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Neural Neblworks & AI:
Underlying Assump!:iav\

e There are principles giving rise to intelligence (machlne human
or animal) via learning, simple enough that they can be
described compactly, similarly to the laws of physics, i.e., our
intelligence is not just the result of a huge bag of tricks and

pieces of knowledge, but of general mechanisms to acquire
knowledge.
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Learning Multiple Levels of
AbS&rQC&LQV\ (Bengio & LeCun 2007)

e The big payoff of deep learning is to facilitate learning
higher levels of abstraction

* Higher-level abstractions can disentangle the

factors of variation, which allows much easier
generalization and transfer
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A woman is throwing a frisbee A dog is standing on a hardwood
in a park floor
Person

Computers have made huge
strides in

perception,

manipulating language,
games, reasoning, ...

' @J Listening




2010-2012: breakthrough in
speech recognition

DEEP IMPACT

Source: Microsoft




2012-2015: breakthrough
in computer vision

Graphics Processing Units
(GPUs) + 10x more data
1,000 object categories,
Facebook: millions of faces

~ level of human

%
accuracy

Use of

... Deep Learning

over

Conventional
Computer Vision




DEEP LEARNING REVOLU I IONIZING
MEDICAL RESEARCH

Detecting Mitosis in Predicting the Toxicity Understanding Gene Mutation
Breast Cancer Cells of New Drugs to Prevent Disease




Medical Image Classification

Clinical Validation: Optical Colonoscopy

World'’s first real-time colon polyp
malignancy determination from i
unmodified endoscope raw video

with deep learning

Accuracy ot

Probability:

95%

Gl Experts (Key Opinion NICE Clssfcation:
Leaders)* y

Gl Doctors Trained by

KOLs*
*(D. Rex, 2015)




Separately Controlling Style & Content




Computers become Creative with
Deep Generative Models

* Progress in unsupervised generative neural Predict a

nets allows them to synthesize a diversity multi-modal
future

images, sounds and text imitating
unlabeled images, sounds or text

Random_’ Generator
Vector Network
_’ﬁ Discriminator

Network

Random | Training Real | = = W= -
Index Set Image GANs (Goodfellow @ P {
et al NIPS’2014) &"%" v o N
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Intelligence Needs Khowledge
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Learning:

powerful way to transfer knowledge to intelligent agents

Failure of classical symbolic
Al: a lot of knowledge is
intuitive, difficult to put in
rules & facts, not
consciously accessible Deep
Learning

Solution: get knowledge
from data & experience Machine Learning

Artificial Intelligence



Machine Learning, Al
% No Free Lunch

* Five key ingredients for ML towards Al
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1.

2
3
4.
5

Lots & lots of data

. Very flexible models

. Enough computing power
Computationally efficient inference

. Powerful priors that can defeat the curse of
dimensionality



ML 101, What We Are
Fighting Against: The Curse
o ‘bi‘.mehsionaﬂ.&j

1 dimension:
10 positions

To generalize
locally, need

. 2 dimensions:
representative 10 pasitions
examples for all :
relevant
variations!

Classical solution:
hope for a smooth
enough target
function, or make
it smooth by
handcrafting good
features / kernel

> 3 dimensions:
1000 positions!



Bﬁpassiy\g the curse of
dimensionality

We need to build compositionality into our ML models

Just as human languages exploit compositionality to give
representations and meanings to complex ideas

Exploiting compositionality can give an exponential gain
in representational power
Distributed representations / embeddings: feature learning

Deep architecture: multiple levels of feature learning

Prior assumption: compositionality is useful to
describe the world around us efficiently
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Learning Representations



Distributed Representations: The Power of

Campasi&ionali&v - Part 1

e Distributed (possibly sparse) representations, learned from
data, can capture the meaning of the data and state

e Parallel composition of features: can be exponentially

advantageous
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X .
regions
defined

X by learned

rototypes

> prototypes
X

LOCAL PARTITION

Not Distributed
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Sub—partition 3 .
\ Sub-—partition 2

/

\ Cl=1
\C2=0 [

DISTRIBUTED PARTITION

Distributed



Each feature can be discovered
without the nweed for seeing the
exponentially Large number of
confiqurations of the other features

e Consider a network whose hidden units discover the following
features:

* Person wears glasses ;.

* Person is female ,
* Personisachild -
* Etc.
If each of n feature requires O(k) parameters, need O(nk) examples

Non-parametric methods would require O(nh?) examples

17



Hidden Units Cawn Discover
Semantically Meaningful Concepts

e Zhouetal & Torralba, arXivi412.6856, ICLR 2015
e Network trained to recognize places, not objects
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Deep Learning: Learning an
Internal Represev\&auon

e Unlike other ML methods with either
° no intermediate representation (linear)

e or fixed (generally very high-dimensional)
intermediate representations (SVMs, kernel
machines)

e What is a good representation? Makes other
tasks easier.



Automating

Feabture ‘Discove.ry

20

Output

\

Mapping
Output Output from
features
A A A
Mapping Mapping Most
Output from from complex
features features features
A A A A
Hand- Hand- Simolest
designed designed Features P
features
program features

)

3

)

Input Input Input Input
Rule-based Classic Representation Deep
systems machine learning learning
learning




Learning mutkipl.e. levels BN
Of fepfese‘f\&ﬁﬁaﬁh (Lee, Largman, Pham & Ng, N9

i _(Lee, Grosse, Ranganath & Ng, ICML 2009)
Successive model layers learn deeper intermediate representations

High-level
Layer 3 linguistic representations

Parts combine
to form objects

Al o DR A P Tre—— |

HE P
e —
- N
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I ALNNKRE=NT T RET [.' ‘

Prior: underlying factors & concepts compactly expressed w/ multiple levels of abstraction




Whj MuLEi‘.Ple Laje.rs? The World is
Compasii:ionaxt

# Hierarchy of representations with increasing level of abstraction

8 Each stage is a kind of trainable feature transform

# \mage recognition: Pixel = edge = texton - motif = part = object

@ Text: Character - word = word group = clause - sentence - story

# Speech: Sample - spectral band = sound = ... > phone = phoneme - word

Low-Level Mid-Level High-Level Trainable
Feature Feature Feature Classifier




Deep Representations: The Power of
Compos:.&iohati.&v - Part 2

e Learned function seen as a composition of simpler operations,
e.g. inspired by neural computation

e Hierarchy of features, concepts, leading to more abstract
factors enabling better generalization

e Again, theory shows this can be exponentially advantageous

ka mut!:ipte iajers? The world is composi.l:i.ov\at

Low-Level Mid-Level High-Level Trainable
Feature Feature Feature Classifier
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EX oneh& lal advantage

of depl:h

Expressiveness of deep networks with piecewise linear activation
functions: exponential advantage for depth

e (Montufar et al & Bengio, NIPS 2014)
e Number of pieces distinguished for a network with depth L and

n; units per layer is at least
L—1 n?: no no ’I’LL
}1 L”L_OJ 2 ( j )

J=0

or, if hidden layers have width n and input has size n,
()"0 mme
no
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Not so terrible Local mnmmw
¢ovwexd:3 is ot ueede.d

Myth busted:

e Local minima dominate in low-D, but _
saddle points dominate in high-D

S N N [a7] (]
5 £ £ L 4

e Most local minima are relatively close

to the bottom (global minimum error) =
(Dauphin et al NIPS’2014, 2 S
Choromanska et al AISTATS’2015)
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Deep Nebks and Backprop



Recap: Machine Learning 101

Family of functions f9
Tunable parameters §

Examples (x,y) sampled from unknown data generating
distribution P(x,y)

Loss fn L compares target y and output f@([L‘), returns a
number

Regularizer R (typically depends on fbut possibly also on x & y)

Training criterion for supervised learning:
O<0> — aVeIagel ;, 1) dataset <f9( ) ) t R(ﬁ,x,y)

Approximate minimization algorithm to search for good {J

27



Logistic Regression .

e Predict the probability of a category y,

given input x 057
* P(Y=y | X=x)
* Simple extension of linear regression /
(binary case): e o 5

* P(Y=1 | X=x) = sigmoid(b + w. x)
e Train by tuning (b,w) to maximize average
log-likelihood

Average( log P(Y=y|X=x) )
over training pairs (x,y), by gradient-

P(Y=11x) Jogistic output

based optimization

e This is a very shallow neural network (no
s hidden layer)



Hidden uniks

(from

Hugo
Larochelle)

29

+ Neuron (output) activation

+ W are the connection weights

+ Neuron pre-activation (or input activation):

a(x) =b+ Y wiri =b+w'x

h(x) = gla(x)) = g(b+ ) wizi)

+ b 15 the neuron bias

g g() s called the activation function




A neural networlk = running several
Logistic regressions at the same time

If we feed a vector of inputs through a bunch of logistic regression
functions, then we get a vector of outputs

But we don’t have to
decide ahead of time
what variables these
logistic regressions

are trying to predict!

30



A neural networlk = running several
Logistic regressions at the same time

... which we can feed into another logistic regression function

and it is the training
criterion that will
decide what those
intermediate binary
target variables should
be, so as to make a
good job of predicting
the targets for the next
layer, etc.

31



A neural networlk = running several
Logistic regressions at the same time

e Before we know it, we have a multilayer neural network....

O v N

A'IL

°1'A\w “~ o

LayerL4

LayerL3

Layerl.l LayerL,

32



Mut&itajer nebtworke as universal
approxima!:or

A series of non-linear
transformations of the same

type but different parameters Universal

approximator

A single but large enough oroperty does not

hidden layer yields a guarantee
universal approximator 1 easy
optimization

(low training
error is found)

More layers allow
representing more
complex functions with
less parameters

2. good
generalization

33



Nown-Llinearity = activation function

e Stacking linear layers: like one (factorized) linear layer
e Universal approximator : stack linear+nonlinear transformations
e Many types of non-linearities are possible: activation function

e E.g. linear, sigmoid, tanh, rectifier (ReLU), softmax

e Breakthrough in 2011: it is much easier to train a deep multilayer
network with rectifiers (ReLU) than with sigmoid or tanh, making
it possible to train deep nets in a purely supervised way for the
first first time (Glorot & Bengio AISTATS 2011)

34



Topics: sigmoid activation function Topics: hyperbolic tangent (“tanh”) activation function

» Squashes the neuron’s o | * Squashes the neuron's
pre-activation between 0 R — _— pre-activation between :
Oand | R | -l'and | 13
» Always positive / » Can be posttive or
b [T U N N negative
» Bounded ‘ . N
o . » Bounded
» Strictly increasing -
e |« Strictly increasing |
. . 1 . __exp(a)—exp(—a) _ exp(2a)-1
g(a) - Slgm(a) ~ l+exp(-a) g<a) B tanh(a’) ~ exp(a)texp(—a) ~— exp(2a)+1

Topics: softmax activation function Topics: rectified linear activation function

+ For multi-class classification: + Bounded below by 0

» we need muttiple outputs (I output per class) (a|\/\/ayg non-negati\/e> 25
» - we would like to estimate the conditional probability p(y = C|X)

» Not upper bounded

» Strictly increasing

» We use the softmax activation function at the output: . N
+ Tends to give neurons

. | ek |

B [ expla) exp(ac) with sparse activities

o(a) = softmax(a) = Ecexp(lac) Zcexpfac) P 25

> strictly positive

» sums to one

+ Predicted class Is the one with highest estimated probability g(a) = reclin(a) = max(0, a)



Supervised training of an MLP by
ackpropagation

OUtpUt ’) Target

f(X) %ix =V
Even more / / \
abstract e ... 0
features
More abstract I/ ><T
features 'ﬁ

features va
iInput 00 ..
Requires(X,Y)=(input,target) pairs as training data

36



Iterative training by SGD

(from Topics: stochastic gradient descent (SGD)

Hugo
Larochelle) + Algorithm that performs updates after each example

 intelze @ (9= {W(U,b(M), . WD) bE+DY)

» for N rterations

- for each training example (x(®), y®) \
traini h
A =~V f(x;6), 40) - X420 e
0—0+aA teration over all examples

+ o apply this algorithm to neural ietwork training, we neea
» the loss function l(f(x(t); 0), y(t))
»a procedure to compute the parameter gradients Vg (f (x(t); 0), y(t))
» the regularizerQ(g) (and the gradientV o () )

37 » Initialization method



Motivation for backpropagation:
gradient-based optimization

e Knowing how a small change of parameters influences loss L tells
us how to change the parameters f

0L

e The gradient 77 Measures the ratio of error change due to a

small parameter change.

* |Indicates the best local descent direction!

38



Why backprop is powerful

e With n parameters need O(n) computations to obtain L
e Also need only O(n) computations to obtain gradient by backprop

e Dumb alternative, by finite differences:

OL(0;,0-;) _ L(0; +¢,0_;) — L(6;,0 ;)

I
%

802' €

e But that would cost O(n?) instead of O(n) by backprop!

39



Confusion on the word BACKPROP

e Backprop: the backward accumulation procedure to compute
gradients efficiently wrt a scalar (the loss)

e NOT THE SAME THING AS gradient descent, nor the MLP
architecture.

e Backprop is not just used for supervised learning: also for
unsupervised learning and RL, with different losses

40



Back-Prop # Chain Rule

e Compute gradient of example-wise loss wrt

parameters, by considering intermediate values such
as the outputs of neurons

* Simply applying the derivative chain rule wisely

0z 0
:=fly) y=yg(z) g_;:agaz

41



Chain Rule

Also works if all these
guantities are tensors,
using the appropriate
tensor products

42

Az = @Ay
Ay = ay AV
Az = az ay AV

0z _ 0% 8y
or Oy Oz




MuJ.ELpLe Pabhs Chain Rule

43



Mu,tﬁpte Pabhs Chain Rule - General

&

44



Chain Rule in Flow Grapk
Z

Flow graph: any directed acyclic graph
node = computation result
arc = computation dependency

{yl, Y2, ... yn}=successors of XL

45



Bac:k-‘?rop in Mui.&i-l.ajer Nekb
NLL = —log P(Y = y|x)

46
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error

Backprop %N
Mui.ki.—vLave.r
Nek:

How oul pu,&s
could change
to malee error
smaller

Y
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error

Backprop A%\
Muﬂ:i.-LaveJ‘
Neb:

How h, could
change to

malkee error
smaller

Y
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error

Backproy %N
Muiki.-»Laver
Neb:

How h, could
change to

malkee error
smaller

Y
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error

Backproy %N
Muiki.-»Lave.r
Neb:

How W, could
change to

malkee error
smaller

Y

51



Back~?rop i Greneral Flow Grapk

Single scalar output

1. Fprop: visit nodes in topo-sort order
- Compute value of node given predecessors
2. Bprop:
- initialize output gradient =1
- visit nodes in reverse order:
Compute gradient wrt each node using
gradient wrt successors

{y1, y2, ... Yn} =successors of T

52



Back-Prop in Recurrent # Recursive
Nets

* Replicate a o A z.“l
parameterized function - 9 39 2o
over different time steps | ° x ° ... °
or nodes of a DAG X OROORD

* Qutput state at one

A small crowd
time-step / node is used quietly enters
as input for another Ry e
time-step / node NP VP ....... P Representations

A small quiety N P
crowd enters Det Adj. N.

VA LO:‘OA ooo‘\ooo
RN
the historic | church

53



Automatic Differentiation

QA

* The gradient computation
can be automatically
inferred from the symbolic
expression of the fprop.

* Each node type needs to
know how to compute its
output and how to compute
the gradient wrt its inputs
given the gradient wrt its

& ‘§ ,‘ output
."‘%‘f T .
theano. ¥ PYTHRCH

54 Tensor

Easy and fast prototyping



Batch Normalization
(Ioffe & Szegedy 2015)

e Helps training by reparametrization which improves condition
number, helps generalization by acting as a regularizer

e QOther normalization methods proposed since then

1 — .
1B — — Z T // mini-batch mean
m “
1=1
1 ™m
0 — Z(xz — ug)? // mini-batch variance
i=1
~ Xj — :
ZT; 4 i P8 // normalize
V0% + €

yi < vx; + B = BN, g(z;) // scale and shift

55



Log-Llikelihood as Loss function

(from Topics: |oss function for classification

Hugo

Larochelle) Neural network estimatesf(x), = p(y = ¢/x)

» we could maximize the probabilities ofy(t) aivenx(®) in the training set

+ o frame as minimization, we minimize the
negative log-likelihood natural log (In)

(805) = 5 Ly o200 - -Db 0,

» e take the log to simplify for numerical stability and math simplicity

o6 »  sometimes referred to as cross-entropy



Log-Likelihood for Neural Neks

e Estimating a conditional probability P(Y‘X)
e Parametrize it by P(Y‘X) — P(Y‘w — f@(X))
e Loss= —log P(Y|X)
e E.g.GaussianY,  — (Iu, g)
typically only ! is the network output, depends on X
Equivalent to MSE criterion:
loss= —log P(Y|X) =logo + || fo(X) = Y||?/o?
e E.g. Multinoulli Y for classification,
w; = P(Y =ilz) = fp;(X) = softmax;(a(X))
055 = — logwy = — log fo.y (X)

57



Multiple Outpul Variables

e |If they are conditionally independent (given X), the individual
prediction losses add up:

—log P(Y|X) = —log P(Y1,...Y3| X) = logHP V| X) = ZlogP Y;| X)

e Likelihood if some Y/s are missing: just ignore those Iosses

e |f not conditionally independent, need to capture the conditional
joint distribution P(Y17 o Yk‘X)
* Example: output = image, sentence, tree, etc.
e Similar to unsupervised learning problem of capturing joint

* Exact likelihood may similarly be intractable, depending on

model
58
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Combining Representations



Neural Language Models

e Bengio et al NIPS’2000
and JMLR 2003 “A

Neural Probabilistic

Language Model”
* Each word represented by
a distributed continuous-

valued code vector =
embedding

Generalizes to sequences
of words that are
semantically similar to
training sequences

i-th output = P(w; = i | context)

Softmax: | normalized exponential
( ) ) e ) e 00 ]
most| computation here
W
tanh
(eeo .. o0 )

----------------------

shared parameters
across words

Wi—1

Wi—2

Wt—n+1



Neural word embeddings -

visualizakion

come
go
take
give keep
make get
meet cee continue
want
expect
think

say

61

need help
become
remain
are .
IS
be
wergas
being
been

hadnas

have



Analogical Representations for Free
(Mt.koi.ov et al, ICLR 2013)

e Semantic relations appear as linear relationships in the space of
learned representations

e King —Queen = Man—-Woman
e Paris — France + Italy = Rome

France

S

Paris

Rome
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Google Image Search:

Different object types represented in the
same space.

DDDDDDDD

DOLPHIN
— OBAMA
—EIFFEL TOWER

} Google:

| S. Bengio, J.
Weston & N.
Usunier

£5e (1JCAI 2011,
NIPS’2010,
JMLR 2010,
ML) 2010)

o4

100-dim
embedding space

Learn ®(<) and &,(-) to optimize precision@k.



Maps Bebween 75
Represev\&a&mus

x and y represent
different modalities, e.g.,
image, text, sound...

Can provide 0-shot
generalization to new
categories (values of y)

— — (@, y) pairs in the training set

= L-representation (encoder) function f,

(Larochelle et al AAAI 2008) = = o Y -representation (encoder) function f,

<-----» relationship between embedded points
within one of the domains

<«— maps between representation spaces

64



Multi-Task Learning

e Generalizing better to new tasks
(tens of thousands!) is crucial to
approach Al

e Deep architectures learn good
intermediate representations that
can be shared across tasks
(Collobert & Weston ICML 2008,

Bengio et al AISTATS 2011)

e Good representations that
disentangle underlying factors of

variation make sense for many tasks  E.g. dictionary, with intermediate
because concepts re-used across many definitions

Prior: shared underlying explanatory factors between tasks
65



Combining Multiple Sources of Evidence
with Shared Representations

e Traditional ML: data = matrix m“m
e Relational learning: multiple sources,

o
different tuples of variables

e Share representations of same types &
across data sources
e Shared learned representations help event url person
propagate information among data " history words _url

sources: e.g., WordNet, XWN, ' '
Wikipedia, FreeBase,

ImageNet...(Bordes et al AISTATS 2012, ML
J. 2013) P(person,url,event)
 FACTS = DATA

P(url,words,history)

6 Deduction = Generalization
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Hyper-Parameters & Meta-Learning



Hyper-parameters & validation set

e Parameters: optimized by gradient-based optimization on the training set

e Hyper-parameters: design decisions and settings of the optimization
procedure

e Optimized based on performance on a validation set disjoint from training
set.

e Choosing hyper-parameters based on training set would lead to high-capacity
choices with overfitting (hence need a validation set)

e Adisjoint test set is used to obtain final unbiased estimation of
generalization performance.

e Training, validation and test sets are subsets of randomized (shuffled) data,
to mimic iid assumption

Training set Validation set Test set

68
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Hyper-parameters of MLPs

Global learning rate

Number of training epochs (passes over training set)
Number of neurons per layer

Depth (number of layers)

Choice of activation function(s)

Regularization coefficients (L1, L2, etc.)

Noise injection & dropout

Loss function and output non-linearity

Minibatch size (with parallel computation within minibatch)
Weight normalization method (e.g. batch normalization)
Input and targets normalization

Data deformations

Etc.



Nested optimisation of parameters and
kvper- paramelzers

e For each considered configuration of hyper-parameters
e Train parameters with this configuration (optimize train loss)
* Measure resulting model’s validation error
e Keep this configuration if it’s the best seen up to now

e An old form of meta-learning: two nested optimizations

e Optionally: Retrain with training+validation set

e Measure resulting model’s test error

70



vaer-oln!:i,maz.a&i,ov\

e Manual search
* Don’t use test error!
* Slow and sequential, but trained humans still generally do it.
* Not systematic, harder to reproduce
e Grid search: inefficient with more than 2 hyper-parameters
e Random search (Bergstra & Bengio, 2012, JMILR)
* Simple, robust & parallelizable

e Bayesian optimisation (sequential, automated), reinforcement
learning

71
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(Bergstra & Bengio 2012) @&

Random Samptiag of Hyperparameters

e Random search: simple & efficient

Unimportant parameter

Independently sample each HP, e.g.
|.rate~exp(U[log(.1),log(.0001)])

Each training trial is iid
If a HP is irrelevant grid search is wasteful
More convenient: ok to early-stop, continue

Grid Layout Random Layout
O 0 O© E
0 0 0 c
5
“ O 0 O £
-

Important parameter Important parameter
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L1 regularisation to remove
weights and inputs

Add a term that pushes weights or groups of weights to O

prediction error + A z |W@]‘

1]
pushes individual weights to O, whereas

2
prediction error + A E \/E Wij
v J

is trying to make all the weights in the group Wz gotoO
,.




Weight Initialisation

(from Topics: initialization
Hugo Larochelle) |
* For biases

» Initialize all to 0

Attempts to be * TOr Weights

invariant to the  » Can'tinitialize weights to 0 with tanh activation

size of the - we can show that all gradients would then be 0 (saddle point)
layers e .
y » Can't initialize all weights to the same value
- we can show that all hidden units in a layer will always behave the same
size of h(®)(x)
- need to break symmetry
- k) V6
» Recipe: sample W) from U7 [=b, b] where b=
P R —b,0] \/m
- the idea Is to sample around 0 but break symmetry
74

- other values of b could work well (not an exact science) ( see Glorot & Bengio, 2010)



E i. St
fr:: uv\d? E’F g for the price of 1)

(from Topics: early stopping
Hugo

Larochelle) To select the number of epochs, stop training when validation

set error increases (with some look ahead)

O Training O Validation
05

04 underfitting overfitting
03
02

0,1

00

75 number of epochs



Regularizing by injecting noise:
dropout

(from PO t
Hugo opics: dropou
Larochelle) -« |dea: «cripple» neural network by

removing hidden units stochastically

» each hidden unit is set to 0 with
probability 0.5

No noise n
at test » hidden units cannot co-adapt to other )
i units
time. W
» hidden units must be more generally
useful h()(x)

» Could use a different dropout
probability, but 0.5 usually
76 works well




Diagnostic: overfitting vs underfitting?

(irom Topics: why training is hard
Hugo . o s |
Larochelle) * Depending on the problem, one or the other situation wil

tend to prevall

* It first hypothesis (undertitting): use better optimization

» this is an active area of research

* It second hypothesis (overfitting): use better regularization

| . : . or collect more dc
» unsupervised learing or semi-supervised

77 » stochastic «dropouty training



How ko lnow if you are overfitting or
underfitting?

Overfitting: if you increase capacity (hnumber of parameters,
training time, better optimizer, smaller regularization coefficient,
etc.), test or validation error increase

O Traning O Validation

underfitting overfitting

78



Meta~Learning / Learning to Learn

e Generalize the idea of hyper-parameter optimization
° Inner loop optimization (normal training), a fn of meta-params

0;(w) = approxmin,C(0,w,D;,. . )

train

* Quter loop optimization (meta-training), optimize meta-params
_ . t
w = approxmin,, E L(6:(w),w, Dy, ;)
t

e Meta-parameters can be the learning rule itself (Bengio & Bengio
1991; Schmidhuber 1992), learn 2 optimize

 Meta-learn an objective or reward function, or a shared encoder
e Meta-learning can be used to learn to generalize or transfer

e Can backprop through Ht , use RL, evolution, or other tricks
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Injecting Noise in a Nonsmooth Net

* |njecting noise corresponds to convolving the objective function
with the noise kernel:

C(0) % N(e) = / C(0 — N (€)de

€

~ mean,. () C(0 — ¢€)

e Same thing for the gradient, so we get a stochastic gradient on a
smooth of the original objective function, which should be
easier to optimize.

e Gradually reducing the noise level = simulated annealing
80



Continuation Methods and Simulated
Annealing

e Gradually consider less easy versions of the objective of interest,
tracking the local minima found along the way

/S/@ Final solution

SO/?‘O \5\/77
90, 20
Y% s
Of/}@goé/. Track local minima
RS
2 0&;@

81 Eosy to find minimum



Order & Selection of Examples Ma&&ers

(Bengio, Louradour, Collobert & Weston, ICML2009) ‘

e Curriculum learning
(Bengio et al 2009, Krueger & Dayan 2009) k‘:

is a form of continuation method

e Start with easier examples —curriculum

= =no-curriculum

e Faster convergence to a better
solutions in deep architectures
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Guided Training, Intermediate
Concepts

e Breaking the problem in two sub-problems and pre-training
each module separately, then fine-tuning, nails it

e Need prior knowledge to decompose the task

e Guided pre-training allows to find much better solutions, escape
effective local minima

inputs> —> —> outputs

HINTS (Gulcehre & Bengio ICLR’2013)
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Debugging
* |Instrument the code to make experiments reproducible
e Use tools to verify gradients (finite differences)

 Train on a small dataset: verify can reach O training error

e Track error curves during training (training error, validation
error); training error should roughly go down

* Track distribution statistics of weights and gradients during
training
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Validate and Ahaijz.e

Vary capacity and observe error curves to identify if the
system is rather overfitting or rather underfitting

Compare with simpler reference models (logistic regression,
SVMs, random forests)

Track several relevant metrics

Look at the training and validation examples which give the
worse error (input, output and target)

Measure effect of changing the number of training examples

Make sure you have enough test examples to be able to
conclude with statistical significance
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Convolutional Neks



Anything New with Deep Learning since the

Nearal Nets of the 20s

Rectified linear units instead of sigmoids, enable training much
deeper networks by backprop (Glorot & Bengio AISTATS 2011)

Some forms of noise (like dropout) are powerful regularizers
yielding superior generalization abilities

Success of deep convnets trained on large labeled image datasets,
success of skip connections (ResNets)

Success of recurrent nets with more memory, with gating units
Success of word embedding, neural machine translation, deep NLP

Attention mechanisms liberate neural nets from fixed-size inputs,
self-attention allows to work on sets, graphs

Autoencoders, adversarial training, generating images & sounds
Transfer learning, meta-learning, deep reinforcement learning



2012-2015: breakthrough
iIn computer vision

» Graphics Processing Units
(GPUs) + 10x more data

* 1,000 object categories

 Facebook: millions of faces
Person

Chair




Approaching Human Accuracy

Top-5 Classification task, ImageNet

100%

~ level of human
gccuracy

Deep Learning

over

Conventional
Computer Vision

2012 2013 2014 2015




Convolutional Nebtworlkes

e Scale up neural networks to process very large images /
video sequences

- Sparse connections
- Parameter sharing

* Automatically generalize across spatial translations of
Inputs

e Applicable to any input that is laid out on a grid (1-D, 2-
D, 3-D, ...)



Convinetks: Kev Idea

* Replace matrix multiplication in ordinary
neural nets with convolution

e Everything else stays the same
- Maximum likelihood
- Back-propagation
- etc.



Convolutional Neural Nebworlkes

e A special kind of deep learning tailored for images
e Exploits the invariance to translations
e Exploits multi-scale hierarchy

Convolutional neural network for imaging data
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2D Cownvolubtion

input

Kernel
c d
i T
9 h
l’
K I
' Output
*
ow + bk + bw <+ o + cw + dr +
ey + Sz fy + gz gy + Ahz
ew + fr + Jw + gxr + gw + hr <+
iy + )z o+ k2 ky + Iz

Figure 9.1, Deep Learning book, Goodfellow et al 2016



Sparse Couuec!:t.vi;&j

Sparse
connections
due to small
convolution
kernel

Dense
connections

Figure 9.2



Slmrse C.ovmecti.vi;&j

Sparse
connections
due to small
convolution
kernel

Dense
connections




Growing Receptive Fields

OJO¥O¥O
M) @ & @ (=




Parameter Skariiug

Convolution shares the
same parameters across
all spatial locations

Traditional matrix
multiplication does not
share any parameters

ofo
efo
o¥o
opo

ofo
©
°
©

04 0l[050

©
®
©

Figure 9.5



Cross—-Chawnnel Pooling and
Invariance to Learned
Transformations

Figure 9.9



Pooling with
Downsampling

O ST



Convolution with Skride



Mo jor ConvNelt Architectures

e Spatial Transducer Net: input size scales with output size,
all layers are convolutional

e All Convolutional Net: no pooling layers, just use strided
convolution to shrink representation size

* Inception: complicated architecture designed to achieve
high accuracy with low computational cost

e ResNet: blocks of layers with same spatial size, with each
layer’s output added to the same buffer that is repeatedly
updated. Very many updates = very deep net, but without
vanishing gradient.



ResNets: Ski‘,p Cownnections
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ldentity paths make it possible for gradients to flow through
deeper networks (He et al 2015), SOTA on object recognition

| addition |
S

RelU
v
Xre1

(a) original

BN
i
RelU
__weight |
“addition |
BN
v
RelU
.
X741
(b) BN after
addition

RelU
X741

(c) ReLL.U before
addition

Xy
b
RelU

BN

v

RelU

BN

X1

(d) ReLU-only
pre-activation

X
1{\‘
BN
!
RelU
BN
!
RelLU
| weight |
addition
X/+1

(e) full pre-activation



Beep Data Fusion

e Deep nets are very good at combining multiple sources of data,
multiple sensors or modalities

e (Can have separate pre-processing stages for each modality, then
CONCATENATE the representations before continuing processing

Need to map
r'ﬁl D ﬁ D ll to the same
% spatial scale,

II C> Il or ‘copy’ a

non-spatial
modality at all
positions.

Q
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e (Kirosetal, 2014; Mao et al.,

Vision Language A grou.p of people
Deep CNN Generating shopplng at an
RNN | |outdoor market.

2014; Donahue et al., 2014;
Vinyals et al., 2014; Fang et
al., 2014; Chen and Zitnick,
2014, Karpathy and Li, 2014;
Venugopalan et al., 2014).

_)
O
= @ There are many

vegetables at the
fruit stand.

e Convolutional net =2

generative RNN

o

A close up of a child holding a stuffed animal - — =
Two pizzas sitting on top of a stove top oven.

1 (GT: A young girl asleep on the sofa cuddling a stuffed bear.)
(GT: Three different types of pizza on top of a stove.)



U-Net Architecture for CNNs with
Pixel-Wise Outputs

0

sigmoid
conv(1x1
ReLu

N
" __conv(3x3)
bottleneck | bottleneck

bottleneck ='| bottleneck

N

L

|

L:A': .

bottleneck | bottleneck
bottleneck | bottleneck

1 11 | el

bottleneck . bottleneck

(a) FC-ResNet (b) Bottleneck block (c) Simple block



Grenerating Imaqges from Text

e With U-Net like architectures and multi-stage refinement
e With GAN types of objectives
e With attention mechanism

this bird is red with white and has a very short beak

Xu et al 2018, AttnGAN
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AtbWwGAN Architecture

Many bells and whistles in modern deep learning...

Iw’ual Iscmrmpe Iupsamp'"“ Deep Attentional Multimodal Similarity Model (DAMSM) I”i"i"“ Icorwsxs

Attentional Generative Network

word LocaI image

' I
|
features | . : features
| Attention models !
111 : | [
2*N(0,)) i Fo i F’ s l T
1) ,
~ sentence ' l )
Text feature i; I [h, : ' Image
Felc . ! Encoder
Encoder ! .
: : 256x256x3
| I
|

this bird is red with
white and has a

very short beak
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Recurrent Neural Nebtworlkes

108



Recurrent Neural Networlkes

e Can produce an output at each time step: unfolding the graph
tells us how to back-prop through time.

0 Ot—1 O¢ Ot+1

v

W
S ' W St—1 St St+1
W W W
unfold
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Recurrent Neural Nebkworles

e Selectively summarize an input sequence in a fixed-size state
vector via a recursive update

St = FO(St—laxt)
Fo

S I St—1 St+1
unfold | f‘ .<Tj Ly
(] shared ov rtlme
T Lt—1 Lt41

St = Gt(CBt, Lt—1yLt—2y - . ,$2,£I31)

=» Generalizes naturally to new lengths not seen during training
110



Greneralbive RNNs

* An RNN can represent a fully-connected directed generative
model: every variable predicted from all previous ones.

T
P(x) = P(x1,...x7) = HP(:ct|:ct_1,:ct_2, ... 21)
t=1

Ly Ly L1

t—l \Ot (0t+1 Ly = —log P(x¢|xt—1,T¢—2,...21)
VI W N WS
W St_\l St \\ St—P\l
WY K\F W
U \\ U \ U \

\
N
Ti—1 Yoy Tit1 Tigo
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Neural word embeddings - visualization

need help
come
go
take
qive keep
make get
meet cee continue
expect want become
think
say remain
are .
Is
be
wergas
being
been

haqwas
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Conditional Distributions

o

N

\

|
/

e Sequence to vector TS

\ w

~ r'd

S
Y
gr

OO @R

/ .
L

VS
—»

e Sequence to sequence of the
same length, alignhed

* Vector to sequence

/
| h() \
\ /

q$1t+1 *ﬂﬂt+2

Lt—1 “ Lt

e Sequence to sequence

OO
Y




’——-——-.‘-.~

Maximum Likelihood = /7 7 7\ Testtime

. h
Teacher Forcing i~ P, |éi:)) P
P
* During training, past y Training-
in input is from training P(y, | ht)Q time path

____________________ >

data

* At generation time,
past y in input is
generated

e Mismatch can
cause “compounding
error”

(¢, y¢) : next input/output training pair
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Ideas to reduce the train/generate
mismakch in teacher forcing

e Scheduled sampling (S. Bengio et al, NIPS 2015)

Loss
@fm/ Related to
’}r" SEARN (Daumé et al 2009)

? DAGGER (Ross et al 2010)
h(1) p—--—>| hit-1) hit)y |—>
¥
;( P _ Gradually increase the

probability of using

\‘ the model’s samples
sampled y(t2)  true y(t2) true y(t1) vs the ground truth
as input.

e Backprop through open-loop sampling recurrence & minimize
long-term cost (but which one? GAN would be most natural =
Professor Forcing)
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Increasing the Expressive Power of
RNNs with more Depth

e |CLR 2014, How to construct deep recurrent neural networks

Yia Y Yi+1

+ deep hid-to-out
+ deep hid-to-hid
+deep in-to-hid

Yt

+ stacking

- ht
Xt
+ skip connections for

creating shorter paths
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Bidirectional RNNs, Recursive Nets,
Multidimensional RNNs, etc,
e The unfolded architecture needs not be a straight chain

Recursive (tree-structured) Bldlrectlona! RN_T{_S:»(“Schuster anql Paliwal, 1997)

Neural Nets:
0 y
: FORWARD
Frasconi et al 97 STATES
Socher et al 2011 ]
i}
BACKWARD
STATES
t—1 t
vV (i-1,)) (i.j) (i,j-1)
See Alex Graves’s work, e.g., 2012
X X5 X3 X4
input layer (i) sional RNNs, Graves et al 2007)
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Mui.!:ipucalzive Interact

Lons

(Wu et al, 2016, arXiv:1606.06630)

 Multiplicative Integration RNNs:

* Replace O *
o(Wzx + Uz + b) £
. By ;22.1—
d(Wx Uz +b) *

* Or more general:

P(a©OWxoUz+ 30Uz +

118

N

_(b)

e \/ANIl2-RNN
== MI|-RNN-simple |-
=©— MI-RNN-general

i
10 15

number of epochs

B2 © Wz + b)

5

20 25



Multiscale or Hierarchical RNNs

o (Bengio & Elhihi, NIPS 1995)
e Motivation :

o Gradients can propagate over longer spans through slow time-scale paths
e Approach:

o Introduce a network architecture that update the states of its hidden layers
with different speeds in order to capture multiscale representation of
sequences.




Learning Long-Term
‘Depevxd@.&m&es wikh
Grradient Descenk is

Difficult

Y. Bengio, P. Simard & P. Frasconi, IEEE Trans. Neural Nets, 1994



How ko store 1 bik? Dunamics wikth
multiple basins of attraction in some
dimensions

e Some subspace of the state can store 1 or more bits of
information if the dynamical system has multiple basins of
attraction in some dimensions

Basins b ry

Note: gradients MUST be high near the boundary
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Robustly storing 1 bit in the presence
of bounded noise

e With spectral radius > 1, noise can kick state out of attractor

UNSTABLE

Domain of a,

* Not so with radius<1

CONTRACTIVE
-> STABLE



Storing Reliably & Vanishing gradients

Reliably storing bits of information requires spectral radius<1

The product of T matrices whose spectral radius is < 1 is a matrix
whose spectral radius converges to O at exponential ratein T

L= L(sr(s7—1(. .. st+1(5¢,--+))))

8_L 0L Ost 0S¢11
Os;  Osp Osp_1  Osy

e |f spectral radius of Jacobian is < 1 = propagated gradients vanish
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Vanishing or Exploding Gradients

e Hochreiter’s 1991 MSc thesis (in German) had independently
discovered that backpropagated gradients in RNNs tend to either
vanish or explode as sequence length increases

1991: SEPP HOCHREITER'S ANALYSIS OF TH
FUNDAMENTAL DEEP LEARNING PROBLEM

de(t-q)
de(f)

[ (B ﬁWF (Net(t-m))l

m=|

<(IWllmax, {IlF'(Net)ll})"
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Why it hurts gradient-based Learning

e Long-term dependencies get a weight that is exponentially
smaller (in T) compared to short-term dependencies

6Ct (9015 @a,, aCt 8&73 80&7-

- Z  Da, OW Z Dy \Dar OW

t

Becomes exponentially smaller
for longer time differences,
when spectral radius < 1
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Vanishing Grradients in Deep Nebs are

Different from the Case i RNNs -

e |f it was just a case of vanishing gradients in deep nets, cgt
we could just rescale the per-layer learning rate, but Q

that does not really fix the training difficulties. =
Sy 1 Sy S oy
%74 W %4 %4 i[5
|
g
e Can’t do that with RNNs because the weights are Q
shared, & total true gradient = sum over different =
“depths”
@Ct @Ct 60&7 @Ct aat 8617

oW = 2 G0, W “~ da, da, OW

7<%
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To store information robustly the
dynamics must be contractive
e The RNN gradient is a product of Jacobian matrices, each

associated with a step in the forward computation. To store

information robustly in a finite-dimensional state, the dynamics
must be contractive [Bengio et al 1994].

L = L(ST(ST—l(- . 3t+1(3t7 i ))))
OL OL aST 8St—|—1 Storing bits

881; 8ST 8ST—1 S ast rObUStly requires

e-values<1

* Problems:

Gradient
« e-values of Jacobians > 1 = gradients explode =" clipping

* or e-values < 1 - gradients shrink & vanish

e or random -2 variance grows exponentially
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Dealing with Gradient Explosion by
Gradient Norm Clipping

(Mikolov thesis 2012;
Pascanu, Mikolov, Bengio, ICML 2013)

A Oerror

g < o

if ||&| > threshold then
A threshold 4
E gl 8

end if

'}

CeIrror

128 o)

0.35

)
\\
=" \\\ 4
—So > (0.10

0.30
0.25 .
> C
0.20 &
a
0.15

'0.05




NN Trickes

(Pascanu, Mikolov, Bengio, ICML 2013; Bengio, Boulanger & Pascanu, ICASSP 2013)

e Clipping gradients (avoid exploding gradients)

e Leaky integration (propagate long-term dependencies)

e Momentum (cheap 2"9 order)

e |nitialization (start in right ballpark avoids exploding/vanishing)
e Sparse Gradients (symmetry breaking)

e Gradient propagation regularizer (avoid vanishing gradient)

e Gated self-loops (LSTM & GRU, reduces vanishing gradient)
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Delays # Hierarchies to Reach Farther

e Delays and multiple time scales, Elhihi & Bengio NIPS 1995,

Koutnik et al ICML 2014 QOD 0t-1 O Q¢ 11
e How to do this right? W, Wi ? W,
. : S t—2

How to automatically @ »C;(W :
and adaptively do it? ; unfold

N\
91
/ \
/ \
\
) /\A /\ \
7\ N\ .\ _ .\ _
CF O @ ) @ @, @, @, @ @, @, (U O b

Hierarchical RNNs (words / sentences): W .. A acoder
Sordoni et al CIKM 2015, Serban et af =~~~ cortex o
AAAI 2016 encoding o

494

3

UNg

130 wow , | keep on bumping into you . yeah . i hope your mango ' sripe



Fighting the vanishing gradient:
LSTM & GRU

(Hochreiter 1991); first version of LSTM: (Hochreiter & Schmidhuber 1997)
the LSTM, called Neural Long-
Term Storage with self-loop output

new state =~ old state + update
Create a path where
Onew state

i ~ I
gradlents_, can flow for old state
longer with a self-loop

self-loop

Corresponds to an
eigenvalue of Jacobian
slightly less than 1

LSTM is now heavily used
(Hochreiter & Schmidhuber

1997)

input input gate forget gate output gate
GRU light-weight version
(Cho et al 2014) a a a
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Attention Mechawnisms
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Grating for Attention-Based Neural
Machine Trawnslation

Related to earlier Graves 2013 for generating handwriting

e (Bahdanau, Cho & Bengio, arXiv sept. 2014)
e (Jean, Cho, Memisevic & Bengio, arXiv dec. 2014)

f= (La, croissance, ¢conomique, s'est, ralentie, ces, dernieres, années, .)

Word
Ssample
=

Recurrent
State

s &

iiq

K

2 O—O—0O—0O—0r =

e = (Economic, growth, has, slowed, down, in, recent, years, .)
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What's New with Deep Learning?

* Incorporating the idea of attention, using GATING units, has
unlocked a breakthrough in machine translation:

Neural Machine Translation  (ICLR’2015)

0000000000000 0000

Higher-level
Softmax over lower
locations conditioned
on context at lower and
higher locations
000000000000000000
Lower-level
e Now in Google Translate:
current
n-gram neural net  human
translation translation translation
L Human

) > evaluation
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Grapk Attention Nebtworles
Velickovic et al, ICLR 201%

e Handle variable-size neighborhood of each node using the same
neural net by using an attention mechanism to aggregate
information from the neighbors

e Use multiple attention heads to collect different kinds of
information

concat/avg
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What’s New with Deep Learning?

e Attention has also opened the door to neural nets which can
write to and read from a memory
* 2 systems:

e Cortex-like (state controller and representations)
e System 1, intuition, fast heuristic answer

e Hippocampus-like (memory) + prefrontal cortex write

e System 2, slow, logical, sequential
e Memory-augmented networks gave rise to
e Systems which reason

e Sequentially combining several selected pieces of
information (from the memory) in order to obtain
a conclusion
e Systems which answer questions

e Accessing relevant facts and combining them
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Attention Mechanisms for Memory Access

e Neural Turing Machines (Graves et al 2014)
e and Memory Networks (Weston et al 2014)

e Use a content-based attention mechanism
(Bahdanau et al 2014) to control the read
and write access into a memory

e The attention mechanism outputs a softmax
over memory locations

Zi eli(h)

r = g Q; C; Read = weighted average of
1

O =

attended contents
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Large Memory Networlks: Sparse Access
Memory for Long-Term Dependencies

e Memory = part of the state
e Memory-based networks are special RNNs

e A mental state stored in an external memory can stay for arbitrarily long
durations, until it is overwritten (partially or not)

* Forgetting = vanishing gradient.

e Memory = higher-dimensional state, avoiding or reducing the need for
forgetting/vanishing
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Pointing the Unktnown Words

Gulcehre, Ahn, Nallapati, Zhou & Bengio ACL 2016
Based on ‘Pointer Networks’, Vinyals et al 2015

The next word French: Guillaumelet |Ces%ont une voiture bleue a .
i T fCopy Copy
generated can either g dich. |

Guillaume|and[Cesar| have a blue car in
come from vocabulary
or is copied from the Vocabulary softmax
input sequence. Widl...

Point & copy

Pointer distribution ()

NARER R

B

Target Sequence Source Sequence

Table 5: Europarl Dataset (EN-FR)

BLEU-4
NMT 20.19
NMT +PS 23.76

Machine
Translation

Table 3: Results on Gigaword Corpus for model-
ing UNK’s with pointers in terms of recall.

Rouge-1 Rouge-2 Rouge-L
NMT + Ivt 36.45 17.41 33.90

NMT + vt + PS  37.29 17.75 34.70 Text summarization
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Variational Hierarchical RNNs for
Dialogue Gewneration (Serban et al 2016)

e Lower level = words of an utterance (turn of speech)
e Upper level = state of the dialogue
e |nject high-level choices ..,

t02,N - w31 w3 N
prediction
. g 0

decoder initial hidden state

(©O) (CO)
Lo
Lay, ley,
latent variable e o, ‘or
atio,,
prior parameterization i \é ~
»
e
) —
encoder hidden state — -

B

hidden state 8 -..

140 w1 P, w1 N w21 s a e wg‘N,:,"'



Aublo-Encoders and
Grenerative Neural Nebworlkes
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Neural Auto-Regressive Models

T
P(x) = P(x1,...x7) = HP(xt|a:t_1,ar;t_2, ... 1) )/_ ; ? E%
t=1
e Decomposes the joint of a fully observed - "
directed model in terms of conditionals ™ ’ . )

e Logistic auto-regressive: (Frey 1997)
P(x) P(x,[x,)" (Xs%z,%1)

O P X4/X3/ X21X1)

P(x1) p(x /XJP(x3/ XZ’XP) X4/X3, X5,X4)

NIPS’99)
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e First neural version: (Bengio&Bengio d) O
X3 Xy



NADE: Neural AutoRegressive Densilty
Estimator

(Larochelle & Murray AISTATS 2011)

* Introduces smart sharing
between some weights so that
the different hidden groups
use the same weights to the
same input but look at more
and more of the inputs.
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?LXQL ENNS (van den Oord et al ICML 2016, best paper)

e Similar to NADE and RNNs
but for 2-D images

e Surprisingly sharp and
realistic generation

e QGets texture right but not
necessarily global structure

occluded completio

Gl 71,

-_'f".:' i 58
* . A
b 0000 P S

R T o e !.,[qugg
144 'ﬂ S ﬁmﬁiﬁﬁﬂ.



Unsupervised Learning of
Represen&aki.ov\s: Sim pte. Auko-Encoders

code= latent features h

e MLP whose target output = input 00000
* Reconstruction=decoder(encoder(input)), % \wr
input x
Y fop 00® - ©
h = tanh(b + W$) reconstruction
reconstruction = tanh(c+ WTh) rx)
Loss L(z,reconstruction) = ||reconstruction — z||?

e Code = new coordinate system
e Encoder and decoder can have more layers
e Reconstruction can be probability distribution
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Denoising Auto-Encoder

(Vincent et al 2008)

e Corrupt the input during training only
 Train to reconstruct the uncorrupted input

Hidden code (representation) KL{reconstruction | raw inpuf)
(e]e)e
-V
XOXOOl—— {00000 (COOO0)
Corrupted input Raw input reconstruction

e Encoder & decoder: any parametrization
e As good or better than RBMs for unsupervised pre-training



Denoising Auto-Encoder

e Learns a vector field pointing towards hig é _
. ) ) prior: examples
probability direction (Alain & Bengio 2013) concentrate near a

r(x)-x oc dlogp(x)/dx lower dimensional

. . “ f Idn
e Some DAEs correspond to a kind of Gaps manio

RBM with regularized Score Matching 7 ¢
(Vincent 2011)

[equivalent when noise—>0]
e Compared to RBM:
No partition function issue, _

can measure training /_critegion
\ ! 7
N /7

—

N
Corrupted ingut

Corrupted input

—y




Aubto-Encoders Learn Salient
Variations, Like a non-Linear PCA

..Q C(

* Minimizing reconstruction error forces to

keep variations along manifold. O
e Regularizer wants to throw away all

variations. 9
e With both: keep ONLY sensitivity to
variations ON the manifold.
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Manifold Learning =
Representation Learning

BN

angext directions

tangent plane
X

X

Data on a curved manifold
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Space-Filling in Representation-Space

. . . . (Bengio'et al ICML 2013)
* Deeper representations = abstractions = disentangling
e Manifolds are expanded and flattened

A piel space '? Representation space

" 3smyton q s |

lation at layer 2

X-space

ifod

Linear interpolation at layer 1

8 BB

Linear interpolation in pixel space




Interpolating in Latent Space

If the model is good (unfolds the manifold), interpolating between
latent values yields plausible images.

Radford et
al 2016

o ba

man man woman

151 with glasses without glasses without glasses woman with glasses



Deep Unsupervised
Grenerative Models

Texture Shakespeare
& 2t Why, Salisbury must find fiis flesh and thought
That which I am not aps, not a man and in fire,
To show the reining of the raven and the wars
To grace my hand reproach within, and not a fair are hand,
That Caesar and my goodly father's world;
When I was heaven of presence and our fleets,
We spare with hours, but cut thy council I am great,
Murdered and by thy master's ready there
My power to give thee but so much as hell:
Some service in the noble bondman here,
Would show him to her wine.
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Latent Variables and Abstract
Represev\&akions

Q(h/x) Abstract

e Encoder/decoder view: maps
——=0__— representation

between low & high-levels

space, flattened
A manifold
. . .
Encoder does inference: interpret reoder decoder P(x|h)
the data at the abstract level

\4

e Decoder can generate new
configurations

 Encoder flattens and disentangles

the data manifold
data space
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Extracting Structure By Gradual
Disentangling and Manifold Unfolding

(Bengio 2014, arXiv 1407,7906) 3
am) ° P
Each level transforms the . —
data into a representation in Tf .
which it is easier to model, L L

unfolding it more,
contracting the noise

Q(h,/h g, P(hy/hy)
dimensions and mapping the (halhs) {2 172

signhal dimensions to a afh,) P(
factorized (uniform-like) . p(x[h)
distribution. Q(h, | Tfl \L !

)

min K L(Q(x, h)||P(x,h))

for each intermediate level h Q)
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HQLM"\OLE& MQCkiV\QS (Hinton et al 1995) Q‘f\d
Variational Auto-Encoders (VAESs)

(Kingma & Welling 2013, ICLR 2014)
(Gregor et al ICML 2014; Rezende et al ICML 2014) P(hg)
(Mnih & Gregor ICML 2014; Kingma et al, NIPS 2014) h3

 Parametric approximate
inference

e Successors of Helmholtz
machine (Hinton et al “95)

| Q(ha|h1) )

e Maximize variational lower
bound on log-likelihood:

min K L(Q(z, h)|[P(z, h))
where ()(x) = data distr.
or equivalently

ZQ Q(h|x) log

b
=
8

Encoder = inference

@

=

Radll

>
O
B

i 5 5

s 5 T

Decoder = generator

g((:;'z)) =Y " Q(2)Q(h|z) log P(z|h) + KL(Q(h|z)||P(h))
x,h



GAN: Generabive Adversarial Nebtworlkes
A rodical alkernative ko moax, Lilkelihood

Goodfellow et al NIPS 2014

D tries to
output O

D tries to

Differentiable
function D

X sampled X sampled
from data from model

Differentiable
function G

Differentiable
function D

Rando Generator
Vecto Network

Discriminat

N Network
Input noise
Random| Training Real | | z

Index Set Image
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Convolubtional GANs

(Radford et al, arXiv 1511.06343)

Strided convolutions, batch normalization, only convolutional
layers, ReLU and leaky RelLU




Grenerative Adversarial Nebworlks

2014 2015 2016 2017
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Image 2 Image

Labels to Street Scene Labels to Facade BW to Color

input oput input output
Edges to Photo

input output

Isola et al. 2016
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Text 2 Image, BEW 2 Color

A small bird A small yellow  This small bird

The bird 1s A bird with a This small with varying bird with a has a white
This bird isred  short and medium orange  black bird has shades of black crown breast, light
and brown in stubby with bill white body  a short, slightly  brown with and a short grey head, and
color, with a yellow on its gray wings and  curved billand  white under the  black pointed black wings
stubby beak body webbed feet long legs eyes beak and tail

’E‘
‘. . 7
- ~
: -
X A’

T
A\

Zhang et al. 2017

Lucy Li



Horse 2 Zebra: matching 2 domains by
analogy of their distribution structure

Input video Output video

2-way auto-encoder
Looks like a h " — > Looks like a zebra?
ooks like a horse~ _

CycleGANSs: Zhu et al. 2017
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I Measuring the Temdency of CNNs ko
Learn Surface Statistical Reqularities

Ja

No

Radial

Unif
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son Jo and Yoshua Bengio 2017 arXiv:1711.11561

Hypothesis: Deep CNNs have a tendency to learn superficial statistical
regularities in the dataset rather than high level abstract concepts.

From the perspective of learning high level abstractions, Fourier image
statistics can be superficial regularities, not changing object category

) r i ‘ Fourier
Masking .- ' * &5 ‘ ﬂ' ‘0 L‘ )’/ M Maske

d
ndom ¥4 '~ ' CIFAR-
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Images



I Measuring the Temdency of CNNs ko

Learn Surfoce Statistical Reqularities
Jason Jo and Yoshua Bengio 2017, arXiv:1711,11561

« Different Fourier filters, same high level abstractions (objects) but
different surface statistical regularities (Fourier image statistics).

 Experiment: Train on one training set and evaluate the test sets.
* A generalization gap: max difference in test accuracies

* Large generalization gap: CNN exploits too much of low level
regularities, as opposed to learning the abstract high level concepts.

164



Rare &

Dangerous States

Example: autonomous
vehicles in near-accident
situations

Current supervised learning
may not handle well these
cases because they are too
rare (not enough data)

It would be even worse with current RL (statistical inefficiency)

Long-term objective: develop better predictive models of the
world able to generalize in completely unseen scenarios
Example of similar human ability: figuring out intuitive physics,
no need to die a thousand deaths



What’s Missing with
Deep Learning?

Deep Understanding



Still Far from Human-Level Al

* Industrial successes mostly based on supervised
learning

* Learning superficial clues, not generalizing well
outside of training contexts, easy to fool trained

networks:
— Current models cheat by picking on surface regularities

 Still unable to discover higher-level abstractions



Humans outperform machines at
unsupervised learning

* Humans are very good at
unsupervised learning, e.g.
a 2 year old knows intuitive
physics

* Babies construct an
approximate but sufficiently
reliable model of physics,
how do they manage that?
Note that they interact with
the world, not just observe
it.




Learning « How the world ticks »

* So long as our machine learning models « cheat » by relying only
on superficial statistical regularities, they remain vulnerable to
out-of-distribution examples

e Humans generalize better than other animals thanks to a more
accurate internal model of the underlying causal relationships

e To predict future situations (e.g., the effect of planned actions)
far from anything seen before while involving known concepts,
an essential component of reasoning, intelligence and science

169



How to Discover Good
Disentangled Representations

* How to discover abstractions?
* What is a good representation? (Bengio et al 2013)

* Need clues (= priors) to help disentangle the
underlying factors, such as

— Spatial & temporal scales

] | ] | ] | I'

— Marginal independence
— Simple dependencies between factorsm

* Consciousness prior |

* Controllable factors ‘ %% |
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Agent-Based Learning (alka RL)
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Acting to Guide
Representation Learning
& Disentangling

(E. Bengio et al, 2017; V. Thomas et al, 2017)

 Some factors (e.g. objects) correspond to
‘independently controllable’ aspects of the world

 Can only be discovered by acting in the world

— Control linked to notion of objects & agents

— Causal but agent-specific & subjective: affordances



Reinforcement Learning

* |n general the full state of the environment is not observed,
leading to the partially observable setting. When it is fully
observed we have a Markov decision process.

e QObjective: maximize the return = pl Agent
. observation
weighted sum of future rewards. action
accumulated Environment j—
reward U
h[ Agent possible state change
state rreward action _ '
5, ! a, Policy: maps state or history

o ( of observations to a distribution
-— over the next action.

' 5. | Environment
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Model-free vs Model-based RL

e Model-free: directly learn a policy or a value function (which
associates a state or a state-action pair Q with an estimated
return), trying to maximize returns.

* Policy-gradient methods: estimate the stochastic gradient of
the expected return wrt the policy itself, to update it.

e Model-based:

* Unsupervisedly learn to model the environment (state
transition, rewards)

* Use planning (approximate search/optimization) to choose
actions

e Dyna: combine both = internal simulations from estimated

. model trains a policy



Deep Reinforcement Learning

e Map state or observation sequence to a learned representation
to better generalize to new states

e Use neural nets to learn policy, value function, Q-function,
estimated reward function, estimated transition operator, etc.

e Share representation across different networks

e Use offline training or replay buffer (memory of past state-
action-nextstate-reward tuples) to avoid catastrophic forgetting

e Task rewards are like sparse supervision, use intrinsic rewards
(e.g. curiosity, discovery) as dense unsupervised objectives
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Playing all 50 Atari games @ DeepMind

Simulator from U. Alberta’s Sutton’s group. First DRL breakthrough.

2013: Deep RL

Playing Atari with Deep Reinforcement Learning

Volofymyr Malh  Korsy Kovehooegiu  David Siiver  Alex Graves  Josasls Astanegion

Duan Wierstra Martin Riedmiller

DeepMind Technodogees

Abstract
W dorp lewrmaag mode] O saccondally lcan coatral polces &
dimerreonal sisory spul ety roandoecoment icartuag T.x

http://arxiv.org/abs/1312.5602 b e ramcd ok -’"’ e

and whose owtper » 2 valar u‘\.sr(wnaxn‘ WL
Ve amoly owr ra. 10 seven Asan 2500 games from e Arcade Lesn
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March 2016; m
World Go Champion .

Beaten by Machine

o
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Coming Deep Learning Revolution in
Robotics (& Mobile Robotics)

Groups of Pieter Abbeel & Sergey Levine @ Berkeley
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The Deep Learning way of training
autonomous agents

Distributed representations everywhere

Shared representations across all forms of predictions
(value, policy, rewards, transitions)

Learn to represent goals (intentions), subgoals, policies
(skills), manipulate distributions over them and share
representations

Model the future and plan in latent (representation) space

Partially observed setting + recurrence to estimate state
internally

Use an associative memory to handle short and long-term
memory and associate events across long time spans

Use attention to focus on a few aspects of the world at
each step of a high-level plan



What's Missing

More autonomous learning, better
unsupervised learning

Discovering the underlying causal factors

Model-based RL which extends to completely new
situations by unrolling powerful predictive models
which can help reason about rarely observed dangerous
states

Deep learning to expand from perception & system 1
cognition to reasoning & system 2 cognition



Current Model-Free RL is koo
Statistically Inefficient: Combine
Model-Based and Model-Free RL

e Simulate possible futures (given current state and
actions) in order to train the policy (which can act
quickly, without having to perform expensive planning)

 Need a good generative model of how agents cause
changes in the world (effects)

e Better to generate future abstract states rather than
future perceptions




Causati.&v
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Deep Learning Objective:
discover causal representation

e What are the right representations?

Causal variables explaining the data

ow to discover t

ow to discover t

nem?

neir causal

relationship, the causal graph?



Disentangling: Factoring out aspects
of the acquired inowledge

e How to disentangle the unobserved explanatory
variables?

e How to separate the dependencies between these
variables into separate easily re-usable pieces?

e How to modularize procedural knowledge into
easily re-usable pieces? (options etc)

e How to modularize knowledge for easier re-use &
adaptation, good transfer?



Separating Knowledge in Small
Pieces

e Pieces which can be re-used combinatorially

e Pieces which are stable vs nonstationary,
subject to interventions

-)

Change due
to intervention



e Learning theory only deals with generalization
within the same distribution

e Models learn but do not generalize well (or have
high sample complexity when adapting) to
modified distributions, non-stationarities, etc.

 Poor reuse, poor modularization of knowledge

oA, o
N\ /\
0/



Bejond 7= ¢ Hypotheses about how the

environment changes
Independent Mechanisms and
the Small Change Hypothesis

 |ndependent mechanisms:

* changing one mechanism does not change the
others (Peters, Janzig & Scholkopf 2017)

e Small change:

* Non-stationarities, changes in distribution,
involve few mechanisms (e.g. the result of a
single-variable intervention)
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What if we had the right
modular skructure?

CLAIM: Under the hypothesis of
independent mechanisms and small
changes across different distributions:
* smaller sample complexity to recover
from a distribution change

e E.g. for transfer learning, agent learning,
domain adaptation, etc.



Small Change in the Right Space

Distribution change: only one or a few mechanisms change

=)

Before: eyes open After: eyes closed,
totally different in pixel space,
small change in object space

Under the right parametrization, few parameters need to change after an intervention
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Small Change >
Small Sample Complexity

Few parameters need to change = small L2 change = few
examples needed to recover from the change

=)

Under the right parametrization = fast adaptation to interventions
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Current Causal Team @ Mila

ArXiv paper: A Meta-Transfer Objective for
- Learning to Disentangle Causal Mechanisms

Yoshua Beng
Tristan D&
Nasim Rahaman

Rosemary Ke

Olexa Bilaniuk

*  Anirudh Goyal

R Sébagtien Lachapelie
J Chris Pal

J Rémi Le Priol

e Simon Lacoste-Julien



Bigger Picture

* Encoder maps sensory data to l

space where a few sparse —_—

predictive rules relate causal Conscious state C  future C
variables together, following the
consciousness prior (Bengio 2017)

RULES=PREDICTIONS

Causal variables H (used
* Best graphical model assumption: to predict, or
sparse factor graph predicted)

* Reasoning: sequentially focussing on a
few entities (objects) and relations
(rules) linked via causal links

Raw input X



The Fulure of Deep AI

e Scientific progress is slow and continuous, but social and
economic impact can be disruptive

e Many fundamental research questions are in front of us, with
much uncertainty about when we will crack them, but we will

* Importance of continued investment in basic & exploratory Al
research, for both practical (recruitment) short-term and long-
term reasons

e Let us continue to keep the field open and fluid, be mindful of
social impacts, and make sure Al will bloom for the benefit of all
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