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SYSTEM 1 VS. SYSTEM 2 COGNITION
2 systems (and categories of cognitive tasks):

System 1
• Intuitive, fast, UNCONSCIOUS, 

non-linguistic, habitual
• Current DL

System 2
• Slow, logical, sequential, CONSCIOUS, 

linguistic, algorithmic, planning, reasoning
• Future DL

Manipulates high-level / 
semantic concepts, which can 

be recombined 
combinatorially
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• Out-of-distribution generalization & transfer

MISSING TO EXTEND DEEP LEARNING TO REACH
HUMAN-LEVEL AI 

• Higher-level cognition: system 1 →  system 2
• High-level semantic representations

• Compositionality

• Causality

• Agent perspective:
• Better world models

• Causality

• Knowledge-seeking

• Connections between all 3 above!



DEALING WITH 
CHANGES IN 

DISTRIBUTION



AGENT LEARNING NEEDS
OOD GENERALIZATION

Agents face non-stationarities

Multi-agent systems: many changes in distribution
Ood generalization needed for continual learning
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Changes in distribution due to 

• their actions 

• actions of other agents

• different places, times, sensors, 
actuators, goals, policies, etc.



Different forms of compositionality 
each with different exponential advantages

• Distributed representations 
(Pascanu et al ICLR 2014)

COMPOSITIONALITY HELPS IID AND OOD GENERALIZATION
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(Lee, Grosse, Ranganath & 
Ng, ICML 2009) 

• Composition of layers in deep nets 
(Montufar et al NeurIPS 2014)

• Systematic generalization in language, 
analogies, abstract reasoning? TBD



SYSTEMATIC
GENERALIZATION

• Studied in linguistics

• Dynamically recombine existing concepts

(Lake & Baroni 2017)
(Bahdanau et al & Courville ICLR 2019)
CLOSURE: ongoing work by Bahdanau et al & Courville on CLEVR 
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RESEARCH ARTICLES
◥

COGNITIVE SCIENCE

Human-level concept learning
through probabilistic
program induction
Brenden M. Lake,1* Ruslan Salakhutdinov,2 Joshua B. Tenenbaum3

People learning new concepts can often generalize successfully from just a single example,
yet machine learning algorithms typically require tens or hundreds of examples to
perform with similar accuracy. People can also use learned concepts in richer ways than
conventional algorithms—for action, imagination, and explanation. We present a
computational model that captures these human learning abilities for a large class of
simple visual concepts: handwritten characters from the world’s alphabets. The model
represents concepts as simple programs that best explain observed examples under a
Bayesian criterion. On a challenging one-shot classification task, the model achieves
human-level performance while outperforming recent deep learning approaches. We also
present several “visual Turing tests” probing the model’s creative generalization abilities,
which in many cases are indistinguishable from human behavior.

D
espite remarkable advances in artificial
intelligence and machine learning, two
aspects of human conceptual knowledge
have eluded machine systems. First, for
most interesting kinds of natural andman-

made categories, people can learn a new concept

from just one or a handful of examples, whereas
standard algorithms in machine learning require
tens or hundreds of examples to perform simi-
larly. For instance, people may only need to see
one example of a novel two-wheeled vehicle
(Fig. 1A) in order to grasp the boundaries of the

new concept, and even children canmake mean-
ingful generalizations via “one-shot learning”
(1–3). In contrast, many of the leading approaches
inmachine learning are also themost data-hungry,
especially “deep learning” models that have
achieved new levels of performance on object
and speech recognition benchmarks (4–9). Sec-
ond, people learn richer representations than
machines do, even for simple concepts (Fig. 1B),
using them for a wider range of functions, in-
cluding (Fig. 1, ii) creating new exemplars (10),
(Fig. 1, iii) parsing objects into parts and rela-
tions (11), and (Fig. 1, iv) creating new abstract
categories of objects based on existing categories
(12, 13). In contrast, the best machine classifiers
do not perform these additional functions, which
are rarely studied and usually require special-
ized algorithms. A central challenge is to ex-
plain these two aspects of human-level concept
learning: How do people learn new concepts
from just one or a few examples? And how do
people learn such abstract, rich, and flexible rep-
resentations? An even greater challenge arises
when putting them together: How can learning
succeed from such sparse data yet also produce
such rich representations? For any theory of

RESEARCH
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Fig. 1. People can learn rich concepts from limited data. (A and B) A single example of a new concept (red boxes) can be enough information to support
the (i) classification of new examples, (ii) generation of new examples, (iii) parsing an object into parts and relations (parts segmented by color), and (iv)
generation of new concepts from related concepts. [Image credit for (A), iv, bottom: With permission from Glenn Roberts and Motorcycle Mojo Magazine]
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(Lake	et	al	2015)

• Even when new combinations have 0 probability 
under training distribution

• E.g. Science fiction scenarios
• E.g. Driving in an unknown city

• Not very successful with current DL 



Q1 (CLEVR): There is another cube that is the same 
size as the brown cube; what is its color?

Q2 (CLEVR): There is a thing that is in front of the 
yellow thing; does it have the same color as cylinder? 

Q3 (CLOSURE):There is a rubber object that is the 
same size as the gray cylinder; does it have the same 
color as the tiny shiny block?

CLOSURE: Known Referring Expressions in Novel Contexts

a matching referring expression 

a comparison question

NEW: a comparison question
with a matching referring 
expression

CLOSURE: Assessing Systematic Generalization of CLEVR Models Bahdanau et al, ArXiV)



7 CLOSURE Tests

● matching REs and embedded complex REs (2 tests)
○ Is there a cylinder that is the same material as the object to the left of the blue 

thing?
● matching REs and comparison questions (2 tests)

○ There is another cube that is the same material as the gray cube; does it have 
the same size as the metal thing to the right of the tiny gray cube?

● matching REs and logical operations (3 tests)
○ What is the color of the thing that is to the left of the red cylinder and is the same 

size as the red block?



CLEVR models struggle on CLOSURE questions 

● end-to-end models (FiLM & MAC) struggle on 6 out of 7 tests 
● seq2seq program generator (NS-VQA) struggles on the logical tests
● (surprise!) tensor-valued neural module networks (Tensor-NMN) fair badly even when 

connected in ground-truth layouts (our new Vector-NMN fares better)

more 
experiments 
(including few-
shot) in the 
paper!



CONTRAST WITH THE SYMBOLIC AI PROGRAM

Avoid pitfalls of classical AI rule-based symbol-manipulation

• Need efficient large-scale learning

• Need semantic grounding in system 1

• Need distributed representations for generalization

• Need efficient = trained search (also system 1)

• Need uncertainty handling
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But want

• Systematic generalization

• Factorizing knowledge in small exchangeable pieces

• Manipulating variables, instances, references & indirection



SYSTEM 2 BASICS: 
ATTENTION AND 
CONSCIOUSNESS



CORE INGREDIENT FOR CONSCIOUSNESS: 
ATTENTION

• Focus on a one or a few elements at a time
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• Content-based soft attention is convenient, 
can backprop to learn where to attend

• Attention is an internal action, needs a 
learned attention policy (Egger et al 2019)

• Self-attention: SOTA in NLP (transformers)

(Bahdanau et al ICLR 2015)

Attention



MEMORY ACCESS & VANISHING GRADIENT -
REMINDING AND CREDIT ASSIGNMENT

Humans selectively recall memories that are	relevant	to	the	current behavior

This	creates a		link between arbitrarily far	past and	the	present

Automatic reminding:
• Triggered by	contextual features.

• Can	serve	a	useful computational role in	ongoing cognition.

• Can	be used for	credit assignment to	past events?

Assign credit through only a	few	past states,	instead of	all	states:
• Sparse,	local	credit assignment.

• How	to	pick the	states	to	assign credit to?
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Rosemary	Ke,	Anirudh Goyal,	Olexa Bilaniuk,	Jonathan	Binas,	Mike	Mozer,	Yoshua	Bengio,	

NeurIPS 2018

Sparse Attentive Backtracking: attention on the past

The	attention	mechanism of	the	associative	memory	picks up	past memories
which match	(associate with)	the	current state.

è Bypass	the	vanishing gradient	problem and	capture	long-term dependencies
Ongoing work with G.	Lajoie,	G.	Kerg,	B.	Kanuparthi



FROM ATTENTION TO INDIRECTION

Attention

• Attention = dynamic connection 
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• Receiver gets the selected value

• Value of what? From where? 

à Also send ‘name’ (or key) of sender

• Keep track of 'named’ objects: indirection

• Manipulate sets of objects (transformers)



FROM ATTENTION TO CONSCIOUSNESS

C-word not taboo anymore in cognitive neuroscience

Global Workspace Theory
(Baars 1988++, Dehaene 2003++)

• Bottleneck of conscious processing

• Selected item is broadcast, stored in short-term 
memory, conditions perception and action

• System 2-like sequential processing, conscious 
reasoning & planning & imagination

17



ML FOR CONSCIOUSNESS & CONSCIOUSNESS FOR ML

• Formalize and test specific hypothesized 
functionalities of consciousness
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• Get the magic out of consciousness

• Understand evolutionary advantage of 
consciousness: computational and statistical 
(e.g. systematic generalization)

• Provide these advantages to learning agents



THOUGHTS, CONSCIOUSNESS, LANGUAGE

• Consciousness: from humans reporting

• High-level representations          language
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,
<latexit sha1_base64="vV9KmI3DSqORXXjKQpnPOIDgOOM="></latexit>

• High-level concepts: meaning anchored in low-
level perception and action à tie system 1 & 2

• Grounded high-level concepts 

à better natural language understanding

• Grounded language learning
e.g. BabyAI: (Chevalier-Boisvert and al ICLR 2019)



BABY	AI	PLATFORM	Chevalier-Boisvert et al & Bengio ICLR 2019

Purpose: simulate	language	learning	from	a	human	and	study	data	efficiency

Comprises:

● a	gridworld with	partial	observability	(Minigrid)
● a	compositional	natural-looking	Baby	language	

with	over	10^19	instructions
● 19	levels	of	increasing	difficulty
● a	heuristic	stack-based	expert	that	can	solve	all	levels

github.com/mila-udem/babyai

Grounded Language Learning



Under review as a conference paper at ICLR 2019

The language can also express the conjunction of several such tasks, for example “put a red ball
next to the green box after you open the door". The Backus-Naur Form (BNF) grammar for the lan-
guage is presented in Figure 2 and some example instructions drawn from this language are shown
in Figure 3. In order to keep the resulting instructions readable by humans, we have imposed some
structural restrictions on this language: the and connector can only appear inside the then and after
forms, and instructions can contain no more than one then or after word. The language is inten-
tionally kept simple, but still exhibits interesting combinatorial properties, and contains 2.48⇥ 1019

possible instructions.

hSenti |= hSent1i | hSent1i ’,’ then hSent1i | hSent1i after you hSent1i
hSent1i |= hClausei | hClausei and hClausei
hClausei |= go to hDescri | pick up hDescrNotDoori | open hDescrDoori |

put hDescrNotDoori next to hDescri
hDescrDoori |= hArticlei hColori door hLocSpeci
hDescrBalli |= hArticlei hColori ball hLocSpeci
hDescrBoxi |= hArticlei hColori box hLocSpeci
hDescrKeyi |= hArticlei hColori key hLocSpeci

hDescri |= hDescrDoori | hDescrBalli | hDescrBoxi | hDescrKeyi
hDescrNotDoori |= hDescrBalli | hDescrBoxi | hDescrKeyi

hLocSpeci |= ✏ | on your left | on your right | in front of you | behind you
hColori |= ✏ | red | green | blue | purple | yellow | grey
hArticlei |= the | a

Figure 2: BNF grammar productions for the Baby Language

go to the red ball

open the door on your left

put a ball next to the blue door

open the yellow door and go to the key behind you

put a ball next to a purple door after you put a blue box next to a grey
box and pick up the purple box

Figure 3: Example Baby Language instructions

The BabyAI platform includes a verifier which serves to check if an agent performing a sequence
of actions in a given environment has successfully completed a given instruction and achieved its
goal or not. The descriptors in the language can refer to one or to multiple objects. Hence, if the
agent is instructed to go to "a red door", it can execute this instruction by going to any of the red
doors in the environment. The then and after connectors can be used to sequence subgoals. The
and form implies that both subgoals must be completed, without ordering constraints. Importantly,
Baby Language instructions leave details about the execution implicit. An agent may have to find a
key and unlock a door, or move obstacles out of the way to complete instructions, without this being
stated explicitly.

3.3 BABYAI LEVELS

There is abundant evidence in the literature that using a curriculum may greatly facilitate learning
complex tasks for neural architectures (Bengio et al., 2009; Kumar et al., 2010; Zaremba et al., 2015;
Graves et al., 2016). To enable investigations of how a curriculum can help with data efficiency,
we have produced a number of levels that require the understanding of only a limited of subset
of Baby Language, and take place in environments of varying complexity. Formally, a level is a
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Early Steps in Baby AI Project
• Designing and training experts 

for each level, which can serve 
as teachers and evaluators for 
the Baby AI learners 

• Partially observable, 2-D grid, 
instructions about objects, 
locations, actions 

Under review as a conference paper at ICLR 2019

(a) GoToObj: "go to
the blue ball"

(b) PutNextLocal:
"put the blue key next
to the green ball"

(c) BossLevel: "pick up the grey box behind you, then go
to the grey key and open a door". Note that the green door
near the bottom left needs to be unlocked with a green key,
but this is not explicitly stated in the instruction.

Figure 1: Three BabyAI levels built using the MiniGrid environment. The red triangle represents
the agent, and the light-grey shaded area represents its field of view (partial observation).

3 BABYAI PLATFORM

The BabyAI platform that we present in this work comprises an efficiently simulated gridworld en-
vironment (MiniGrid) and a number of instruction-following tasks that we call levels, all formulated
using subsets of a synthetic language (Baby Language). The platform also includes a heuristic ex-
pert that can solve all BabyAI levels and is an important component in defining a simulated teacher
when evaluating human in the loop teaching methods.

3.1 MINIGRID ENVIRONMENT

Studies of data-efficiency are very computationally expensive (multiple runs are required for differ-
ent amounts of data), hence, in our design of the environment, we have aimed for a minimalistic and
efficient environment which still poses a considerable challenge for current general-purpose agent
learning methods. We have implemented MiniGrid, a partially observable 2D gridworld environ-
ment. The environment is populated with various entities of different colors, such as the agent,
balls, boxes, doors and keys (see Figure 1). Objects can be picked up, dropped and moved around
by the agent, doors can be unlocked with keys matching their color. At each step, the agent receives
a 7x7 representation of its field of view (the grid cells in front of it) as well as a Baby Language
instruction (textual string).

The MiniGrid environment is fast and lightweight. Throughput of over 3000 frames per second is
possible on a modern multi-core laptop, which makes experimentation quicker and more accessible.
The environment is open source, available online, and supports integration with OpenAI Gym. For
more details, see Appendix A.

3.2 BABY LANGUAGE

We have developed a synthetic Baby Language to give instructions to the agent as well as to auto-
matically verify their execution. Baby Language is a comparatively small yet combinatorially rich
subset of English that is designed to be easily understood by humans. In this language, the agent
can be instructed to go to objects, pick up objects, open doors, and put objects next to other objects.

3
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Motivation

An agent should be able link its ability to control specific parts of the environment with

its internal representations. For continuous-state discrete-action MDPs, we propose

an intrinsic reward mechanism based on the agent’s ability to independently control

factors of variations of its environment.

Architecture
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Figure 1: The proposed disentangling architecture, applied on multiple steps

Notions of Selectivity & Independence

We propose selectivity as an intrinsic reward for our agent:

S(hÕ, h, „) = log
A(hÕ, h, „)

EÏ|h[A(hÕ, h, Ï)]
(1)

It encourages high variation of „ between latent states h and hÕ
compared to other factors

Ï.

The full objective of the agent is:

Jsel(h; ◊) = E„|hEsÕ≥fi„,T |s [S(hÕ, h, „)] (2)

where T is the environment transition function and sÕ ≥ fi„, T |s is the probability of

ending on state sÕ
starting from s following policy fi„.

For regularization we use a reconstruction loss to encourage h to provide a good model of

the world and an entropy penalty on fi to encourage exploration.

Theoretical link with mutual information and
causality

Using Donsker-Varadhan’s lemma / Banerjee’s compression lemma we

prove that

I(„, hÕ|h) Ø sup
◊

Jsel(h; ◊)

where ◊ is the set of weights shared by E, fi, G„ and A and I denotes

mutual information.

We maximize this objective over multiple trajectories, so we use a lower

bound on

I(„ æ h) =
X

t
I(„t, ht|ht≠1)

where I(„ æ h) is the causal or directed information - a measure of the

causality the agent’s control exerts on the environment.

Disentanglement in latent space

Disentanglement cannot stem from mutual information maximization

alone as it is invariant under reparametrization.

A encodes our disentanglement prior. For example, by choosing:

A(hÕ, h, „) = exp(≠||hÕ ≠ h ≠ „||2

2‡2
)

we enforce a linearly disentangled latent space.

To uncover attributes of the world, we suggest A defined as:

A(hÕ, h, „) = |A(hÕ, „) ≠ A(h, „)|

Single step fixed A experiment

We use MazeBase (Sukhbaatar et al., 2015). The agent (red circle) can

move in 4 directions and toggle switches when on top of them, changing

their color.

We consider A(hÕ, h, „) to be a Gaussian kernel.

Figure 2: (a) Sampling of 1000 variations hÕ ≠ h. (b) The disentangled

structure in the latent space h = E(s). We notice that we were not able

to find modes corresponding to the switch activations.

Single step learned A experiment

Here we use a learned A, a linear net with tanh activation. We show em-

pirically that this more flexible form was able to discover all controllable

factors of variations of the environment.

Figure 3: PCA of the factor space for each possible location of the agent

in the 4x4 grid. Each cluster corresponds to a factor that can be sampled

in that state. We discover both translational modes and switches

activations (light blue clusters).

Multi-step disentanglement

With n-step policies, disentanglement is not always clear. However, the

learned latent space is useful for model-based prediction purely in

latent space by learning a 1 layer net T with cost ||hÕ ≠ T (h, „)||2.

Figure 4: (a) The actual 3-step trajectory done by the agent. (b) PCA

view of the factor space „. Each arrow points to D(T (h0, „)). The green

arrow represents the prediction of „ used in fi„.
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AFFORDANCES, OPTIONS, 
EXPLORATION & 
CONTROLLABLE FACTORS
• Affordances:	concepts	/	aspects	of	the	environment	which	can	

be	changed	by	the	agent

• Temporal	abstractions:	options,	super-actions,	macros	or	
procedures,	which	can	be	composed	to	form	more	complex	
procedures	(Sutton,	Precup &	Singh	1999)

• Controllable	factors:	jointly	learn	a	set	of	(policy,	factor)	such	
that	the	policy	can	control	the	factor	and	maximize	mutual	
information	between	policies	and	factors	(Bengio,	Thomas,	Pineau,	
Precup &	Bengio	2017)	
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(Gibson,	1979)



THE CONSCIOUSNESS 
PRIOR: SPARSE 
FACTOR GRAPH



CONSCIOUSNESS PRIOR

• Attention: to form conscious state, thought

• A thought is a low-dimensional object, few 
selected aspects of the unconscious state

24

conscious	state	c

input	x

unconscious	state	h

attention

attention

Different kinds of	attention	in	the	brain

Bengio 2017, arXiv:1709.08568

• Need 2 high-level states:

• Large unconscious state
• Tiny conscious state

• Part of inference mechanism wrt joint 
distribution of high-level variables



CONSCIOUSNESS PRIOR 
è SPARSE FACTOR GRAPH

• Property of  high-level variables which we 
manipulate with language: 

we can predict some given very few others
• E.g. "if I drop the ball, it will fall on the ground”

Bengio 2017, arXiv:1709.08568

• Disentangled factors != marginally independent, 
e.g. ball & hand

• Prior: sparse factor graph joint distribution between high-
level variables, consistent with inference mechanism 
which looks at just a few variables at a time.

Prior puts	pressure	
on	encoder

encoder

input	x

unconscious	state	



LOCALIZED CHANGE 
HYPOTHESIS



WHAT CAUSES CHANGES IN DISTRIBUTION?

Hypothesis to replace iid assumption: 
changes = consequence of an intervention on few causes or mechanisms

Underlying physics:	actions	are	localized
in	space and	time.

27

Change due
to intervention

Extends the hypothesis of (informationally) Independent Mechanisms (Scholkopf et al 2012)

è local inference or adaptation in the right model



COUNTING ARGUMENT: 
LOCALIZED CHANGE→OOD TRANSFER

Good representation of variables and mechanisms + localized change hypothesis 

Change due
to intervention

28

→ few bits need to be accounted for (by inference or adaptation)
→ few observations (of modified distribution) are required

→ good ood generalization/fast transfer/small ood sample complexity



• Use ood generalization as training objective

• Good decomposition / knowledge representation è good ood performance

• Good ood performance = training signal for factorizing knowledge

29

META-LEARNING KNOWLEDGE REPRESENTATION FOR 
GOOD OOD PERFORMANCE



EXAMPLE: DISCOVERING CAUSE AND EFFECT
= HOW TO FACTORIZE A JOINT DISTRIBUTION?

• Learning whether A causes B or vice-versa
• Learning to disentangle (A,B) from observed (X,Y)
• Exploit changes in distribution and speed of 

adaptation to guess causal direction

30

Bengio et al 2019 arXiv:1901.10912

BA

X Y

A Meta-Transfer Objective for Learning to 
Disentangle Causal Mechanisms
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Experiments successful in	2-D	with simple	linear mappings,	Bengio	et	al	2019.

A NOVEL APPROACH TO CAUSALITY:
DISENTANGLING THE CAUSES

Bengio et al 2019: A Meta-Transfer Objective for Learning to Disentangle Causal Mechanisms

• Realistic settings: causal variables are not directly observed
• Need to learn an encoder which maps raw data to causal space
• Consider both the encoder parameters and the causal graph structural parameters as meta-

parameters trained together wrt proposed meta-transfer objective



Doing Inference on the Intervention

• To	reduce the	noise	due	to	unnecessary adaptation	of	the	unchanged
modules,	infer which variable	was modified by	the	intervention:	has	
worse relative	log-likelihood after the	intervention.

• This	could be used to	address catastrophic
forgetting:	infer if	current distribution	
matches	a	previously seen one

Latent	variable
identifies	the
intervention



EXAMPLE: DISCOVERING CAUSE AND EFFECT
= HOW TO FACTORIZE A JOINT DISTRIBUTION?

Learning Neural Causal Models from Unknown 
Interventions

33

Ke et al 2019 arXiv:1910.01075 

• Learning small causal graphs, avoid exponential 
explosion of # of graphs by parametrizing 
factorized distribution over graphs

• Inference over the intervention:
faster causal discovery



MULTIVARIATE CATEGORICAL MLP CONDITIONALS



OBSERVING OTHER AGENTS

•Can	infants	figure	out	causal	structure	in	spite	of	being
almost passive	observers?

•Yes,	if	they exploit	and	infer the	interventions	made	by	
other agents

•Our	approach does not	require the	learner to	know	what
the	action/intervention	was (but	it could do	inference over	
interventions)

•But	more	efficient	learning if	you can experiment and	thus
test	hypotheses about	cause	&	effect



OPERATING ON SETS OF 
POINTABLE OBJECTS 
WITH DYNAMICALLY 

RECOMBINED 
MODULES



RECURRENT INDEPENDENT MECHANISMS

● Recurrent	Neural	Network	with	multiple	modules	which	remain	independent	by	
default and	only	communicate	with	attention.		

● Additionally,	only	some	fraction	are	allowed	to	update	their	recurrent	state	on	each	
time	step.		

● This	separation	is	very	hard	for	most	RNNs	to	achieve.		
○ In	an	LSTM,	would	require	(k-1)^2/k^2	parameters	to	be	zero.		

Goyal et al 2019, arXiv:1909.10893



RECURRENT INDEPENDENT MECHANISMS

● Each	module	only	attends	to	
selected part	of	input.

● Robust	to	distribution	shift.
● Robust	to	distractors.



RECURRENT INDEPENDENT MECHANISMS

● Data	dependent	activation	of	mechanisms
● Active	mechanisms	communicate	with	other	mechanisms
● Inactive	mechanisms	follow	the	default	dynamics



RIMS: MODULARIZE COMPUTATION AND OPERATE ON 
SETS OF NAMED AND TYPED OBJECTS

Recurrent Independent Mechanisms

40

Goyal et al 2019, arXiv:1909.10893

Builds on	rich recent litterature on	object-centric representations (mostly for	images)

Multiple recurrent sparsely 
interacting modules, each with their 
own dynamics, with object 
(key/value pairs)  input/outputs 
selected by multi-head attention

Results: better ood generalization



MULTI-HEADED ATTENTION & OBJECTS

RIMs and	other models based on	self-attention	take as	input	and	produce
as	outputs	SETS	of	OBJECTS	(key-value	pairs)	rather than vectors
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RECURRENT INDEPENDENT MECHANISMS

RIMs generalize better than SOTA	methods for	sequential learning to	
out-of-distribution	data	(longer	sequences,	larger images).
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Goyal	et	al,	arXiv:1909.10893

Preprint, Work in Progress

Copying Train(50) Test(200)
kT kA hsize CE CE

RIMs

6 5 600 0.01 3.5
6 4 600 0.00 0.00
6 3 600 0.00 0.00
6 2 600 0.00 0.00
5 3 500 0.00 0.00

LSTM - - 300 0.00 2.28
- - 600 0.00 3.56

NTM - - - 0.00 2.54

RMC - - - 0.00 0.13

Transformers- - - 0.00 0.54

Sequential MNIST 16 x 16 19 x 19 24 x 24
kT kA hsize Accuracy Accuracy Accuracy

RIMs

6 6 600 85.5 56.2 30.9
6 5 600 88.3 43.1 22.1
6 4 600 90.0 73.4 38.1

LSTM - - 300 86.8 42.3 25.2
- - 600 84.5 52.2 21.9

EntNet - - - 89.2 52.4 23.5

RMC - - - 89.58 54.23 27.75

DNC - - - 87.2 44.1 19.8
Transformers- - - 91.2 51.6 22.9

Table 1: Performance on the copying task (left) and sequential MNIST resolution task right). Error (CE on
the last 10 time steps) on the copying task. Note that while all of the methods are able to learn to copy
for the length seen during training, the RIMs model generalizes to sequences longer than those seen during
training whereas the LSTM, RMC, and NTM degrade. Sequential MNIST resolution: Test Accuracy % on the
Sequential MNIST resolution generalization task (see text) after 100 epochs. Both the proposed and the Baseline
model (LSTM) were trained on 14x14 resolution but evaluated at different resolutions; results averaged over 3
different trials.

think of this as consisting of two temporal patterns which are independent: one where the sequence is
received and another “dormant” pattern where no input is provided.

As an example of out-of-distribution generalization, we find that using RIMs, we can extend the length
of this dormant phase from 50 during training to 200 during testing and retain perfect performance
(Table 1), whereas baseline methods including LSTM, NTM, and RMC substantially degrade. In
addition, we find that this result is robust to the number of RIMs used as well as to the number of
RIMs activated per-step. Our ablation results (Appendix C.5) show that all major components of the
RIMs model are necessary to achieve this generalization. We consider this preliminary evidence that
RIMs can specialize over distinct patterns in the data and improve generalization to settings where
these patterns change.

4.1.2 SEQUENTIAL MNIST RESOLUTION TASK

RIMs are motivated by the hypothesis that generalization performance can be improved by having
modules which only activate on relevant parts of the sequence. For further evidence that RIMs can
achieve this out-of-distribuution, we consider the task of classifying MNIST digits as sequences
of pixels (Krueger et al., 2016) and assay generalization to images of resolutions different from
those seen during training. Our intuition is that the RIMs model should have distinct subsets of the
RIMs activated for pixels with the digit and empty pixels. As a result, RIMs should generalize better
to greater resolutions by keeping the RIMs which store pixel information dormant over the empty
regions of the image.

Results: Table 1 shows the result of the proposed model on the Sequential MNIST Resolution Task.
If the train and test sequence lengths agree, both models achieve comparable test set performance.
However, the RIMs model was relatively robust to changing the sequence length (by changing the
image resolution), whereas the LSTM performance degraded more severely. This can be seen as
a more involved analogue of the copying task, as MNIST digits contain large empty regions. It is
essential that the model be able to store information and pass gradients through these regions. The
RIMs outperform strong baselines such as Transformers, EntNet, RMC, as well as the Differentiable
Neural Computer (DNC) (Graves et al., 2016).

4.2 RIMS LEARN TO SPECIALIZE OVER OBJECTS AND GENERALIZE BETWEEN THEM

We have presented evidence that RIMs can specialize over temporal patterns. We now turn our
attention to showing that RIMs can specialize to objects, and show improved generalization to
settings where we add or remove objects at test time.

6



RESULTS WITH RECURRENT INDEPENDENT 
MECHANISMS

• RIMs drop-in replacement for LSTMs in PPO baseline over all Atari games.
• Above 0 (horizontal axis) = improvement over LSTM.
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• Sparse factor graph in space of high-level semantic variables

HYPOTHESES FOR CONSCIOUS PROCESSING BY AGENTS, 
SYSTEMATIC GENERALIZATION

44

• Meaning (e.g. grounded by an encoder) stable & robust wrt changes in distribution

• Semantic variables are causal: agents, intentions, controllable objects

• Shared ’rules’ across instance tuples (arguments)

• Distributional changes from localized causal interventions (in semantic space)



• After cog. neuroscience, time is ripe for ML to explore consciousness

CONCLUSIONS

45System	1 System	2

• Could benefit cognitive neuroscience too

• Could bring new priors to help systematic & ood generalization

• Would allow to expand DL from system 1 to system 2
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