Generating Sequences with Recurrent Neural Networks

Alex Graves
Why Generate Sequences?

• To improve generalisation?
• To create synthetic training data?
• Practical tasks like speech synthesis?
• To simulate situations?
• To understand the data
Generation and Prediction

• Easy way to generate a sequence: repeatedly predict what will happen next, treating your past predictions as if they were real

• In probabilistic terms, sampling from a conditional model

\[
Pr(x) = \prod_t Pr(x_t|x_1:t-1)
\]

• The closest computers get to dreaming…
Recurrent neural networks (RNNs)

- Like feedforward networks except that one or more layers is connected to itself
- Self connections allow the network to build an internal representation of past inputs
- In effect they give the network memory
Prediction Architecture

- Recurrent neural network with one or more hidden layers and skip connections
- Inputs arrive one at a time, outputs determine **predictive distribution** over next input
- Train by minimising **log-loss**:
 \[
 \sum_{t=1}^{T} - \log \Pr(x_t \mid x_{1:t-1})
 \]
- Generate by sampling the output distribution and feeding into input
Long Short-Term Memory

- **LSTM** is an RNN architecture designed to have a longer memory. It uses linear memory cells surrounded by multiplicative gate units to store information.

 ![LSTM Diagram]

 - **Input gate**: scales input to cell (write)
 - **Output gate**: scales output from cell (read)
 - **Forget gate**: scales old cell value (reset)

Memory and Prediction

• Need to remember the past to predict the future

• Having a longer memory has several advantages:

 • can handle long range patterns

 • especially ‘disconnected’ patterns like balanced quotes and brackets

 • more robust to prediction errors
Atari Experiments

Real

Generated

Karol Gregor, Ivo Danihelka, Andriy Mnih, Daan Wierstra…
Real

Generated
Handwriting Experiments

• Task: generate pen trajectories by predicting one \((x,y)\) point at a time

• Data: IAM online handwriting, 10K training sequences, many writers, unconstrained style, captured from a whiteboard

So you say to your neighbour, would find the bus safe and sound would be the vineyards

• First problem: what to use for the density model?
Recurrent Mixture Density Networks

• Network outputs parameterise a mixture distribution (usually Gaussian)

• Every prediction conditioned on all inputs so far

\[
\Pr(x_{t+1}|x_{1:t}) = \sum_k w_k(x_{1:t}) \mathcal{N}(x_{t+1}|\mu_k(x_{1:t}), \Sigma_k(x_{1:t}))
\]

• Number of components is number of choices for what comes next

Network Details

- 3 variables: co-ordinate *deltas*, pen up/down
- 20 two dimensional Gaussians for co-ords
- 1 sigmoid for up/down
- 3 hidden Layers, 400 LSTM cells in each
- Trained with *RMSprop*
- Retrained with *adaptive weight noise* *

* A. Graves, “Practical Variational Inference for Neural Networks”, NIPS 2011
Samples

he aww the twice. woman is the sp'rin
who in the eye he pe nation
He off pounce bent pledged
bad t'of we worth clet the lace ra.
will 20mike then din themselves a fe
Samples
Output Density
Handwriting Synthesis

- Want to tell the network *what* to write without losing the distribution over *how* it writes
- Can do this by conditioning the predictions on a text sequence
- **Problem**: alignment between text and writing unknown
- **Solution**: before each prediction, let the network decide *where to look* in the text sequence
Gaussian ‘Window’

Window vector (input to net)

\[v^{t+1} = \sum_{i=1}^{S} w^t_i s_i \]

Window weights (net outputs for a,b,c)

\[w^t_i = \sum_{k=1}^{K} a^t_k \exp \left(-b^t_k [c^t_k - i]^2 \right) \]

Input vectors (one-hot)

\((s_1, \ldots, s_S) \)
thought that the muster from...
Which is Real?

that a doctor should lie
that a doctor should be
that a doctor should be
that a doctor should be
Which is Real?

of present reality in remembering
Which is Real?

From his travels it might have been from his travels it might have been
Biased Sampling

when the samples are biased towards more probable sequences

they get easier to read

but less interesting to look at.
Primed Sampling

when the sample starts with real data

(prison welfare Officers complement)

it continues in the same style

(He dismissed the idea)
Primed and Biased

Take the breath away where they are when the network is primed and biased, it writes in a cleaned up version of the original style
Demo

http://www.cs.toronto.edu/~graves/handwriting.html
<table>
<thead>
<tr>
<th>Network</th>
<th>Δ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 layer prediction</td>
<td>+15</td>
</tr>
<tr>
<td>3 layer prediction (baseline)</td>
<td>0</td>
</tr>
<tr>
<td>3 layer synthesis</td>
<td>-56</td>
</tr>
<tr>
<td>3 lay. synth. + adapt. wt. noise</td>
<td>-86</td>
</tr>
</tbody>
</table>
Speech Synthesis

- Speech synthesis (a.k.a. text-to-speech) is harder than handwriting for several reasons:
 - Need to go from letters to **phonemes**
 - People are more sensitive to ‘**mistakes**’ in speech
 - Not obvious how to **represent the data**
Audio Representations

- Mel-frequency cepstral coefficients (MFCCs)
- Mel-scale Filterbanks
- Spectrogram
- Vocoder: MFCCs, log f0, aperiodicity, voiced/unvoiced
Spectrogram Experiments

- TIMIT database (~4K training utterances, phonetic transcripts, many speakers)
- Mixture of Gaussians density model
- Looks nice, sounds bad (no phase)
Generated Spectrograms
Alignment
Vocoder Experiments

- Large **single speaker** database (~35K utterances, female American voice)
- **Multidimensional RNN** density model
- Trained with and without phonetic transcripts
Where Next?

- Improve speech synthesis (brute force?)
- Learn high level features (strokes, letters, words...) rather than adding them manually
- Learn to write as well as read: Neural Turing Machine
We’re hiring!

joinus@deepmind.com

www.google.com/jobs
Thank you for your attention!
Text Experiments

- Task: generate text sequences one character at a time
- Data: raw wikipedia XML from Hutter challenge (100 MB)
- Softmax output layer (205 units)
- 5 hidden layers of 700 LSTM cells, ~21M weights
- Trained with SGD (took forever!)
Compression Results

<table>
<thead>
<tr>
<th>Method</th>
<th>BPC train</th>
<th>test</th>
</tr>
</thead>
<tbody>
<tr>
<td>bsc</td>
<td>1.67</td>
<td>1.54</td>
</tr>
<tr>
<td>ppmonstr</td>
<td>1.53</td>
<td>1.43</td>
</tr>
<tr>
<td>zpaq</td>
<td>1.63</td>
<td>1.53</td>
</tr>
<tr>
<td>LSTM</td>
<td>1.42</td>
<td>1.33</td>
</tr>
<tr>
<td>kingsize</td>
<td>1.33</td>
<td>1.20</td>
</tr>
</tbody>
</table>

Multidimensional recurrent neural networks (MDRNNs)

- Normal recurrent nets are only applicable to **1D sequences**
- But their properties (e.g. robustness to distortion and flexible use of context) are also desirable for multidimensional data such as images (2D), video (3D), fMRI scans (4D)...

- MDRNNs generalise recurrent nets to an **arbitrary number of spacetime dimensions**
How MDRNNs work

- Basic idea: replace the single recurrent connection by a separate connection for each dimension in the data.

- The network scans the data line by line so that the previous hidden activations are calculated before the current one.

- 2^n separate hidden layers are used for n dimensional data, to provide context in all directions.
Multidimensional LSTM

- Standard LSTM is explicitly one dimensional

Graves et. al., 2007
Multidimensional LSTM

- Standard LSTM is explicitly one dimensional

- But can make it \(n \) dimensional by giving the memory cells \(n \) self connections (with \(n \) forget gates)

- Multidimensional LSTM can access long range context in all directions

Graves et. al., 2007
Synthesis Density
Prediction Density