
PCFinder: An Intelligent Product Recommendation Agent
for E-Commerce

Bin Xiao, Esma Aïmeur and José Manuel Fernandez

Computer Science Department, University of Montreal
{xiaobin, aimeur, fernandz@iro.umontreal.ca}

Abstract

 There are many e-commerce applications on the
web. A common shortcoming is the lack of customer
service and marketing analysis tools in most e-
commerce web sites. In order to overcome this
problem, we have constructed an intelligent agent
based on Case-Based Reasoning (CBR) and
collaborative filtering, which we have included in our
product recommendation system, called PCFinder.
 This system was four main characteristics. The first
is applying novel methodologies based on CBR to an
e-commerce application. We propose a heuristic to
represent an Order-Based Similarity Measure, together
with the method of weight modification and adaptation.
The second is applying CBR and collaborative filtering
techniques to make our intelligent agent more efficient
and effective. We also apply clustering analysis
techniques to assist our intelligent agent for grouping
the customers according to their long-term profiles in
order to analyse the user profiles (external attributes)
and provide some suggestions of the items (internal
attributes) of the product. The third is introducing a
method for constructing product recommendation
systems: from architecture to methodologies and from
applied technologies to implementations. The last is
providing a graphic-building wizard based on
clustering analysis of the past purchasing history to the
management staff for analysing the marketing
tendencies.

1. Introduction

 Electronic commerce is steadily becoming more
important in changing the way people exchange
products and services. It provides a convenient and
easy way for both the consumer to buy things and the
merchant to sell things. However, some problems
remain unsolved if people wish to take complete
advantage of this new paradigm. One of these
problems is the lack of customer service featured in e-
commerce applications. Currently, product support
offered by most organizations to their Internet
customers is of comparatively poor quality, if it exists

at all. Certainly, most organizations’ web sites offer
their customers the possibility to query (as opposed to
physically examine) the available products using
catalogues, textual search engines or database
interfaces. These tools, however, require the user to
exert some efforts during the interaction phase. Most of
the time, these tools are not enough for the consumer
(i.e. the Internet user) if the number of products is
substantial, if the products are similar to each other or
if the consumer does not know the domain very well.
Or many customers who could be lost and feel
frustrated facing this large number of choices, the only
thing they feel easy to do is just get off the site and
never come back again [2]!
 One of the solutions to this problem is to use
Product Recommendation Systems (PRS), which
proactively suggest products to the user according to
specified user preferences or requirements. PRS
contribute to increase customer satisfaction, therefore
to enhance brand recognition and improved market
performance for the organization. One of the promising
technologies for the conception of recommendation
systems is Case-Based Reasoning (CBR) [1]. The
purpose of this sub-domain of artificial intelligence is
to conceive knowledge-based systems, which, in
solving new problems, reuse and adapt solutions to
prior similar problems [9].
 In this paper, we first provide a brief overview of
agent-based systems in e-commerce. Then we describe
the three-tiered architecture of our prototype,
PCFinder, whose purpose is to help a computer e-shop
propose the most appropriate products to its clients.
Based on that, section 4 presents the algorithms and
methodologies used in PCFinder. It focuses on
dynamic Order-Based Similarity Measure, weight
modification, adaptation, profile and collaborative
filtering, and clustering analysis. Section 5 describes
the implementation of PCFinder. Finally, we discuss
pros and cons of this method and propose some future
directions.

 1

2. Agent-Based Systems in e-Commerce

 Electronic commerce is booming with increasing
accessibility to the Internet in virtually every corner of
the world. In the new generation of e-commerce, agent-
based systems are becoming an attractive paradigm.
Agents have demonstrated their tremendous potential
in conducting various tasks in e-commerce, such as
searching, buying and selling products, etc.
 An agent can be anything that perceives its
environment through sensors and acts upon that
environment through effectors [13]. In the case of our
PCFinder, the environment includes two parts. One is
the database that saves product information, customer
profiles and historical purchasing record for searching
and recommending. Another one is the computer
terminal for interaction with the user. The agent’s
percepts are the words of an HTML (Hypertext Markup
Language) document acquired from using software
sensors that connect through the Internet/Intranet
utilizing HTTP (Hypertext Transfer Protocol). The
agent’s actions are to determine whether an appropriate
product has been found matching its criteria of seeking.
It acts on the environment using output methods to
update the user on the status of the search or the end
result(s), which is hopefully the attainment of the goal.
 According to the sources of data on which
recommendation is based and the way in which that
data is put into use, the majority of product
recommendation systems are developed using content-
based [10], collaborative-based [14], constraint-based
[8] filtering or knowledge-based [5] methods as their
underlying technologies. Recently, Case-Based
Reasoning (CBR) [3] as a category of knowledge-based
methods has become a promising technology in agent-
based e-commerce systems [7][9].
 Our system differs from other product
recommendation systems in that it applies novel CBR
methods, such as the Order-Based Similarity Measure,
weight modification and adaptation. For example, if
the customer is not satisfied with any of the
recommended results, the Intelligent Travel
Recommender (ITR) [12] suggests a new query by
tightening or relaxing some of the query constraints;
XMLFinder [9] asks the customer to select the
attributes he is most dissatisfied with and then modifies
the weight of these attributes. PCFinder employs an
alternative method to increase the weight of the most
important attribute and also provides a method to
automatically adapt the result based on the customer’s
request. Another feature of PCFinder is a graphic-
building wizard based on the clustering analysis of
purchase records allowing the management staff to
analyze market tendencies.

3. Architecture of PCFinder

 Our PCFinder prototype uses a typical three-tiered
architecture (see Figure 1). The first tier provides a
way to present data to the user. The middle tier is in
charge of retrieving the data from data sources and
provides a well-defined interface for the first tier to
access the data. The third tier contains the data sources.
The three-tiered model is more flexible and scalable
than the traditional client/server architecture, which is
why we use it.
 The first tier of our application includes personal
computers with browsers. The intelligent agent,
PCFinder, runs in the middle tier. It includes four
modules, a management module, a search module, an
adaptation module and a clustering analysis module. It
also includes generative rules. The management
module is in charge of interacting with the first tier,
managing the others modules and maintaining the
database in the third tier. The search module helps the
customer to find the most appropriate product from the
product base (case base) according to the customer’s
query and long-term constraints. The adaptation
module modifies products to better fulfill the
customer’s needs when the customer thinks it is
necessary to do so. The clustering analysis module
analyzes and groups the information of customer
profiles database and historical database, and generates
rules so that management module can adjust some
initial values, such as initial weight of the attribute.
The third tier contains the database. It includes a case
base that contains product data, a case constraint
database that contains adaptation criteria, a customer
profile database that contains customer’s background
and long-term constraints, and a historical database that
contains the historical purchasing records of each
customer.

Figure 1. Three-tiered architecture of PCFinder

 2

Table 1. Local similarity measure for the “processor speed” attribute

Serial Number (i) 1 2 3 4 5 6 7 8 9
Processor Speed (MHz) 700 750 800 850 900 950 1000 1200 1400
Similarity 0.6 0.8 1.0 0.8 0.6 0.4 0.2 0 0

 The first tier sends HTML form queries to the
middle tier by encoding commands and arguments in
HTTP requests. The middle tier retrieves the data from
the case base in the third tier or maintains the data in
the third tier by JDBC. Then it responds with XML
documents formatted with XSL. Using XML instead of
HTML means that we can have dynamic content
without sacrificing usability or interoperability.

4. Methodologies and Algorithms

 In this section, we introduce methods and
algorithms used in PCFinder, including CBR,
clustering analysis, and profile and collaborative
filtering.

4.1. Dynamic Order-Based Similarity Measure

 Local similarity measures largely depend on the
application domain, but they all serve the same
purpose: to return an estimation between 0 and 1 and to
indicate the similarity between a particular attribute of
a case and its equivalent in the request [2].
 Here, we present a method of Order-Based
Similarity Measure. This method is based on Order-
Based Retrieval [4]. The customer supplies a variety of
information (preferred values, values to be avoided,
maximum values and minimum values, for example)
and we construct an ordering relation from this
information. Then we can use this ordering to calculate
the local similarity.
 The advantage of Order-Based Similarity Measure
is that it is easy to maintain the similarity attribute-
value pair table. We can get the similarity attribute-
value dynamically rather than from pre-initialization.
For example, when a new attribute of some case is
added in the case base, we do not need to update the
similarity attribute-value pair table saved in XML
documents or other databases.
 Consider a set V of values for a

specific attribute of some case. Assume that

{ naaa ,,, 21 L= }
ii aa <−1

for each , , where n is the maximum
number of possible values within the range acceptable
to the customer. We say that i represents the serial
number of value in V. Let q be the customer’s

“ideal” value for this attribute. If q , let m be its

serial number, i.e.

i ni ≤

ia
V∈

<1

maq = . Assuming for simplicity

that Vq∈ whenever , we define the
local similarity measure as follows.

naq ≤≤

+
+−

)1
max[(

n
mn

5/|3| −

a1

+
+−

)1
/()1

/|

n
i

m

1)

=),ai

−= i

i

ai

ω

),(iii cqSii ω=

iq

i

iS

*) i∀Simi −←ω

<−
>−
∈−−

1/(1
(1

 if]),1|1
(

aqi
aqn
Vqmi

qS n

 For example, we wish to find a computer whose
processor speed is 800MHz, but we are willing to
consider speeds between 700MHz and 1000MHz. The
possible values of processor speed and the
corresponding local similarity measure are shown in
Table 1. In this case, speeds above 1000MHz have zero
similarity, so that n = 7,
V = {700,750,800,850,900,950,1000}, q = 800, m = 3,
and therefore ,(qS .

4.2. Modification of the Weight

 The Global Similarity Measure is computed
typically by taking a weighted average of the local
similarity measures. The weights provide some
indication of the relative importance of the different
attributes. These are the quantities that we want to
modify when the user is not satisfied with some of the
proposed specific attributes. Following a critique from
the user, the main task of the system consists of
computing how much change we should make to the
weight(s) of certain attribute(s) that the user considers
to be the most important to him. According to this, we
should compute the similarity with the weight, ,
of each attribute using this formula:

iSim

Sim

Where and are the iic th attributes of the query and

the case respectively, and where is the similarity

measure between these attributes. Let denote the
similarity of the criticized attribute. Once the similarity
of each attribute is computed, we cover one by one
each attribute whose similarity is greater than .
We reduce the weight of these attributes as follows:

*Sim

*Sim

*(SimSimSim ii >−ω

 3

3. Otherwise, return “cannot explicitly be
configured”.

 Finally, if there were at least one attribute whose
similarity is greater than , the weight of the
criticized attribute is increased by an amount
equivalent to the sum of all reductions to the weights of
the attributes that lost importance, so that the sum of all
weights stays equal to 1:

*Sim
Adaptation of Dependent Attributes:
1. Search the capability of independent attribute on

which the dependent attribute depends in the
constraint database;

2. If the capability is not less than the customer’s
requirements (if there is no conflict with the
independent attribute), adapt the similar value of
the dependent attribute to the customer’s required
value; and adapt the value of the relevant related
attribute;

****)(SimSimiSimSim ii >∀−+← ∑ωω
 An example of weight modification is given in
Figures 6 and 7 (section 5.3).

4.3. Adaptation

3. Otherwise, return “cannot explicitly be
configured”.

 Our PCFinder works for the configuration of
personal computers. It is a highly structured domain
[15] in which it is possible to subdivide the problems
that arise and their related solutions into more or less
independent sub-problems and related sub-solutions.

 For example, if the consumer is satisfied with the
model, CPU and some other attributes but not with
main memory, the adaptation agent will search the
model in the constraint database to check if this kind of
model has the capability to install the desired value of
main memory. If yes, the adaptation agent will create a
new case that satisfies the consumer’s demand.
Otherwise, it will tell the consumer that the most
similar case, which the search agent has found, is the
most suitable for him.

 We divide the attributes (also called sub-problems
or sub-solutions) in the query and case base into three
types. The first type consists of independent attributes,
whose values can be changed without being restricted
by other attributes, such as hard disk drive and
computer model. The second type consists of
dependent attributes, whose values depend on the
independent attributes when they need to be changed,
such as main memory and CPU. The third type consists
of related attributes, whose values change
automatically when the other attributes change, such as
price. Some independent attributes have no dependent
attributes associated with them. The relation between
these types of attributes is illustrated in Figure 2.

 We do not recommend adapting related attributes
because this type of attributes is related to the other
attributes. Its value is determined by the other
attributes.

4.4. Profile and Collaborative Filtering

 The customer’s shopping habits, such as
preferences or constraints, usually last a long time. We
collect them in the long-term profile. This provides
very important and useful information to us when we
try to get the customer’s requirement. Each user is
associated with a single profile, and each profile
contains user information such as personal
identification and selection information.

 When a consumer configures his computer, he can
provide to the search agent a preferred value, a
forbidden value, as well as maximum and minimum
values for each attribute. For example, a consumer
might prefer a notebook computer that has a processor
speed of 900MHz but not 1000MHz; and he might
expect a price range between $1500 and $2000.
But such preferences are temporary, and therefore we
collect them in the short-term profile [2].

Figure 2. The relationship among independent
attribute, dependent attribute and related attribute

 Now, we introduce some scenarios about the
method of our adaptation.
Adaptation of Independent Attributes:
1. Search the capability of independent attribute in

the constraint database; PCFinder also applies collaborative
recommendation based on user profile. A user profile
stores the background of an individual user on the
server as a profile database. The key issue in
recommendation is the ability to combine a target user

2. If the capability is not less than the customer’s
requirements, adapt the similar value of the
independent attribute to the customer’s required
value; and adapt the value of the relevant related
attribute;

 4

with a group of other users that have a profile similar
to the target user [6].
 The three steps of collaborative recommendation
are described as follows:
1. Identify the group in which the given target user

belongs.
2. Produce a list of recommendable products or

attributes. These products or attributes are ranked
according to their appearance in the past
purchasing history.

3. Recommend the top n recommendable products or
attributes.

4.5. Clustering Analysis

 Although there exist many kinds of clustering
techniques, we use a simple one to illustrate how it
supports product recommendation. More specifically,
PCFinder groups customers according to the profiles of
their background, such as the main intended use of
computer and occupation of users, etc. These user’s
attributes are called external attributes. When a new
customer signs up, PCFinder provides some
suggestions about the computer configurations
according to an analysis of the purchasing history of all
previous customers who have a similar profile. These
computer configurations are called internal attributes.
 Some cases and solutions about clustering analysis
are described as follows:
 Case 1: PCFinder suggests the most popularly used
internal attribute by clustering their external attributes.
For example, PCFinder groups customers who use their
computer for playing games and discovers that most of
them buy computers whose processor speed is
1700MHz. Hence, such computers are recommended to
new customers who intend to use their computer for
playing games.
 Case 2: PCFinder suggests the most popularly used
internal attribute and gives this internal attribute a
higher weight than the others by clustering their
external attributes. For example, PCFinder groups
customers who work as university professors and
discovers that most of them have bought either
Compaq or SONY. Hence, these two brands are
recommended to new customers who are university
professors, and the initial weight of “brand” is
increased.
 Case 3: This case is more complicated than the
first two. In cases 1 and 2, clusters take account of a
single attribute. In this case, PCFinder maps groups of
related user profiles to groups of related computer
configurations. For each new customer, PCFinder finds
out to which group he belongs when he fills out his
profile form. By analysing cluster correlations between

external and internal attributes, PCFinder recommends
the configuration of the cluster that correlates best with
the customer’s external attributes. See Figure 3.

Figure 3. The correlation between external and internal

attributes

For example, PCFinder could group customers who are
university students, who use computers to play games
and whose age is between 21 and 30. Using techniques
from Cases 1 and 2 above, PCFinder discovers that
most of these customers have bought SONY or
Compaq computers whose processor speed is
1700MHz, operating under the Home Edition of
Windows XP. Therefore, these configurations are
recommended to new customers who have the same
profile as this group.

5. Implementation of PCFinder

 In order to illustrate the architecture and
methodology of our product recommendation system,
we constructed an intelligent agent – PCFinder – that
runs on an online notebook computer store to provide
suggestions to customers as well as management staff
members.

5.1. Running Environment, Developing Tools
and Domain

 To implement our online computer store with
PCFinder, we chose Apache Tomcat 4.0 as our
Application Server, which was used by 62% of the
websites on the Internet in December 2002 [11]; we
use JavaServer Pages and Java Beans as our
developing tools. We also apply XML as a Standard
Generalized Markup Language, which is transformed
to HTML by a XSLT processor. One hundred and fifty
cases are stored in a relational database. Each case
includes the following eight attributes: processor
speed, memory, hard disk drive, display size,
multimedia, operating system, brand and price.

 5

5.2. Registration and Constraints Suggestion

 When a new customer registers, the system asks
him to fill out the form of necessary contact
information and optional profile information (See
Figure 4). As a first response, the agent provides
suggestions about long-term constraints (See Figure 5)
according to the profile information. If the customer is
not satisfied with these suggestions, he can modify the
long-term constraints information by himself. This
makes the interaction more comfortable for the user,
who does not need to fill in all these data.

Figure 4. Profile information form

Figure 5. Long-term constraints form

5.3. Product Recommendation

 In this section, we explain how the agent achieves
the product recommendation process. PCFinder

provides two ways to assist the customer in refining the
result. The first way is weight modification. The
product consists of several attributes. Different
attributes have different weight in the customer’s mind.
According to CBR theory, the product is recommended
with respect to the integration of similarities of the
whole attributes. One of the possibilities occurs if the
most important attribute has the same weight as the
other attributes at a time when the customer is
unsatisfied with the result. In this case, weight
modification can be applied to help the customer find a
more satisfactory solution. Consider the situation
illustrated in Figure 6, for instance. The solution
proposed as “result” is closest in similarity to the
customer’s “query” among all 150 cases in the case
base. But the customer declares himself unhappy with
the switch from IBM to Compaq. Therefore, PCFinder
reduces the weight of all the attributes that had a local
similarity higher than that of the brand (in this case, all
the attributes) and increases the weight of “brand”. The
case base is searched again with these new weights and
the best match that is found is illustrated in Figure 7.
 Another way to increase the consumer’s
satisfaction is adaptation of the result. Some attributes
of a product can be adapted, others cannot. Therefore,
if the customer is still not satisfied with the attributes,
some of them can be adapted. In this case, PCFinder
helps the consumer in adapting the recommended
computer until he is satisfied. In our system, the
attributes of memory, hard drive, multimedia and
operating system can be adapted. Figure 8 shows the
result of adaptation starting from the unsatisfactory
solution that was previously offered in Figure 7. It is
important to point out that this is the only time that the
system allows itself to recommend a product that may
not be in the case base, which explains why a solution
so close to the consumer’s query had not been
proposed earlier.

5.4. Graphical Analysis

 To visualize the relationship between user profiles
(external attributes) and the product attributes (internal
attributes), we construct a graphic-building wizard for
management staffs’ marketing research. After selecting
any items (one or more) of the user profiles and any
one attribute of the product (See Figure 9), we get a
statistical diagram (See Figure 10).
 The X-axis represents the selected attribute of the
product. The Y-axis represents the quantity of sales.

There are two curves in this diagram. For example, the
selected item is playing games (the intended use of the
computer is to play games); the selected attribute of the

 6

Figure 6. Before weight modification

Figure 7. After weight modification

Figure 8. After adaptation of the result

product is processor speed. This chart compares the
sales between computers intended for playing game
and not. According to this analysis, it is easy to know
which attribute is more important for the customers in
a specific group. Hence, the initial weight value or the
recommended product attribute will be modified.

Figure 10. Statistics diagram generated by graphic-
building wizard

6. Conclusions and Future Work
 Figure 9. User interface of graphic-building wizard
 In this paper, we started by raising the problem of
lack of customer support in electronic commerce
applications on the Internet. Then, we provided an
overview of some major methods to solve this
problem: case-based reasoning, collaborative filtering,
and clustering techniques, etc. In particular, systems
based on case-based reasoning are a promising

 7

approach for the creation of agents that are able to
recommend products according to the specific
requirements of customers.
 In order to illustrate our methods, we constructed
an architecture to an intelligent agent and implemented
an online computer store, which includes 150 cases in
the case base and provides two kinds of friendly user
interface to assist both customers’ shopping behavior
and management staffs’ marketing research.
 In order to test the validity of the methods used in
our PCFinder, an experiment was carried out. In this
experiment, 36 people (of professional and non-
professional backgrounds) were invited to evaluate our
system. Based on the test results, the following
conclusions can be drawn. Most people are satisfied
with the Order-Based Similarity Measure, and they
also believe that both weight modification and
adaptation can improve its performance. Furthermore,
applying either short-term or long-term constraints
resulted in more satisfactory recommendations (than
not applying them).
 As for the future work, we intend to make more
detailed studies, such as extending our work to more
application domains, making PCFinder have the ability
to communicate with other agents and to extract
semantic information, etc. Therefore, PCFinder can
potentially provide a large range of services to
customers and increase their satisfaction with existing
ones. This results in increased sales, making the
company more profitable.

References

[1] Aamodt, A. and Plaza, E., “Case-based reasoning:
Foundational issues, methodological variations, and system
approaches”, AI Communications, Vol. 7(1), 1994, pp. 39-59.

[2] Aïmeur, E. and Vézeau M., “Short-Term Profiling for a
Case-Based Reasoning Recommendation System”,
ECML'2000, Spain, May 2000, pp. 1-12.

[3] Bergmann, R., Schmitt, S., and Stahl, A., “Intelligent
customer support for product selection with case-based
reasoning”, E-Commerce and Intelligent Methods, Physica-
Verlag, 2002, pp. 322-341.

[4] Bridge, D., “Product Recommendation Systems: A New
Direction”, ICCBR 2001, R.Weber and C.G.von
Wangenheim (eds.), 2001, pp.79-86.

[5] Burke, R., “Knowledge-based Recommender Systems”,
Encyclopedia of Library and Information Systems, A. Kent
(ed.), Vol. 69, Supplement 32. New York: Marcel Dekker,
2000.

[6] Cunningham, P., Bergmann, R., Schmitt, S., Traphöner,
R., Breen, S. and Smyth, B., “Intelligent Support for Online
Sales: The WEBSELL Experience”, ICCBR 2001, Harbor
Center in Vancouver, British Columbia, Canada. 31 July
2001, pp. 87-93.

[7] Guttman, R. H., Moukas, A. G., and Maes, P., “Agent-
Mediated Electronic Commerce: A Survey”, Knowledge
Engineering Review, Vol.13, No.2, 1998.

[8] Kumar, V., “Algorithms for Constraint Satisfaction
Problems: A Survey”, AI Magazine, 13(1), 1992, pp. 32-44.

[9] Ma, Y. and Aïmeur, E. “Intelligent Agent in Electronic
Commerce XMLFinder”, 10th IEEE International Workshops
on Enabling Technologies: Infrastructure for Collaborative
Research, Knowledge Media Networking Workshop, MIT,
Cambridge, MA, June 2001, pp. 273-278.

[10] Moukas, A., “Amalthaea: Information Filtering and
Discovery using a Multiagent Evolving System”, Journal of
Applied AI, Vol. 11, No. 5, 1997, pp. 437-457.

[11] Netcraft: http://www.netcraft.com/survey/

[9] Ricci, F., Arslan, B., Mirzadeh, N. and Venturini, A.,
“ITR : A Case-Based Travel Advisory System”, 6th
European Conference (ECCBR 2002), Aberdeen, Scotland,
UK, September 2002.

[13] Russell, S. and Norvig, P., Artificial Intelligence: A
Modern Approach, Prentice Hall, Upper Saddle River, N.J.,
1995, pp. 31.

[14] Shardanand, U., and Maes, P., “Social Information
Filtering: Algorithms for Automating ‘Word of Mouth’ ”.
CHI’95 Conference on Human Factors in Computing
Systems, ACM, 1995, pp. 210-217.

[15] Stahl, A. and Bergmann, R., “Applying Recursive CBR
for the Customization of Structured Products in an Electronic
Shop”, 5th European Workshop on Case-Based Reasoning,
Springer Verlag, 2000, pp. 297-308.

 8

http://www.netcraft.com/survey/

