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Underlying Assumption

e There are principles giving rise to intelligence (machine, human
or animal) via learning, simple enough that they can be
described compactly, similarly to the laws of physics, i.e., our
intelligence is not just the result of a huge bag of tricks and

pieces of knowledge, but of general mechanisms to acquire
knowledge.




The Learning Mechanism is a Compact
and Abstract Explanation of the Brain

Similar to the laws of physics: e.g. we consider understanding the
physical world, mostly by having figured out the laws of physics, not
just by describing its consequences (the immense complexity of
describing the physical world)

Successful learning framework (e.g. architecture, optimizer, objective)
is @ compact abstract explanation, much more so than the actual
detailed neuron-by-neuron functions performed by a trained brain

ML validation: can learn complex tasks

Neuroscience validation: matches biology at some level



* Attention: vectors = data structures
* memory access, one-shot memorization
* reasoning & planning
sffe .

CQSV\‘,&‘,QV\ * semantics & language
* agency & causality
* conscioushess
* teaching & curriculum learning

Neural Nebtwories

* neural computation
biological backprop

* dropout & spikes

* multi-module architecture

Brain Implemen&a&iovn



Brain Intelligence
Inspiration for Deep
Learning



Drawing inspiration for AI from
Living intelligence

e Neurons, networks, plasticity & learning

e Distributed representations

e Visual cortex, convnets & depth

e Neural nonlinearity & RelLUs

e Spikes: dropout & quantized activations

e Curriculum learning

e Cultural evolution & distributed training

* Affordances, options, exploration & controllable factors
e Attention

e Lateral connections, softmax, clustering & attractors

e Associative memories, hippocampus & episodic memory
e System 2, reasoning, planning & consciousness



Attention:
* vectors = data structures
* memory access, one-shot memorization
s R .
Coghikion - ressoning
* semantics & language
* agency & causality
* consciousness

Neural Nebtwories

. . * biological backprop
3"&“‘\ MPLQMQ“\&Q&LO“ * dropout & spikes

¢ multi-module architecture



Neural Nowlinearity & RelU

e First approximation: linear i 1
0if 0>x

threshold units f(x)={lifx20

sigmoid 0 RelLU

e Second approximation: *

. . o R(z) =mazx(0, 2)
sigmoids
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e Third approximations: .
piecewise-linear rectifier: .,

e Still some way to go to
approximate biological
nonlinearity... o 2 ¢ 6 5 10

Input current (A)
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Spilees, Dropout & Quantization

e Real neurons send low-precision pseudo-noisy signals: spikes

e Inspiration for dropout & other
noise injection regularizers

(Hinton et al 2012)

e Inspiration for low-precision
(stochastically) quantized activations

Trial

(Courbariaux & Bengio, Binary Connect,

NIPS 2015)
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Curriculum Learning

e Start from easier tasks and gradually build Tl
hierarchy of competences

e Shown to help training of deep nets (Bengio et '
al ICML 2009), acting as a form of continuation |
method —curriculum

= = no-curriculum
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Cultural Evolution & Memes

e Memes: transmittable & evolving nuggets of cultural information
e Genetic & memetic evolution:

* more powerful than random search

e exponential advantage: combining sub-solutions
e Memes: more efficient than genes

* more appropriate level of abstraction

(Bengio, GECCO 2014, Deep learning & cultural evolution)



How is one brain transferring abstractions to
another brain?

Two individuals sharing a similar visual input, the teacher gives hints to the
student about high-level abstractions

Linguistic Linguistic
representation representation

Linguistic exchange
= tiny / noisy channel

The linguistic output of one
individual is modeled by the other one, jointly
with X.

00 ¢

12 (Bengio, GECCO 2014) Shared input X



Cultural Evolution, Distillation
& Distributed Training

e P-A Manzagol & D Erhan worked on this with me in 2009
(unpublished)

* Instead of sharing weights, different networks can share activity
for a shared input (Bengio, GECCO 2014)

e Fitnets (Romero et al & Bengio, ICLR 2015)
e Distillation (Hinton, Vinyals & Dean 2015)
e Co-distillation (Anil et al & Hinton ICLR 2018)
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Affordances, options,
exploration &
controllable factors

Affordances: concepts / aspects of the
environment which can be changed by the agent

e Temporal abstractions: options, super-actions,
macros or procedures, which can be composed  The handles on a tea set provide an
to form more complex procedures (Sutton, Precup  obvious affordance for holding.

& Singh 1999)

e Controllable factors: jointly learn a set of (policy,
factor) such that the policy can control the factor
and maximize mutual information between
policies and factors (Bengio, Thomas, Pineau, Precup
& Bengio 2017)

* Intrinsic & exploration rewards: unsupervised
aspect of reinforcement learning

(Gibson, 1979)

&
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Atktention!

(Bahdanau et al & Bengio 2014)

Word
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f=(a, man, is, jumping, into, a, lake, .)

]
2
5% O-Q)
38 !
-7 1
3

* |[terative computation

e Each step focuses on a few
elements out of a larger set

e Attention can be on raw input; ~
memory elements, or
representations
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Associative Memories, Hippocampus & Episodic
Memory

e Auto-encoders: encode-decode cycle implements one form of associative memory;
can be iterated to converge to a manifold (or a set of manifolds, corresponding to
different memories, as in Hopfield networks)

* Hippocampus stores episodic memories, has been an inspiration for memory
augmented neural networks

External Input External Output
Neural Turing Machines S\
Graves et af 2014 ’ Read Heads ‘ ’ Write Heads ‘
’ Memory ‘
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Reminding and Credit Assighment

e Humans selectively recall memories that are relevant to the current behavior.
e Automatic reminding:

* Triggered by contextual features.

e Can serve a useful computational role in ongoing cognition.

* Can be used for credit assignment to past events?
e Assign credit through only a few states, instead of all states:

e Sparse, local credit assignment.

* How to pick the states to assign credit to?

17



Sparse Attentive Backtiracking

Rosemary Ke, Anirudh Goyal, Olexa Bilaniuk, Jonathan Binas, Mike Mozer, Yoshua Bengio,

NeurlPS 2018

The attention mechanism of the associative memory picks up past memories
which match (associate with) the current state.

fOfWﬂl‘dﬁT att. bad(wardﬁ@ att.

ht
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System 1 & System 2 cognitive processing

(Kahneman 2011)

e System 1: intuitive, fast, automatic,
anchored in perception

* What current deep learning is
very good at

e System 2: rational, sequential, slow,
logical, conscious, expressible with
language

* What future deep learning needs

to do better
19
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Deep Learning Inspiration
for Neuroscience
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Deep Learning & Neuroscience:
Still o Large Gap

e Backprop and the ability to jointly train multiple layers is the
workhorse of current deep learning successes. END-TO-END
TRAINING OF DEEP COMPUTATIONS ROCKS. Backprop is the
building block behind modern unsupervised (generative)
learning and RL.

e But has been deemed not biologically plausible.

* How to efficiently train a stochastic continuous-time
dynamical system wrt a global objective?
* Random perturbation-based methods do not scale, BP does beautifully
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‘Pra jm gation

(Scelliér & Bengio 201
Frontiers in Neuroscien

7
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Backpropagation

Free Phase o

-network relaxes to fixed point

L D o) o

-read prediction at the outputs

B=0

Weakly Clamped Phase

-nudge outputs towards target
-error signals (back)propagate

S

~ Forward Pass

-read prediction at the outputs

4% (Backward Pass )

-compare prediction/target
-compute error derivatives

-network relaxes to new nearby fixed

requires:
-special computational circuit

F(@, B, S) — (6 S) + 50(8) -special kind of computation

point 5] % 0
ds _ OF
dt ~  Os

Loss fn
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c}ui.lt.bﬂ.um Propagation Theorem

(Scelller & Bengio, Bridging the Gap Between Energy-Based Models and
Backpropagation, Frontiers in Neuroscience, 2017)

e Gradient on the objective function (cost at equilibriur
can be estimated by a ONE-DIMENSIONAL finite-difference

dJ lim 1 (OF(0,8,s) OF(,0,s)

0~ F—0 B 00 0

Small after nudging

before nudging
nudging

There is a stochastic version too

-> Gives rise to Hebbian / anti-Hebbian updates with Hopfield net energy fn
- Theory is not limited to point neurons, any set of variables with dynamics,
could be used for analog circuits or for adapting within-neuron dynamics



A cortical circuit for error coding

top-down apical dendrite

12/3

pyramidal neuron

bottom-up
meets top-
| down
bottom-up basal dendrite Larkum, 2013

Kérding & Kdnig, 2001
Guerguiev et al., 2017

200 pym



Dendritic cortical microcircuils
approximate backpropagation

— with Walter Senn, Joao Sacramento & Rui Ponte Costa

With no L NeurlPS’2018 top-down

nudging, 9 ;

cancellation is } neuron-specific

perfect - AV 4 prediction error

because next '

layer is

predictable.

With nudging, terneuron 1.~ pyramidal neuron
bottom-up
meets top-

S down

200 pum \
'5 Larkum, 2013

. Koérding & Kdnig, 2001
bottom-up  basal dendrite Guerguiev et al., 2017

:Z-f?_. Mila

difference =
backprop
error signal.



Learning to classify MNIST digits
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Talking the Magic out of
Consciousness

e Brains are complex machines, probably stochastic

e What we commonly call consciousness should be associated
with various computational mechanisms and properties and
contrasted / linked with intelligence

Can we see
that Trick Qj""
p&nse?

Wy jolyon.co.uk



The ML View on Cownsciousness

3 computational aspects of consciousness:
e Self-consciousness

* Notion of self as part of the agent’s state, which conditions the agent’s decisions
e Access consciousness, conscious attention

* While conscious, focus at each time step on a few attended elements which
condition action/planning/imagination
e Qualia, subjective perception

* The focus of conscious attention is mostly in a high-level abstract space in which
perception is context-dependent and depends on the agent’s history, goals,
emotions, etc.



The Cownsciousness Prior
Bengio 2017, arXiv:1709,.0556%

e 2 levels of representation:
* High-dimensional abstract representation space (all known concepts and factors) h
* Low-dimensional conscious thought ¢, extracted from h

conscious state C

attention b I
unconscious state h >

1

e cincludes names (keys) and values of factors

input x
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The Consciousness Prior
Bengio 2017, arXiv:1709,0556%

* Focus on representation learning and one aspect of consciousness:

e Conscious thoughts are very low-dimensional objects compared to the full state of the
(unconscious) brain = analogous to a sentence or a rule in rule-based systems

* Yet they have unexpected predictive value or usefulness
—> strong constraint or prior on the underlying representation

* Thought: composition of few selected factors / concepts
at the highest level of abstraction of our brain

* Richer than but closely associated with short verbal
expression such as a sentence or phrase, a rule or fact
Need to (link to classical symbolic Al & knowledge representation)
disentangle * Variables in rule < features in representation space
both {- Rules < causal mechanisms

30




What Training Objective?

* How to train the attention mechanism which
selects which variables to predict?
* Representation learning without reconstruction:

* Maximize entropy of code
* Maximize mutual information between past and future representations (Becker & Hinton 1992),
between intentions (policies) and changes in representations (affordances, independently

controllable factors)
e Objective function completely in abstract space, higher-level parameters model
dependencies in abstract space
e Usefulness of thoughts: as conditioning information for action, i.e., a particular form
of planning for RL
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Deep Objective:
discover causal repre.se.n&a&wu

What are the right representations? Causal
variables explaining the data

How to disentangle them?

How to discover their causal relationship,
the causal graph?

How does the brain represent such high-
level concepts (expressed linguistically)
and their relations?



