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Learning Multiple Levels of Abstraction

(Bengio & LeCun 2007)

* The big payoff of deep learning is to allow learning
higher levels of abstraction

* Higher-level abstractions disentangle the factors

of variation, which allows much easier
generalization and transfer
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Invariance and Disentangling

Invariant features
Which invariances?

Alternative: learning to disentangle factors

Good disentangling 2
avoid the curse of dimensionality:

Dependencies are “simple” when the data is projected in the
right abstract space of high-level concepts



Disentangling from unsupervised obJectlve
(Glorot, Bordes & Bengio ICML 2011) P

Early deep learning research already is looking for
possible disentangling arising from unsupervised
learning of representations

Experiments on stacked denoising auto-encoders:
features specialize to known underlying factors
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How to Discover Good
Disentangled Representations..

* How to discover abstractions?
 What is a good representation? (Bengio et al 2013)

* Need clues (= priors) to help disentangle the underlying
factors, such as

— Spatial & temporal scales (D () O

— Marginal independence by O & 4
— Simple & sparse dependencies between factors

* Consciousness prior
— Causal / mechanism independence
* Controllable factors

— Multiple spatial and temporal scales
* Coarse high-level factors explain lower-level details




Latent Variables and Abstract Representations to
Disentangle Manifolds

 Encoder/decoder view: maps Qth/x) Abstract
between low & high-levels / representation
space
A
 Encoder does inference:
interpret the data at the encoder decoder P(x/h)
abstract level
v

* Decoder can generate new
configurations

e Encoder flattens and
disentangles the data manifold

data space



Why Latent Space Generative Models?

Discovery

“What | cannot create, | do not understand”
-Richard Feynman

* Learn relevant factors

LEE-E-X-E-X-1-X-

Interpolation
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Why Latent Space Generative Models?

Discovery “What | cannot create, | do not understand”

- Learn relevant factors -Richard Feynman

 Inference

eneration




Why Latent Space Generative Models?

Discovery

“What | cannot create, | do not understand”
-Richard Feynman

* Learn relevant factors
 Inference

« Semi-supervised
learning




What’s wrong with standard maximum
likelihood?

* Pay a huge price for not putting probability
mass at even a single training example, even
if the data manifold and model manifold are Data
very close. manifold

Model
manifold



What’s wrong with standard maximum
likelihood?

1. Pay a huge price for not putting probability M°d_e|
mass at even a single training example, even density
if the data manifold and model manifold are
very close. Data

manifold

* So MLE makes the model distribution very
fat and conservative

2. Another problem is that MLE measures error
bits in pixel space whereas humans really
care about errors in abstract space, so we
would like loss measured in learned latent
space



Classifiers for modellng
distributions '

In-support
N\~ Classifier

Data
manifold
* We were inspired by the work of Gutmann & Hyvarinen
using probabilistic classifiers to estimate energy functions

Gutmann & Hyvarinen 2012, Noise-Contrastive Estimation

* In high dimension, more relevant then density is whether
you are in-support vs out-of-support

* A classifier of in-support vs out-of-support pays a
*constant™® price (rather than huge) for not putting support
at a training example



Generative adversarial networks (GANSs):
a two player game with neural networks

Givens:
Samples from a target distribution P

(Simple) prior QQ,

Q.

I
13 [Goodfellow et. al., 2014]



Generative adversarial networks (GANSs):
a two player game with neural networks

Givens:
Samples from a target distribution P

(Simple) prior QQ,

Player 1: Generator
A neural network with parameters, 6, whose
samples fool the discriminator

Generator network q@

(counterfeiter)
é) Q.

) [Goodfellow et. al., 2014]



Generative adversarial networks (GANSs):

a two player game with neural networks
Fake Real

Givens:
Samples from a target distribution P

(Simple) prior QQ,

Player 1: Generator
A neural network with parameters, 6, whose
samples fool the discriminator

Player 2: Discriminator
Distinguish (classify) real and fake
correctly

15

Discriminator
Network

Generator network | (79

(counterfeiter)
é) Q.

.

lis
[Goodfellow et. al., 2014]



Generative adversarial networks (GANSs):
a two player game with neural networks

Givens: Fake Real
Samples from a target distribution P (9
(Simple) prior QQ, - X

Discriminator
Player 1: Generator 's;e;w:):(ﬂo 1Dq')
A neural network with parameters, 6, whose 1

samples fool the discriminator

Player 2: Discriminator

Distinguish (classify) real and fake Generator network | (;,
correctly 0

(counterfeiter)
Minimax on value function Qz

V(P,Qg, Dy) = Ep [log Dy(z)] + Eq, [log(1 — Dy(Gy(2))]
(é, qf)) = arg min arg max V(P, Qg, D)
g @

Completely

differentiable function

Fine print: Continuous data only 6 [Goodfellow et. al., 2014]



A closer look at the discriminator

« The discriminator defines a lower-bound ?

2*Djsp(P||Qg) —log4d > V(P,Qe; T) V(P, @9;?}5)

i

0

17 [f~-GAN. Nowozin et. al., 2017]



A closer look at the discriminator

« The discriminator defines a lower-bound
2% Dysp(P||Qg) —log4 > V(P,Qp; Ty)

* f~-divergence
Dy (P||Qs) = Eg, [f ( £
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[f-GAN. Nowozin et. al., 2017]



A closer look at the discriminator

* The discriminator defines a lower-bound ? Estimated

2% Dysp(P||Qs) — log4 > V(P, Qg; Ty) V(P, @eiqu) dri:]fee;znc;:
] ~‘~ u

e f-divergence

Ds(P||Qs) = Eg, [f ( p(z) )]

gs(x)
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0
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o
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« Convex dual using neural networks . °
0
Dy(P|Qo) > Ez[Ty()] - Eq, [f*(Ts(x)) Sual Using 3 classifer
= Vs(P,Qo; Ty)
H
I\
/"’ 36‘%\)
Qo= Qo)
N
5\’\’\@( 9@ ’
Primal

19 [f-GAN. Nowozin et. al., 2017]



A closer look at the discriminator

« The discriminator defines a lower-bound
2*Djsp(P||Qg) —log4d > V(P,Qe; T) ﬁ)

e f-divergence

Ds(P||Qs) = Eg, [f ( p(z) )]

gs(z)
« Convex dual using neural networks
Dy(P||Qp) 2 Ep[Ty(z)] — Eq, [f*(Ty(2))]
= V¢ (P, Qo5 Ty)

- Estimate using samples

« Other Examples
KL, Jensen-Shannon, Squared Hellinger, Pearson y?

« GANS are a convex dual optimization with a
classifier

Estimated
V(P, @eiqu) difference
. '~ measure

~
0

".@..

.5 P
.'60 .

Dual using a classifier

Primal

20 [f-GAN. Nowozin et. al., 2017]



MI estimation is classification

Classification space

Kmage

Y
Yimage (N MO BEED——

Positive sample: sample from the joint distribution (e.g., (X

image’ Kmage))

Negative sample. sample from the product of marginals (e.g., (X ther: Yimage))



Using a discriminator to
optimize independence,
mutual information or entropy

* The GAN discriminator is trained to estimate a similarity
function between two distributions

* Two independent r-v A & B have the property that
P(A,B)=P(A)P(B)

* Given samples from P(A,B) you can obtain samples from
P(A)P(B), e.g. by shuffling A values within a minibatch

Train a discriminator to separate between pairs (A,B)
coming from P(A,B) and pairs coming from P(A) P(B)

Brakel & Bengio ArXiv:1710.05050




Using a discriminator to

optimize iIndependence,

mutual information or entropy
Brakel & Bengio ArXiv:1710.05050

Discriminator

S . Train a discriminator to separate
between pairs (A,B) coming from P(A,B) -
and pairs coming from P(A) P(B) Minosteh

variable
shuffle

* Generalize this to measuring
independence of all the outputs of a

representation function (encoder). NOTC';RGaf
Maximize independence by backprop encoder

independence score into encoder 2>
NON-LINEAR ICA.



Using a discriminator to
optimize independence,

mutual information or entropy

Belghazi et al ArXiv:1801.04062

[N ' Same architecture, but with a twist in
the training objective which provides

an asymptotically correct estimator of
mutual independence

®* Note that

MI(A, B) = H[A] — H[B|A]




Mutual information neural estimator
vl (MINE)

‘ A, . Ishmael Belghazi, Aristide Baratin, Sai Rajeswar, Sherijil Ozair, Yoshua Bengio, Aaron Courville, R Devon Hjelm
-

Mutual information: measure of dependence

between two variables

1062) = Das Pl 972) =B o (55:05 )|

Fenchel convex dual (~GAN): MINE-f

Dir(Px,z||Px ® Pz) > Ee, ,[Ts(z)] — Bz ge, [e*®) 7]

Donsker-Varadhan (tighter): MINE

'DKL (PX~Z”I?X ® IPZ) 2 E'Px.z [TO('E)] - IOgIEPx RFz [eT¢(m)]

o5 [Belghazi et. al., 2018]



Demonstration of estimation

Mutual Information of 2-dimensional variables

2.00
— MINE
1.75 —— MINE-f
150 —— Kraskov
-===- True Ml
1.25
3
< 1.00
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0.00
9 O Q Q Q QL0 O Q QO Q OO
,09,0Q’ ,0/»\ ,o(f’ /Q{‘b /0\,09 ¥ &7 P o/\ N

6 [Belghazi et. al., 2018]



Demonstration of estimation

Mutual Information of 20-dimensional variables
40

— MINE |
—— MINE-f
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27 [Belghazi et. al., 2018]



Mutual Information for Representation Learning

Representation

Extract
Information

(——Z (input; representation)

Mutual
Information

a.k.a, the “Infomax principle”



Maximizing mutual information: avoid
GAN mode dropping by max MI(X,Z)

GAN GAN+MINE

Ground Truth GAN GAN+MINE

6 —6 —4 -2 0 2 4 6

29 [Belghazi et. al., 2018]
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8% Maximizing mutual information
#5324
0890 (stacked MNIST)
427
19 &
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r30) Modes (max 1000) Dk (Py||Qy)
| das
DCGAN 99 3,4
ALl 16 5,4
Unrolled GAN 48,7 4,32
VEEGAN 150 2,96
PacGAN 1000 0,6
DCGAN+MINE 1000 0,5

30

[Belghazi et. al., 2018]



We don’t necessarily need
generation in pixel space

Interesting thing Not interesting thing

Generative models (in principle) care about all the pixels



Self-supervision in the wild

* Question: What direction is the video running?
Sl ghe - als 2
* Question: Do these image patches go together (context
prediction)?

* Question: Where does this patch go (jigsaws)? e

* Question: Which sentence follows this first one (Quick-
thOUghtS)r) » | want a hot dog.

Y
et
et
------
st
s
st

e.g., see Logeswaran et al. 2018, Doersch et al. 2015, 2017, Wei et al. 2018



Mutual Information for Self-Supervised

Representation Learnino

Partial observation / view
Representation
O
Partial observation / view
Representation

I(X;Y)

Mutual
Information

a.k.a, the “Infomax principle”

Input

Ask questions about the data at the representation / feature level



Maximizing mutual information in encoders

» PR LLLLNIYE ’

Input Image

<>

E, BY

Encoder output

Network encodes the input

The discriminator estimates
mutual information (batch-wise)

Estimate is used to maximize
the mutual information between
encoder input and output

Denoising auto-encoders reconstruction error:

weaker lower bound on Mli(input, representation)
(Vincent et al ICML 2008)



Using local structure is crucial

Less relevant
locations

Relevant “cat”
locations

Deep Info Max: DIM

Learning Deep
Representations by
Estimating and Maximizing
Mutual Information.
Hjelm, Foderov, Lavoie,
Grewal, Bachman, Trischler,
and Bengio.

ICLR 2019.




Using local structure is crucial

Cat, Cat, |White, S t, | White, S | white, S
Ear, . Ear, ky, ar, ky, ky,
Sky. - Sky Bright i Bright Bright
Cat, White, | White, T
Ear, | Cat, an, Win
Wood indow dow
Window, at, Window,
Tan, W i 3 dow, | Tan, W
ood ood ood |
Window, 5 5 Window,
Local Feature Tan, W | Wi | whi w, | Tan, W
ood r . ood |
Vectors 7
Leaves, |Leaves,
Green, Green,
Window | Window |
Leaves, |Leaves, d
Green, T |Green, T
ree ree ripe ripe ripe ripe

Maximizes the average mutual information across locations

Global Feature Stripe
Vector Cat d

F U r Ear White Window

Order of importance



Evaluating the representations

Linear / Nonlinear classifier on global
features

Linear / Nonlinear classifier on local
features

Measuring mutual information (MINE) f()i Y)

* Measuring dependence (NDM) E—L

Measuring reconstruction (MS-SSIM)

Hjelm et. al., ICLR 2019



Classification evaluation results

Single-layer NN

~“cat”?
Model CIFAR10 CIFAR100 Tiny Imagenet STL10
Fully supervised 75,39 % 42,27 36,60 68,7
VAE 60,71 37,21 18,63 58,27

AAE 59,44 36,22 18,04 59,54 Classification

ALI/BiGAN 62,57 37,59 24,38 71,53 accuracy

NAT 56,19 29,18 13,70 64,32
DIM(MINE) 72,66 48,52 30,35 69,15
DIM(JSD) 73,25 48,13 33,54 72,86
DIM(infoNCE) 75,21 49,74 34,21 72,57

Hjelm et. al., ICLR 2019



DIM on Graphs: Deep Graph Infomax (DGl)

Deep InfoMax extends easily to other types of data.

Node
(neighborhood)
representations
(local)

Graph

Input Graph (X,A) convolutions (H.A) _

Discriminator
~ . 8 .
Corruption

function »

——

Corrupted (X.A)
Graph

Velickovic et. al., ICLR 2019



Spatio-Temporal DIM (STDIM) for Atari

conv layers

-
-
. 1 L ‘\ .
local infomax 44+ +, global infomax
' ' \
\ \ \ ‘\
1} \ I \
\ \ \
» \
A Y
> —>

conv layers II dense layers
]

Anand, Racah, Ozair et. al., ICML workshop on self-supervised learning, 2019




Code for Deep InfoMax: https://github.com/rdevon/DIM
Code for Deep Graph InfoMax: https://github.com/PetarV-/DGI

Some Works covered:

* Learning Independent Features with Adversarial Nets for Non-linear ICA.
Brakel, Philemon & Bengio, Y. (2017).

* Mutual Information Neural Estimation.
Belghazi, Baratin, Ozair, Rajeswar, Bengio, Courville, and Hjelm.
ICML 2018.

* Learning Deep Representations by Estimating and Maximizing Mutual Information.
Hjelm, Foderov, Lavoie, Grewal, Bachman, Trischler, and Bengio.
ICLR 2019.

* Deep Graph Infomax (DGI).
Veli¢kovi¢, Fedus, Hamilton, and Hjelm.
ICLR 2019.

* Unsupervised State Representation Learning in Atari.
Anand*, Racah*, Ozair*, Bengio, C6té, and Hjelm.
Workshop for Self-supervised Learning, ICML 2019.



