FROM SYSTEM 1 DEEP LEARNING TO SYSTEM 2 DEEP LEARNING
YOSHUA BENGIO

NeurIPS’2019 Posner Lecture
December 11th, 2019, Vancouver BC
THE STATE OF DEEP LEARNING

Amazing progress in this century

• Is it enough to just grow datasets, model sizes, computer speed?

Still far from human-level AI!

• Narrow AI
• Sample efficiency
• Human-provided labels
• Robustness, stupid errors
• Next step completely different from deep learning?
SYSTEM 1 VS. SYSTEM 2 COGNITION

2 systems (and categories of cognitive tasks):

System 1
- Intuitive, fast, **UNCONSCIOUS**, non-linguistic, habitual
- Current DL

System 2
- Slow, logical, sequential, **CONSCIOUS**, linguistic, algorithmic, planning, reasoning
- Future DL

Manipulates high-level / semantic concepts, which can be recombined combinatorially.
MISSING TO EXTEND DEEP LEARNING TO REACH HUMAN-LEVEL AI

• Out-of-distribution generalization & transfer

• Higher-level cognition: system 1 → system 2
 • High-level semantic representations
 • Compositionality
 • Causality

• Agent perspective:
 • Better world models
 • Causality
 • Knowledge-seeking

• Connections between all 3 above!
CONSCIOUSNESS FUNCTIONALITIES:
ROADMAP FOR PRIORS EMPOWERING SYSTEM 2

1. ML Goals: handle changes in distribution, necessary for agents
2. System 2 basics: attention & consciousness
3. Consciousness prior: sparse factor graph
4. Theoretical framework: meta-Learning, localized change hypothesis → causal discovery
5. Compositional DL architectures: operating on sets of pointable objects with dynamically recombined modules
DEALING WITH CHANGES IN DISTRIBUTION
FROM IID TO OOD

Classical ML theory for iid data
Artificially shuffle the data to achieve that?

_ L. Bottou ICML 2019: Nature does not shuffle the data, we shouldn’t_

Out-of-distribution generalization & transfer
No free lunch: need new assumptions to replace iid assumption, for ood generalization
AGENT LEARNING NEEDS OOD GENERALIZATION

Agents face non-stationarities

Changes in distribution due to

• their actions
• actions of other agents
• different places, times, sensors, actuators, goals, policies, etc.

Multi-agent systems: many changes in distribution
Ood generalization needed for continual learning
Different forms of compositionality each with different exponential advantages

• Distributed representations
 (Pascanu et al ICLR 2014)

• Composition of layers in deep nets
 (Montufar et al NeurIPS 2014)

• Systematic generalization in language, analogies, abstract reasoning? TBD

(Lee, Grosse, Ranganath & Ng, ICML 2009)
SYSTEMATIC GENERALIZATION

- Studied in linguistics
- **Dynamically recombine existing concepts**
- Even when new combinations have 0 probability under training distribution
 - E.g. Science fiction scenarios
 - E.g. Driving in an unknown city
- Not very successful with current DL

(Lake & Baroni 2017)
(Bahdanau et al & Courville ICLR 2019)
CLOSURE: ongoing work by Bahdanau et al & Courville on CLEVR
CONTRAST WITH THE SYMBOLIC AI PROGRAM

Avoid pitfalls of classical AI rule-based symbol-manipulation

• Need efficient large-scale learning
• Need semantic grounding in system 1
• Need distributed representations for generalization
• Need efficient = trained search (also system 1)
• Need uncertainty handling

But want

• Systematic generalization
• Factorizing knowledge in small exchangeable pieces
• Manipulating variables, instances, references & indirection
SYSTEM 2 BASICS: ATTENTION AND CONSCIOUSNESS
CORE INGREDIENT FOR CONSCIOUSNESS: ATTENTION

- **Focus** on a one or a few elements at a time

- **Content-based soft attention** is convenient, can backprop to *learn where to attend*

- Attention is an **internal action**, needs a **learned attention policy** *(Egger et al 2019)*
ATTENTION BENEFITS

- Neural Machine Translation revolution
 \((\text{Bahdanau et al ICLR 2015})\)
- SOTA in NLP (self-attention, transformers)
- Memory-extended neural nets
- Address vanishing gradients \((\text{Ke & al NeurIPS 2018})\)
- Operating on unordered SETS of (key, value) pairs
Attention = dynamic connection
Receiver gets the selected value
Value of what? From where?
Also send ‘name’ (or key) of sender
Keep track of ‘named’ objects: indirection
Manipulate sets of objects (transformers)
FROM ATTENTION TO CONSCIOUSNESS

C-word not taboo anymore in cognitive neuroscience

Global Workspace Theory
(Baars 1988++, Dehaene 2003++)

• Bottleneck of conscious processing
• Selected item is broadcast, stored in short-term memory, conditions perception and action
• System 2-like sequential processing, conscious reasoning & planning & imagination
ML FOR CONSCIOUSNESS & CONSCIOUSNESS FOR ML

- Formalize and test specific hypothesized functionalities of consciousness
- Get the magic out of consciousness
- Understand evolutionary advantage of consciousness: computational and statistical (e.g. systematic generalization)
- Provide these advantages to learning agents
THOUGHTS, CONSCIOUSNESS, LANGUAGE

• Consciousness: from humans reporting

• High-level representations \leftrightarrow language

• High-level concepts: meaning anchored in low-level perception and action \rightarrow tie system 1 & 2

• Grounded high-level concepts
 \rightarrow better natural language understanding

• Grounded language learning
e.g. BabyAI: *(Chevalier-Boisvert and al ICLR 2019)*
THE CONSCIOUSNESS
PRIOR: SPARSE
FACTOR GRAPH
Attention: to form conscious state, thought

A thought is a low-dimensional object, few selected aspects of the unconscious state

Need 2 high-level states:
- Large unconscious state
- Tiny conscious state

Part of inference mechanism wrt joint distribution of high-level variables
Consciousness Prior \(\Rightarrow\) Sparse Factor Graph

Bengio 2017, arXiv:1709.08568

- Property of **high-level variables which we manipulate with language:**

 we can predict some given very few others

- E.g. "if I drop the ball, it will fall on the ground"

- **Disentangled factors** \(!=\) marginally independent,
 e.g. ball & hand

- **Prior**: sparse factor graph joint distribution between high-level variables
CONSCIOUSNESS PRIOR \Rightarrow SPARSE FACTOR GRAPH

$$P(V) \propto \prod_{k} \phi_k(V_{s_k})$$

Where V_{s_k} is the subset of V with indices s_k.

Prior puts pressure on encoder computing implicitly $P(V|\text{observations } x)$.

Unconscious state V

Encoder

Input x

Bengio 2017, arXiv:1709.08568
META-LEARNING: END-TO-END OOD GENERALIZATION, LOCALIZED CHANGE HYPOTHESIS
META-LEARNING FOR TRAINING TOWARDS OOD GENERALIZATION

- Meta-learning or learning to learn
 \cite{Bengio1991, Schmidhuber1992}
 - Backprop through inner loop or REINFORCE-like estimators
- Bi-level optimization
 - Inner loop (may optimize something) \rightarrow outer loss
 - Outer loop: optimizes $E[\text{outer loss}]$ (over tasks, environments)
- E.g.
 - Evolution \circ individual learning
 - Lifetime learning \circ fast adaptation to new environments
- Multiple time-scales of learning
- **End-to-end learning to generalize ood + fast transfer**
WHAT CAUSES CHANGES IN DISTRIBUTION?

Hypothesis to replace iid assumption:

changes = consequence of an intervention on few causes or mechanisms

Extends the hypothesis of (informationally) Independent Mechanisms (Scholkopf et al 2012)

→ local inference or adaptation in the right model

Underlying physics: actions are localized in space and time.
COUNTING ARGUMENT: LOCALIZED CHANGE \rightarrow OOD TRANSFER

Good representation of variables and mechanisms + localized change hypothesis

\rightarrow few bits need to be accounted for (by inference or adaptation)
\rightarrow few observations (of modified distribution) are required
\rightarrow good ood generalization/fast transfer/small ood sample complexity
META-LEARNING KNOWLEDGE REPRESENTATION FOR GOOD OOD PERFORMANCE

• Use ood generalization as training objective

• Good decomposition / knowledge representation \Rightarrow good ood performance

• Good ood performance = training signal for factorizing knowledge
EXAMPLE: DISCOVERING CAUSE AND EFFECT
= HOW TO FACTORIZE A JOINT DISTRIBUTION?

A Meta-Transfer Objective for Learning to Disentangle Causal Mechanisms

- Learning whether A causes B or vice-versa
- Learning to disentangle (A,B) from observed (X,Y)
- Exploit changes in distribution and speed of adaptation to guess causal direction

EXAMPLE: DISCOVERING CAUSE AND EFFECT = HOW TO FACTORIZE A JOINT DISTRIBUTION?

Learning Neural Causal Models from Unknown Interventions

- Learning small causal graphs, avoid exponential explosion of # of graphs by parametrizing factorized distribution over graphs

- Inference over the intervention: faster causal discovery
OPERATING ON SETS OF POINTABLE OBJECTS WITH DYNAMICALLY RECOMBINED MODULES
RIMS: MODULARIZE COMPUTATION AND OPERATE ON SETS OF NAMED AND TYPED OBJECTS

Recurrent Independent Mechanisms

Multiple recurrent sparsely interacting modules, each with their own dynamics, with object (key/value pairs) input/outputs selected by multi-head attention

Results: better ood generalization

Builds on rich recent literature on object-centric representations (mostly for images)
RESULTS WITH RECURRENT INDEPENDENT MECHANISMS

• RIMs drop-in replacement for LSTMs in PPO baseline over all Atari games.
• Above 0 (horizontal axis) = improvement over LSTM.
HYPOTHESES FOR CONSCIOUS PROCESSING BY AGENTS, SYSTEMATIC GENERALIZATION

• Sparse factor graph in space of high-level semantic variables
• Semantic variables are causal: agents, intentions, controllable objects
• Shared ’rules’ across instance tuples (arguments)
• Distributional changes from localized causal interventions (in semantic space)
• Meaning (e.g. grounded by an encoder) stable & robust wrt changes in distribution
CONCLUSIONS

• After cog. neuroscience, time is ripe for ML to explore consciousness
• Could bring new priors to help systematic & ood generalization
• Could benefit cognitive neuroscience too
• Would allow to expand DL from system 1 to system 2