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THE STATE OF DEEP LEARNING

Amazing progress in this century
• Is it enough to just grow datasets, model sizes, 

computer speed?
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Just get a bigger brain?

Still far from human-level AI! 
• Narrow AI
• Sample efficiency
• Human-provided labels
• Robustness, stupid errors 
• Next step completely different from deep learning?
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SYSTEM 1 VS. SYSTEM 2 COGNITION
2 systems (and categories of cognitive tasks):

System 1
• Intuitive, fast, UNCONSCIOUS, 

non-linguistic, habitual
• Current DL

System 2
• Slow, logical, sequential, CONSCIOUS, 

linguistic, algorithmic, planning, reasoning
• Future DL

Manipulates high-level / 
semantic concepts, which can 

be recombined 
combinatorially
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• Out-of-distribution generalization & transfer

MISSING TO EXTEND DEEP LEARNING TO REACH
HUMAN-LEVEL AI 

• Higher-level cognition: system 1 →  system 2
• High-level semantic representations

• Compositionality

• Causality

• Agent perspective:
• Better world models

• Causality

• Knowledge-seeking

• Connections between all 3 above!
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1. ML Goals: handle	changes	in	distribution,	necessary	for	agents

CONSCIOUSNESS FUNCTIONALITIES: 
ROADMAP FOR PRIORS EMPOWERING SYSTEM 2 

2. System	2	basics:	attention	&	consciousness

3. Consciousness	prior:	sparse	factor	graph

4. Theoretical	framework:	meta-Learning,	localized	change	hypothesis	à causal	discovery

5. Compositional	DL	architectures:	operating	on	sets	of	pointable objects	with	dynamically	
recombined	modules



DEALING WITH 
CHANGES IN 

DISTRIBUTION
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Classical ML theory for iid data 

Artificially shuffle the data to achieve that?

FROM IID TO OOD

Out-of-distribution generalization & transfer

No free lunch: need new assumptions to replace iid
assumption, for ood generalization

L.	Bottou ICML	2019:	Nature	does not	shuffle the	data,	we shouldn’t



AGENT LEARNING NEEDS
OOD GENERALIZATION

Agents face non-stationarities

Multi-agent systems: many changes in distribution
Ood generalization needed for continual learning
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Changes in distribution due to 

• their actions 

• actions of other agents

• different places, times, sensors, 
actuators, goals, policies, etc.



Different forms of compositionality 
each with different exponential advantages

• Distributed representations 
(Pascanu et al ICLR 2014)

COMPOSITIONALITY HELPS IID AND OOD GENERALIZATION
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(Lee, Grosse, Ranganath & 
Ng, ICML 2009) 

• Composition of layers in deep nets 
(Montufar et al NeurIPS 2014)

• Systematic generalization in language, 
analogies, abstract reasoning? TBD



SYSTEMATIC
GENERALIZATION

• Studied in linguistics

• Dynamically recombine existing concepts

(Lake & Baroni 2017)
(Bahdanau et al & Courville ICLR 2019)
CLOSURE: ongoing work by Bahdanau et al & Courville on CLEVR 
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RESEARCH ARTICLES
◥

COGNITIVE SCIENCE

Human-level concept learning
through probabilistic
program induction
Brenden M. Lake,1* Ruslan Salakhutdinov,2 Joshua B. Tenenbaum3

People learning new concepts can often generalize successfully from just a single example,
yet machine learning algorithms typically require tens or hundreds of examples to
perform with similar accuracy. People can also use learned concepts in richer ways than
conventional algorithms—for action, imagination, and explanation. We present a
computational model that captures these human learning abilities for a large class of
simple visual concepts: handwritten characters from the world’s alphabets. The model
represents concepts as simple programs that best explain observed examples under a
Bayesian criterion. On a challenging one-shot classification task, the model achieves
human-level performance while outperforming recent deep learning approaches. We also
present several “visual Turing tests” probing the model’s creative generalization abilities,
which in many cases are indistinguishable from human behavior.

D
espite remarkable advances in artificial
intelligence and machine learning, two
aspects of human conceptual knowledge
have eluded machine systems. First, for
most interesting kinds of natural andman-

made categories, people can learn a new concept

from just one or a handful of examples, whereas
standard algorithms in machine learning require
tens or hundreds of examples to perform simi-
larly. For instance, people may only need to see
one example of a novel two-wheeled vehicle
(Fig. 1A) in order to grasp the boundaries of the

new concept, and even children canmake mean-
ingful generalizations via “one-shot learning”
(1–3). In contrast, many of the leading approaches
inmachine learning are also themost data-hungry,
especially “deep learning” models that have
achieved new levels of performance on object
and speech recognition benchmarks (4–9). Sec-
ond, people learn richer representations than
machines do, even for simple concepts (Fig. 1B),
using them for a wider range of functions, in-
cluding (Fig. 1, ii) creating new exemplars (10),
(Fig. 1, iii) parsing objects into parts and rela-
tions (11), and (Fig. 1, iv) creating new abstract
categories of objects based on existing categories
(12, 13). In contrast, the best machine classifiers
do not perform these additional functions, which
are rarely studied and usually require special-
ized algorithms. A central challenge is to ex-
plain these two aspects of human-level concept
learning: How do people learn new concepts
from just one or a few examples? And how do
people learn such abstract, rich, and flexible rep-
resentations? An even greater challenge arises
when putting them together: How can learning
succeed from such sparse data yet also produce
such rich representations? For any theory of
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Fig. 1. People can learn rich concepts from limited data. (A and B) A single example of a new concept (red boxes) can be enough information to support
the (i) classification of new examples, (ii) generation of new examples, (iii) parsing an object into parts and relations (parts segmented by color), and (iv)
generation of new concepts from related concepts. [Image credit for (A), iv, bottom: With permission from Glenn Roberts and Motorcycle Mojo Magazine]
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(Lake	et	al	2015)

• Even when new combinations have 0 probability 
under training distribution

• E.g. Science fiction scenarios
• E.g. Driving in an unknown city

• Not very successful with current DL 



CONTRAST WITH THE SYMBOLIC AI PROGRAM

Avoid pitfalls of classical AI rule-based symbol-manipulation

• Need efficient large-scale learning

• Need semantic grounding in system 1

• Need distributed representations for generalization

• Need efficient = trained search (also system 1)

• Need uncertainty handling
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But want

• Systematic generalization

• Factorizing knowledge in small exchangeable pieces

• Manipulating variables, instances, references & indirection



SYSTEM 2 BASICS: 
ATTENTION AND 
CONSCIOUSNESS



CORE INGREDIENT FOR CONSCIOUSNESS: 
ATTENTION

• Focus on a one or a few elements at a time
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• Content-based soft attention is convenient, 
can backprop to learn where to attend

• Attention is an internal action, needs a 
learned attention policy (Egger et al 2019)

(Bahdanau et al ICLR 2015)

Attention



• Neural Machine Translation revolution
(Bahdanau et al ICLR 2015)

• SOTA in NLP (self-attention, transformers)

• Memory-extended neural nets 

• Address vanishing gradients (Ke & al NeurIPS 2018)

• Operating on unordered SETS of (key, value) pairs
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ATTENTION BENEFITS



FROM ATTENTION TO INDIRECTION

Attention

• Attention = dynamic connection 
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• Receiver gets the selected value

• Value of what? From where? 

à Also send ‘name’ (or key) of sender

• Keep track of 'named’ objects: indirection

• Manipulate sets of objects (transformers)



FROM ATTENTION TO CONSCIOUSNESS

C-word not taboo anymore in cognitive neuroscience

Global Workspace Theory
(Baars 1988++, Dehaene 2003++)

• Bottleneck of conscious processing

• Selected item is broadcast, stored in short-term 
memory, conditions perception and action

• System 2-like sequential processing, conscious 
reasoning & planning & imagination
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ML FOR CONSCIOUSNESS & CONSCIOUSNESS FOR ML

• Formalize and test specific hypothesized 
functionalities of consciousness
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• Get the magic out of consciousness

• Understand evolutionary advantage of 
consciousness: computational and statistical 
(e.g. systematic generalization)

• Provide these advantages to learning agents



THOUGHTS, CONSCIOUSNESS, LANGUAGE

• Consciousness: from humans reporting

• High-level representations          language
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,
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• High-level concepts: meaning anchored in low-
level perception and action à tie system 1 & 2

• Grounded high-level concepts 

à better natural language understanding

• Grounded language learning
e.g. BabyAI: (Chevalier-Boisvert and al ICLR 2019)



THE CONSCIOUSNESS 
PRIOR: SPARSE 
FACTOR GRAPH



CONSCIOUSNESS PRIOR

• Attention: to form conscious state, thought

• A thought is a low-dimensional object, few 
selected aspects of the unconscious state
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conscious	state	c

input	x

unconscious	state	h

attention

attention

Different kinds of	attention	in	the	brain

Bengio 2017, arXiv:1709.08568

• Need 2 high-level states:

• Large unconscious state
• Tiny conscious state

• Part of inference mechanism wrt joint 
distribution of high-level variables



CONSCIOUSNESS PRIOR 
è SPARSE FACTOR GRAPH

• Property of  high-level variables which we 
manipulate with language: 

we can predict some given very few others
• E.g. "if I drop the ball, it will fall on the ground”

Bengio 2017, arXiv:1709.08568

• Disentangled factors != marginally independent, 
e.g. ball & hand

• Prior: sparse factor graph joint distribution between 
high-level variables



CONSCIOUSNESS PRIOR è SPARSE FACTOR GRAPH

Where								is	
the	subset	of			
with	indices	

Prior puts	pressure	
on	encoder	
computing	implicitly	
P(V|observations x)

encoder

input	x

unconscious	state	
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Bengio 2017, arXiv:1709.08568



META-LEARNING: 
END-TO-END OOD

GENERALIZATION, 
LOCALIZED CHANGE 

HYPOTHESIS



META-LEARNING FOR TRAINING TOWARDS OOD
GENERALIZATION

• Meta-learning or learning to learn 
(Bengio et al 1991; Schmidhuber 1992)

• Backprop through inner loop or REINFORCE-like estimators
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• Bi-level optimization
• Inner loop (may optimize something) → outer loss

• Outer loop: optimizes E[outer loss] (over tasks, environments)

• E.g.
• Evolution ० individual learning

• Lifetime learning ० fast adaptation to new environments

• Multiple time-scales of learning

• End-to-end learning to generalize ood + fast transfer



WHAT CAUSES CHANGES IN DISTRIBUTION?

Hypothesis to replace iid assumption: 
changes = consequence of an intervention on few causes or mechanisms

Underlying physics:	actions	are	localized
in	space and	time.
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Change due
to intervention

Extends the hypothesis of (informationally) Independent Mechanisms (Scholkopf et al 2012)

è local inference or adaptation in the right model



COUNTING ARGUMENT: 
LOCALIZED CHANGE→OOD TRANSFER

Good representation of variables and mechanisms + localized change hypothesis 

Change due
to intervention
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→ few bits need to be accounted for (by inference or adaptation)
→ few observations (of modified distribution) are required

→ good ood generalization/fast transfer/small ood sample complexity



• Use ood generalization as training objective

• Good decomposition / knowledge representation è good ood performance

• Good ood performance = training signal for factorizing knowledge
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META-LEARNING KNOWLEDGE REPRESENTATION FOR 
GOOD OOD PERFORMANCE



EXAMPLE: DISCOVERING CAUSE AND EFFECT
= HOW TO FACTORIZE A JOINT DISTRIBUTION?

• Learning whether A causes B or vice-versa
• Learning to disentangle (A,B) from observed (X,Y)
• Exploit changes in distribution and speed of 

adaptation to guess causal direction
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Bengio et al 2019 arXiv:1901.10912

BA

X Y

A Meta-Transfer Objective for Learning to 
Disentangle Causal Mechanisms



EXAMPLE: DISCOVERING CAUSE AND EFFECT
= HOW TO FACTORIZE A JOINT DISTRIBUTION?

Learning Neural Causal Models from Unknown 
Interventions
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Ke et al 2019 arXiv:1910.01075 

• Learning small causal graphs, avoid exponential 
explosion of # of graphs by parametrizing 
factorized distribution over graphs

• Inference over the intervention:
faster causal discovery



OPERATING ON SETS OF 
POINTABLE OBJECTS 
WITH DYNAMICALLY 

RECOMBINED 
MODULES



RIMS: MODULARIZE COMPUTATION AND OPERATE ON 
SETS OF NAMED AND TYPED OBJECTS

Recurrent Independent Mechanisms
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Goyal et al 2019, arXiv:1909.10893

Builds on	rich recent litterature on	object-centric representations (mostly for	images)

Multiple recurrent sparsely 
interacting modules, each with their 
own dynamics, with object 
(key/value pairs)  input/outputs 
selected by multi-head attention

Results: better ood generalization



RESULTS WITH RECURRENT INDEPENDENT 
MECHANISMS

• RIMs drop-in replacement for LSTMs in PPO baseline over all Atari games.
• Above 0 (horizontal axis) = improvement over LSTM.
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• Sparse factor graph in space of high-level semantic variables

HYPOTHESES FOR CONSCIOUS PROCESSING BY AGENTS, 
SYSTEMATIC GENERALIZATION
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• Meaning (e.g. grounded by an encoder) stable & robust wrt changes in distribution

• Semantic variables are causal: agents, intentions, controllable objects

• Shared ’rules’ across instance tuples (arguments)

• Distributional changes from localized causal interventions (in semantic space)



• After cog. neuroscience, time is ripe for ML to explore consciousness

CONCLUSIONS

34System	1 System	2

• Could benefit cognitive neuroscience too

• Could bring new priors to help systematic & ood generalization

• Would allow to expand DL from system 1 to system 2
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