

Information theory for and by deep learning

Yoshua Bengio

FAR ICRA CANADIAN NSTITUTE DE OR ADVANCED RESEARCH

INSTITUT CANADIEN RECHERCHES AVANCÉES

JULY 11TH, 2019 **ISIT 2019, PARIS**

Learning Multiple Levels of Abstraction

(Bengio & LeCun 2007)

- The big payoff of deep learning is to allow learning higher levels of abstraction
- Higher-level abstractions disentangle the factors of variation, which allows much easier generalization and transfer

Invariance and Disentangling

- Invariant features
- Which invariances?
- Alternative: learning to disentangle factors

Disentangling from unsupervised objective (Glorot, Bordes & Bengio ICML 2011)

- Early deep learning research already is looking for possible disentangling arising from unsupervised learning of representations
- Experiments on stacked denoising auto-encoders: features specialize to known underlying factors

How to Discover Good Disentangled Representations

• How to discover abstractions?

- Need clues (= priors) to help disentangle the underlying factors, such as
 - Spatial & temporal scales
 - Marginal independence
 - Simple & sparse dependencies between factors
 - Consciousness prior
 - Causal / mechanism independence
 - Controllable factors
 - Multiple spatial and temporal scales
 - Coarse high-level factors explain lower-level details

Latent Variables and Abstract Representations to Disentangle Manifolds

- Encoder/decoder view: maps between low & high-levels
- Encoder does inference: interpret the data at the abstract level
- Decoder can generate new configurations
- Encoder flattens and disentangles the data manifold

Why Latent Space Generative Models?

Discovery

"What I cannot create, I do not understand" -Richard Feynman

Learn relevant factors

Why Latent Space Generative Models?

Discovery

"What I cannot create, I do not understand" -Richard Feynman

- Learn relevant factors
- Inference

Why Latent Space Generative Models?

Discovery

"What I cannot create, I do not understand" -Richard Feynman

- Learn relevant factors
- Inference
- Semi-supervised learning

What's wrong with standard maximum likelihood?

 Pay a huge price for not putting probability mass at even a single training example, even if the data manifold and model manifold are very close.

What's wrong with standard maximum likelihood?

1. Pay a huge price for not putting probability mass at even a single training example, even if the data manifold and model manifold are very close.

- So MLE makes the model distribution very fat and conservative
- 2. Another problem is that MLE measures error bits in pixel space whereas humans really care about errors in abstract space, so we would like loss measured in learned latent space

Classifiers for modeling distributions

• We were inspired by the work of Gutmann & Hyvarinen using probabilistic classifiers to estimate energy functions Gutmann & Hyvarinen 2012, Noise-Contrastive Estimation

Data manifold

- In high dimension, more relevant then density is whether you are in-support vs out-of-support
- A classifier of in-support vs out-of-support pays a *constant* price (rather than huge) for not putting support at a training example

Givens:

Samples from a target distribution \mathbb{P} (Simple) prior \mathbb{Q}_z

[Goodfellow et. al., 2014]

Givens:

Samples from a target distribution \mathbb{P} (Simple) prior \mathbb{Q}_z

Player 1: Generator A neural network with parameters, θ , whose samples fool the discriminator

[Goodfellow et. al., 2014]

Fake Givens: Samples from a target distribution \mathbb{P} (Simple) prior \mathbb{Q}_{z} Discriminator **Player 1: Generator** Network A neural network with parameters, θ , whose samples fool the discriminator \mathcal{Q}_{θ} **Player 2: Discriminator Generator network** Distinguish (classify) real and fake (' A (counterfeiter) correctly

[Goodfellow et. al., 2014]

Real

 \mathbb{Q}_z

The discriminator defines a lower-bound

 $2 * \mathcal{D}_{JSD}(\mathbb{P}||\mathbb{Q}_{\theta}) - \log 4 \ge \mathcal{V}(\mathbb{P}, \mathbb{Q}_{\theta}; T_{\phi})$

- The discriminator defines a lower-bound $2 * \mathcal{D}_{JSD}(\mathbb{P}||\mathbb{Q}_{\theta}) - \log 4 \ge \mathcal{V}(\mathbb{P}, \mathbb{Q}_{\theta}; T_{\phi})$
- *f*-divergence

$$\mathcal{D}_f(\mathbb{P}||\mathbb{Q}_ heta) = \mathbb{E}_{\mathbb{Q}_ heta} \left[f\left(rac{p(x)}{q_ heta(x)}
ight)
ight]$$

[f-GAN. Nowozin et. al., 2017]

- The discriminator defines a lower-bound $2 * \mathcal{D}_{JSD}(\mathbb{P}||\mathbb{Q}_{\theta}) - \log 4 \ge \mathcal{V}(\mathbb{P}, \mathbb{Q}_{\theta}; T_{\phi})$
- *f*-divergence

 $\mathcal{D}_f(\mathbb{P}||\mathbb{Q}_ heta) = \mathbb{E}_{\mathbb{Q}_ heta}\left[f\left(rac{p(x)}{q_ heta(x)}
ight)
ight]$

Convex dual using neural networks

$$egin{aligned} \mathcal{D}_f(\mathbb{P}||\mathbb{Q}_ heta) &\geq \mathbb{E}_\mathbb{P}[T_\phi(x)] - \mathbb{E}_{\mathbb{Q}_ heta}[f^\star(T_\phi(x))] \ &= \mathcal{V}_f(\mathbb{P},\mathbb{Q}_ heta;T_\phi) \end{aligned}$$

[f-GAN. Nowozin et. al., 2017]

- The discriminator defines a lower-bound $2 * \mathcal{D}_{JSD}(\mathbb{P}||\mathbb{Q}_{\theta}) - \log 4 \ge \mathcal{V}(\mathbb{P}, \mathbb{Q}_{\theta}; T_{\phi})$
- *f*-divergence

 $\mathcal{D}_f(\mathbb{P}||\mathbb{Q}_ heta) = \mathbb{E}_{\mathbb{Q}_ heta}\left[f\left(rac{p(x)}{q_ heta(x)}
ight)
ight]$

Convex dual using neural networks

$$egin{aligned} \mathcal{D}_f(\mathbb{P}||\mathbb{Q}_ heta) &\geq \mathbb{E}_\mathbb{P}[T_\phi(x)] - \mathbb{E}_{\mathbb{Q}_ heta}[f^\star(T_\phi(x))] \ &= \mathcal{V}_f(\mathbb{P},\mathbb{Q}_ heta;T_\phi) \end{aligned}$$

- Estimate using samples
- Other Examples KL, Jensen-Shannon, Squared Hellinger, Pearson χ^2
- GANS are a convex dual optimization with a classifier

[f-GAN. Nowozin et. al., 2017]

MI estimation is classification

Positive sample: sample from the joint distribution (e.g., $(X_{image}, Y_{image}))$ Negative sample: sample from the product of marginals (e.g., $(X_{other}, Y_{image}))$

Using a discriminator to optimize independence, mutual information or entropy

- The GAN discriminator is trained to estimate a similarity function between two distributions
- Two independent r-v A & B have the property that P(A,B)=P(A)P(B)
 - Given samples from P(A,B) you can obtain samples from P(A)P(B), e.g. by shuffling A values within a minibatch

Train a discriminator to separate between pairs (A,B) coming from P(A,B) and pairs coming from P(A) P(B)

Brakel & Bengio ArXiv:1710.05050

Using a discriminator to optimize **independence**, mutual information or entropy

Brakel & Bengio ArXiv:1710.05050

- Train a discriminator to separate between pairs (A,B) coming from P(A,B) and pairs coming from P(A) P(B)
- Generalize this to measuring independence of all the outputs of a representation function (encoder).
 Maximize independence by backprop independence score into encoder → NON-LINEAR ICA.

Using a discriminator to optimize independence, mutual information or entropy

MINE: Mutual Information Neural Estimator

•

Belghazi et al ArXiv:1801.04062

Same architecture, but with a twist in the training objective which provides an asymptotically correct estimator of mutual independence

Note that MI(A,B) = H[A] - H[B|A]

Discriminator

Mutual information neural estimator (MINE)

Ishmael Belghazi, Aristide Baratin, Sai Rajeswar, Sherjil Ozair, Yoshua Bengio, Aaron Courville, R Devon Hjelm

Mutual information: measure of dependence between two variables

 $I(X;Z) = \mathcal{D}_{KL}(\mathbb{P}_{X,Z} || \mathbb{P}_X \otimes \mathbb{P}_Z) = \mathbb{E}_{\mathbb{P}_{X,Z}} \left[\log \left(rac{p(x,z)}{p(x)p(z)}
ight)
ight]$

Fenchel convex dual (f-GAN): MINE-f

 $\mathcal{D}_{KL}(\mathbb{P}_{X,Z}||\mathbb{P}_X \otimes \mathbb{P}_Z) \geq \mathbb{E}_{\mathbb{P}_{X,Z}}[T_{\phi}(x)] - \mathbb{E}_{\mathbb{P}_X \otimes \mathbb{P}_Z}[e^{T_{\phi}(x)-1}]$

Donsker-Varadhan (tighter): MINE

 $\mathcal{D}_{KL}(\mathbb{P}_{X,Z}||\mathbb{P}_X \otimes \mathbb{P}_Z) \geq \mathbb{E}_{\mathbb{P}_{X,Z}}[T_{\phi}(x)] - \log \mathbb{E}_{\mathbb{P}_X \otimes \mathbb{P}_Z}[e^{T_{\phi}(x)}]$

Demonstration of estimation

Demonstration of estimation

[Belghazi et. al., 2018]

Mutual Information for Representation Learning

Input

Maximizing mutual information: avoid GAN mode dropping by max MI(X,Z)

[Belghazi et. al., 2018]

2929359 8218225 5250828 5250828 5250828 5258328 535828 548328 548328 548328 548328 548328 548328 548328 548328 54858 54958 54858 54858 54958 54958 54958 54958 54958 54958 54958 54958 54958 54958 54958 54958 54958 549558 54955558 549558 5405558 5405558 5405558 5405558 5405558 5405558 5405558 5405558 5405558 5405558 5405558 5405555558 5405555558 5405555555555	Maximizi	Maximizing mutual information (stacked MNIST)			
8352293 9703534 7685320	832 303 365	Modes (max 1000)	${\mathcal D}_{KL}({\mathbb P}_Y {\mathbb Q}_Y)$		
	DCGAN	99	3,4		
	ALI	16	5,4		
	Unrolled GAN	48,7	4,32		
	VEEGAN	150	2,96		
	PacGAN	1000	0,6		
	DCGAN+MINE	1000	0,5		

[Belghazi et. al., 2018]

We don't necessarily need generation in pixel space

Interesting thing

Not interesting thing

Generative models (in principle) care about all the pixels

Self-supervision in the wild

• Question: What direction is the video running?

• **Question**: Do these image patches go together (context prediction)?

• **Question**: Where does this patch go (jigsaws)?

• Question: Which sentence follows this first one (Quick-thoughts)?

To be or not to be.? That is the question.

e.g., see Logeswaran et al. 2018, Doersch et al. 2015, 2017, Wei et al. 2018

Mutual Information for Self-Supervised Representation Learning

Input

Ask questions about the data at the representation / feature level

Maximizing mutual information in encoders

Denoising auto-encoders reconstruction error: weaker lower bound on MI(input, representation) (Vincent et al ICML 2008)

Using local structure is crucial

Using local structure is crucial

Cat ,	Cat ,	White, S	Cat,	White, S	White, S
Ear,	Ear,	ky,	Ear,	ky,	ky,
Sky	Sky	Bright	Pink	Bright	Bright
Cat,	Cat ,	Cat,	Cat ,	White,	White, T
Ear,	Ear,	Fur,	Ear,	Cat ,	an, Win
Wood	Pink	Striped	Striped	Window	dow
Window, Tan, W ood	Cat , eye, yellow	Cat, nose, striped	Cat, Eye, Yellow	Cat, Window, Wood	Window, Tan, W ood
Window,	Cat,	Cat	Cat ,	Cat ,	Window,
Tan, W	Window,	nose,	Whisker,	Window,	Tan, W
ood	Fur	pink	Striped	Fur	ood
Leaves,	Leaves,	Cat,	Cat,	Cat ,	Cat,
Green,	Green,	Fur,	Fur,	Fur,	Fur,
Window	Window	Striped	Striped	Whisker	Striped
Leaves,	Leaves,	Cat,	Cat,	Cat,	Cat,
Green, T	Green, T	Fur,	Fur,	Fur,	Fur,
ree	ree	Striped	Striped	Striped	Striped

Local Feature Vectors

Maximizes the average mutual information across locations

Evaluating the representations

- Linear / Nonlinear classifier on global features
- Linear / Nonlinear classifier on local features
- Measuring mutual information (MINE)
- Measuring dependence (NDM)
- Measuring reconstruction (MS-SSIM)

Hjelm et. al., ICLR 2019

Classification evaluation results

Model	CIFAR10	CIFAR100	Tiny Imagenet	STL10
Fully supervised	75,39 %	42,27	36,60	68,7
VAE	60,71	37,21	18,63	58,27
AAE	59,44	36,22	18,04	59,54
ALI/BiGAN	62,57	37,59	24,38	71,53
NAT	56,19	29,18	13,70	64,32
DIM(MINE)	72,66	48,52	30,35	69,15
DIM(JSD)	73,25	48,13	33,54	72,86
DIM(infoNCE)	75,21	49,74	34,21	72,57

Classification accuracy

Hjelm et. al., ICLR 2019

DIM on Graphs: Deep Graph Infomax (DGI)

Deep InfoMax extends easily to other types of data.

Spatio-Temporal DIM (STDIM) for Atari

Thanks!

- Code for Deep Graph InfoMax: https://github.com/PetarV-/DGI
- Some Works covered:
- Learning Independent Features with Adversarial Nets for Non-linear ICA. Brakel, Philemon & Bengio, Y. (2017).
- Mutual Information Neural Estimation.
 Belghazi, Baratin, Ozair, Rajeswar, Bengio, Courville, and Hjelm.
 ICML 2018.
- Learning Deep Representations by Estimating and Maximizing Mutual Information.
 Hjelm, Foderov, Lavoie, Grewal, Bachman, Trischler, and Bengio.
 ICLR 2019.
- Deep Graph Infomax (DGI).
 Veličković, Fedus, Hamilton, and Hjelm.
 ICLR 2019.

 Unsupervised State Representation Learning in Atari. Anand*, Racah*, Ozair*, Bengio, Côté, and Hjelm. Workshop for Self-supervised Learning, ICML 2019.