependent attribute and related attribute 

 
      Now, we introduce some scenarios about the 
method of our adaptation. 
Adaptation of Independent Attributes: 
1. Search the capability of independent attribute in 

the constraint database;       PCFinder also applies collaborative 
recommendation based on user profile. A user profile 
stores the background of an individual user on the 
server as a profile database. The key issue in 
recommendation is the ability to combine a target user 

2. If the capability is not less than the customer’s 
requirements, adapt the similar value of the 
independent attribute to the customer’s required 
value; and adapt the value of the relevant related 
attribute; 

 4



with a group of other users that have a profile similar 
to the target user [6]. 
      The three steps of collaborative recommendation 
are described as follows:  
1. Identify the group in which the given target user 

belongs. 
2. Produce a list of recommendable products or 

attributes. These products or attributes are ranked 
according to their appearance in the past 
purchasing history. 

3. Recommend the top n recommendable products or 
attributes. 

 
4.5. Clustering Analysis 
 
      Although there exist many kinds of clustering 
techniques, we use a simple one to illustrate how it 
supports product recommendation. More specifically, 
PCFinder groups customers according to the profiles of 
their background, such as the main intended use of 
computer and occupation of users, etc. These user’s 
attributes are called external attributes. When a new 
customer signs up, PCFinder provides some 
suggestions about the computer configurations 
according to an analysis of the purchasing history of all 
previous customers who have a similar profile. These 
computer configurations are called internal attributes.  
      Some cases and solutions about clustering analysis 
are described as follows: 
      Case 1: PCFinder suggests the most popularly used 
internal attribute by clustering their external attributes. 
For example, PCFinder groups customers who use their 
computer for playing games and discovers that most of 
them buy computers whose processor speed is 
1700MHz. Hence, such computers are recommended to 
new customers who intend to use their computer for 
playing games. 
      Case 2: PCFinder suggests the most popularly used 
internal attribute and gives this internal attribute a 
higher weight than the others by clustering their 
external attributes. For example, PCFinder groups 
customers who work as university professors and 
discovers that most of them have bought either 
Compaq or SONY. Hence, these two brands are 
recommended to new customers who are university 
professors, and the initial weight of “brand” is 
increased. 
      Case 3: This case is more complicated than the 
first two. In cases 1 and 2, clusters take account of a 
single attribute. In this case, PCFinder maps groups of 
related user profiles to groups of related computer 
configurations. For each new customer, PCFinder finds 
out to which group he belongs when he fills out his 
profile form. By analysing cluster correlations between 

external and internal attributes, PCFinder recommends 
the configuration of the cluster that correlates best with 
the customer’s external attributes. See Figure 3. 
 

 
Figure 3. The correlation between external and internal 

attributes 
 
For example, PCFinder could group customers who are 
university students, who use computers to play games 
and whose age is between 21 and 30. Using techniques 
from Cases 1 and 2 above, PCFinder discovers that 
most of these customers have bought SONY or 
Compaq computers whose processor speed is 
1700MHz, operating under the Home Edition of 
Windows XP. Therefore, these configurations are 
recommended to new customers who have the same 
profile as this group. 
 
5. Implementation of PCFinder 
 
      In order to illustrate the architecture and 
methodology of our product recommendation system, 
we constructed an intelligent agent – PCFinder – that 
runs on an online notebook computer store to provide 
suggestions to customers as well as management staff 
members.  
 
5.1. Running Environment, Developing Tools 
and Domain 
 
      To implement our online computer store with 
PCFinder, we chose Apache Tomcat 4.0 as our 
Application Server, which was used by 62% of the 
websites on the Internet in December 2002 [11]; we 
use JavaServer Pages and Java Beans as our 
developing tools.  We also apply XML as a Standard 
Generalized Markup Language, which is transformed 
to HTML by a XSLT processor. One hundred and fifty 
cases are stored in a relational database. Each case 
includes the following eight attributes: processor 
speed, memory, hard disk drive, display size, 
multimedia, operating system, brand and price.  
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5.2. Registration and Constraints Suggestion 
 
      When a new customer registers, the system asks 
him to fill out the form of necessary contact 
information and optional profile information (See 
Figure 4). As a first response, the agent provides 
suggestions about long-term constraints (See Figure 5) 
according to the profile information. If the customer is 
not satisfied with these suggestions, he can modify the 
long-term constraints information by himself. This 
makes the interaction more comfortable for the user, 
who does not need to fill in all these data. 
 

 
Figure 4. Profile information form 

 

 
Figure 5. Long-term constraints form 

       
5.3. Product Recommendation 
 
      In this section, we explain how the agent achieves 
the product recommendation process. PCFinder 

provides two ways to assist the customer in refining the 
result. The first way is weight modification. The 
product consists of several attributes. Different 
attributes have different weight in the customer’s mind. 
According to CBR theory, the product is recommended 
with respect to the integration of similarities of the 
whole attributes. One of the possibilities occurs if the 
most important attribute has the same weight as the 
other attributes at a time when the customer is 
unsatisfied with the result. In this case, weight 
modification can be applied to help the customer find a 
more satisfactory solution.  Consider the situation 
illustrated in Figure 6, for instance. The solution 
proposed as “result” is closest in similarity to the 
customer’s “query” among all 150 cases in the case 
base.  But the customer declares himself unhappy with 
the switch from IBM to Compaq. Therefore, PCFinder 
reduces the weight of all the attributes that had a local 
similarity higher than that of the brand (in this case, all 
the attributes) and increases the weight of “brand”. The 
case base is searched again with these new weights and 
the best match that is found is illustrated in Figure 7. 
      Another way to increase the consumer’s 
satisfaction is adaptation of the result. Some attributes 
of a product can be adapted, others cannot. Therefore, 
if the customer is still not satisfied with the attributes, 
some of them can be adapted. In this case, PCFinder 
helps the consumer in adapting the recommended 
computer until he is satisfied. In our system, the 
attributes of memory, hard drive, multimedia and 
operating system can be adapted. Figure 8 shows the 
result of adaptation starting from the unsatisfactory 
solution that was previously offered in Figure 7.  It is 
important to point out that this is the only time that the 
system allows itself to recommend a product that may 
not be in the case base, which explains why a solution 
so close to the consumer’s query had not been 
proposed earlier. 
 
5.4. Graphical Analysis 
 
      To visualize the relationship between user profiles 
(external attributes) and the product attributes (internal 
attributes), we construct a graphic-building wizard for 
management staffs’ marketing research. After selecting 
any items (one or more) of the user profiles and any 
one attribute of the product (See Figure 9), we get a 
statistical diagram (See Figure 10). 
      The X-axis represents the selected attribute of the 
product. The Y-axis represents the quantity of sales. 

There are two curves in this diagram. For example, the 
selected item is playing games (the intended use of the 
computer is to play games); the selected attribute of the 
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Figure 6. Before weight modification  

 

 
Figure 7. After weight modification 

 

 
Figure 8. After adaptation of the result 

 
product is processor speed. This chart compares the 
sales between computers intended for playing game 
and not. According to this analysis, it is easy to know 
which attribute is more important for the customers in 
a specific group. Hence, the initial weight value or the 
recommended product attribute will be modified. 

 

 

 

Figure 10. Statistics diagram generated by graphic-
building wizard 

 
6. Conclusions and Future Work 
 Figure 9. User interface of graphic-building wizard 
      In this paper, we started by raising the problem of 
lack of customer support in electronic commerce 
applications on the Internet. Then, we provided an 
overview of some major methods to solve this 
problem: case-based reasoning, collaborative filtering, 
and clustering techniques, etc. In particular, systems 
based on case-based reasoning are a promising 
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approach for the creation of agents that are able to 
recommend products according to the specific 
requirements of customers. 
      In order to illustrate our methods, we constructed 
an architecture to an intelligent agent and implemented 
an online computer store, which includes 150 cases in 
the case base and provides two kinds of friendly user 
interface to assist both customers’ shopping behavior 
and management staffs’ marketing research.  
      In order to test the validity of the methods used in 
our PCFinder, an experiment was carried out. In this 
experiment, 36 people (of professional and non-
professional backgrounds) were invited to evaluate our 
system. Based on the test results, the following 
conclusions can be drawn. Most people are satisfied 
with the Order-Based Similarity Measure, and they 
also believe that both weight modification and 
adaptation can improve its performance. Furthermore, 
applying either short-term or long-term constraints 
resulted in more satisfactory recommendations (than 
not applying them). 
       As for the future work, we intend to make more 
detailed studies, such as extending our work to more 
application domains, making PCFinder have the ability 
to communicate with other agents and to extract 
semantic information, etc. Therefore, PCFinder can 
potentially provide a large range of services to 
customers and increase their satisfaction with existing 
ones. This results in increased sales, making the 
company more profitable. 
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