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Underlying Assump&uon 3 ;{ﬁ* -
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e There are principles giving rise to intelligence (machine, hum n
or animal) via learning, simple enough that they can be
described compactly, similarly to the laws of physics, i.e., our
intelligence is not just the result of a huge bag of tricks and

pieces of knowledge, but of general mechanisms to acquire
knowledge.




Learning Multiple Levels of
AbS&TQC&E‘QM (Bengio & LeCun 2007)

e The big payoff of deep learning is to facilitate learning
higher levels of abstraction

e Higher-level abstractions can disentangle the

factors of variation, which allows much easier
generalization and transfer
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“De,e;p Learning Al larealt&krouqks
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A woman is throwing a frisbee A dog is standing on a hardwood
In a park. floor

Person
Computers have made huge

strides in

perception, . .
manipulating languaj \
games, reasoning, ...

Chair




2010-2012: breakthrough in
speech recognition

DEEP IMPACT

Source: Microsoft




2012-2015: breakthrough
In computer vision

Graphics Processing Units
(GPUs) + 10x more data
1,000 object categories,
Facebook: millions of faces

Ll level of human
accuracy

Person

Chair

Conventional
Computer Vision




DEEP LEARNING REVOLU I'ONIZING
MEDICAL RESEARCH

~ g5 - - —
¥ . 5 "(‘\‘ '.“.\c- Y -
Pl W

RN,

Detecting Mitosis in Predicting the Toxicity Understanding Gene Mutation
Breast Cancer Cells of New Drugs to Prevent Disease




Medical Image Classification

Clinical Validation: Optical Colonoscopy

World'’s first real-time colon polyp
malignancy determination from
unmodified endoscope raw video

with deep learning

Accuracy

Probability:
re

Gl Experts (Key Opinion — |
Leaders)* .

Gl Doctors Trained by

KOLs*
*(D. Rex, 2015)




Separately Controlling Style & Content
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Comjoutws become Creative with
@eqo Generative ‘Models

* Progress in unsupervised generative neural Predict a

nets allows them to synthesize a diversity multi-modal
future

images, sounds and text imitating
unlabeled images, sounds or text

RandonL Generator
Vector Network

Discriminator
Network

Random | Training Real | |

et al NIPS’2014) = W . \ =
' : o, .
| . — N @S (Nguyen et al 2016)
1

0

—




Intelligence Needs Knowledge
* Learning:

powerful way to transfer knowledge to intelligent agents

e Failure of classical symbolic
Al: a lot of knowledge is
intuitive, difficult to put in
rules & facts, not
consciously accessible

Deep
Learning

e Solution: get knowledge
from data & experience Machine Learning

” Artificial Intelligence



Machine Learning, Al
& No fFree Lunch

e Five key ingredients for ML towards Al
1. Lots & lots of data
2. Very flexible models
3. Enough computing power
4. Computationally efficient inference

5. Powerful priors that can defeat the curse of
dimensionality
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ML 101, What We Are
Fighting Against: The Curse
o ‘Dimev\siohati‘.&v

1 dimension:
10 positions

To generalize

locally, need "

. 2 dimensions:
representative 100;70.sitions
examples for all :
relevant
variations!

Classical solution:
hope for a smooth
enough target
function, or make
it smooth by
handcrafting good
features / kernel

> 3 dimensions:
1000 positions!



Bypassing the curse of
cl?x\ev\siouali&v

We need to build compositionality into our ML models

Just as human languages exploit compositionality to give
representations and meanings to complex ideas

Exploiting compositionality can give an exponential gain
in representational power
Distributed representations / embeddings: feature learning

Deep architecture: multiple levels of feature learning

Prior assumption: compositionality is useful to
describe the world around us efficiently
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Diskributed Representations: The Power of
Composikiohati&v - Part 1

e Distributed (possibly sparse) representations, learned from
data, can capture the meaning of the data and state

e Parallel composition of features: can be exponentially
advantageous

Sub—partition 3
\

Sub-—partition 2

\ Cl=I

X - K
Cl=1 V220 ¢
X C2=0 \C3=1 7
N C3=0 \ 7
//./ ™~ }!“
P Sub—partition 1 . Cou1
X , -
regions
defined
X by learned
% prototypes
Cl1=0
c2=1 ' C1=0
> ; C3=0 \ =1
s ) C3=1
\
DISTRIBUTED PARTITION \
LOCAL PARTITION \\
Not Distributed Distributed
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Eoch feature can be discovered
without the need for seeing the
exponentially large humber of
confiqurations of the other features

e Consider a network whose hidden units discover the following
features:

* Person wears glasses z.
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* Person is female 4s
* Personisachild b g ‘ """"""'"T ]
* Etc.
If each of n feature requires O(k) parameters, need O(nk) examples

Non-parametric methods would require O(n?) examples
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Hidden Uniks Discover Semav\!:ncattj
Meaningful Concepts

e Zhou etal & Torralba, arXivi412.6856 , ICLR 2015
e Network trained to recognize places, not objects

Bed (J=24.6%, AP=81.1%
e e, ‘ _‘
: |

MountamiJ 11.3%, AP=47. 6%i

Billiard table (J=3.2%, AP 42.6%) Sofa (= 108% AP= 362%

| ] = -
LN A i
q AP—47 2% Washln machlneJ 32% AP= 344%

7 u -J 1 =
17

People Lighti Tables
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Deep Learhing: Learhing an
Internal Representation

e Unlike other ML methods with either
° no intermediate representation (linear)

e or fixed (generally very high-dimensional)
intermediate representations (SVMs, kernel
machines)

e Whatis a good representation? Makes other
tasks easier.



Au&o ma&ifha Output

Feature Discoverv :

Mapping
Output Output from
features
) ) A
Mapping Mapping Most
Output from from complex
features features features
) A A A
Hand- Hand- Simplest
designed designed Features features
program features
i A A A
Input Input Input Input
Rule-based Classic Representation Deep
systems machine learning learning
learning
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Learning mul.&ipte levels M
QF 'PQPT@QV\&Q&EOV\ (Lee, Largman, Pham & Ng, NS 209)

i _(Lee, Grosse, Ranganath & Ng, ICML 2009)
Successive model layers learn deeper intermediate representations

High-level
g Layer 3 linguistic representations

Parts combine
to form objects

A TN
AN NUN==ZTT ==

Prior: underlying factors & concepts compactly expressed w/ multiple levels of abstraction




Wkg Mut&i.ple Lajers? The World is
ComPosE.&Eonad

# Hierarchy of representations with increasing level of abstraction

M Each stage is a kind of trainable feature transform

M image recognition: Pixel > edge = texton = motif - part > object
M Text: Character = word - word group = clause = sentence - story

M Speech: Sample - spectral band = sound = ... © phone - phoneme - word

e

Low-Level Mid-Level High-Level Trainable
Feature Feature Feature Classifier




Qhev\& lal advantage

of depl:k

e Expressiveness of deep networks with piecewise linear activation
functions: exponential advantage for depth

e (Montufar et al & Bengio, NIPS 2014)

e Number of pieces distinguished for a network with depth L and

n; units per layer is at least
L—-1 N Nno no ng

or, if hidden layers have width n and input has size n,,

n L—1)ng n
(o) Z 0 0
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Not so terrible Local ms..mmw
cov\ve.x:.!:j is not v\e.e.ded 4

Myth busted:

e Local minima dominate in low-D, but_
saddle points dominate in high-D

= O [ = [a7] ]
0 £ £ £ J

e Most local minima are relatively close

to the bottom (global minimum error) =
(Dauphin et al NIPS’2014, 2 el
Choromanska et al AISTATS’2015)

R = N N W
o ;1 O U

Training error (%)
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Recap: Machine Learhing 101

Family of functions f@
Tunable parameters {

Examples (x,y) sampled from unknown data generating
distribution P(x,y)

Loss fn L compares target y and output f@([l,’), returns a
number

Regularizer R (typically depends on fJbut possibly also on x & y)

Training criterion for supervised learning:
O(0> = aVerage, )~ dataset (fQ( ) ) T Rw»may)

Approximate minimization algorithm to search for good 0
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Logistic Regression N —

e Predict the probability of a category y, //
given input x 051
. P(Y=y | X=X) /
* Simple extension of linear regression
(binary case): % -4 2 0 2 4 6

* P(Y=1 | X=x) = sigmoid(b + w. x)

e Train by tuning (b,w) to maximize average
log-likelihood

Average( log P(Y=y[X=x) )

over training pairs (x,y), by gradient-
based optimization

P(Y=11X) Jogistic output

e This is a very shallow neural network (no
s hidden layer)



Hiddewn uniks

(from
Hugo
Larochelle)

26

» Neuron (output) activation

» W are the connection weights

» Neuron pre-activation (or input activation):

a(x) =b+ Y wiz; =b+w'x

hix) = gla(x)) = g(b+ )_; wiz;)

+ b 15 the neuron bias

g g() s called the activation function




A neural network = running several
Logistic regressions at the same time

If we feed a vector of inputs through a bunch of logistic regression
functions, then we get a vector of outputs

But we don’t have to
decide ahead of time
what variables these
logistic regressions

are trying to predict!
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A neural network = running several
Logistic reqgressions at the same time

... which we can feed into another logistic regression function

and it is the training
criterion that will
decide what those
intermediate binary
target variables should
be, so as to make a
good job of predicting
the targets for the next
layer, etc.
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A neural network = running several
Logistic reqgressions at the same time

e Before we know it, we have a multilayer neural network....

VTN
:/

LayerL, Layer L,

y
ORE A
%

+ LayerL,

>
o K

+1
Layer L,
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Mulfzitaje.r nebtworlk as universal
approxi.ma!:or

A series of non-linear
transformations of the same

type but different parameters Universal

approximator
property does not
guarantee

A single but large enough
hidden layer yields a

universal approximator 1. easy

optimization
(low training
error is found)

More layers allow
representing more
complex functions with
less parameters

2. good
generalization

30



Non-Linearity = activation function

31

Stacking linear layers: like one (factorized) linear layer

Universal approximator : stack linear+nonlinear transformations
Many types of non-linearities are possible: activation function

* E.g. linear, sigmoid, tanh, rectifier (ReLU), softmax

Breakthrough in 2011: it is much easier to train a deep multilayer
network with rectifiers (ReLU) than with sigmoid or tanh, making
it possible to train deep nets in a purely supervised way for the
first first time (Glorot & Bengio AISTATS 2011)



Topics: sigmoid activation function Topics: hyperbolic tangent (“tanh”) activation function

« Squashes the neuron’s L | . Squashes Ithe neuron’s
pre-activation between | | pre-activation between :
0and | - | | -l and | .
« Always positive °f // » (Can be positive or 5
o | . negative
» Bounded | :
T - | | + Bounded
» Strictly increasing ‘ | -
w1+ Strictly increasing e
(Cl) — g m(a) . 1 ) — il ) __exp(a)—exp(—a) _ exp(2a)-1
O = ERS ~ l4exp(—a) g(a = el (CL ~ exp(a)texp(—a) ~ exp(2a)+1

Topics: softmax activation function Topics: rectified linear activation function

+ For mult-class classification: + Bounded below by 0

» we need multiple outputs (I output per class) (a|Wa>/5 non-negative) 25
» we would like to estimate the conditional probability p(y — C‘X)

» Not upper bounded

» Strictly increasing

» We use the softmax activation function at the output: . N
» Tends to give neurons

. | et .

_ _ (a1) (ac) with sparse activities

ofa) = softmax(a) = | PZAL 50 : g

v strictly positive

» Sums to one

+ Predicted class is the one with highest estimated probability g(a) = reclin(a) = max(0, a)



Supervised training of an MLP by
backprapagakiau

f(X) S.:iX =Y
Even more / / \
abstract ® ... 0
features
More abstract I/ ><T
features ﬁ

features W .. @
input ooy
Requires(X,Y)=(input,target) pairs as training data
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Iterative training by SGD

(from Topics: stochastic gradient descent (SGD)

Hugo
Larochelle) * Algorithm that performs updates after each example

 iifalze g (9 = (WD) bV, WEAD pIADY )

» for N iterations

- for each training example  (x(®), y(®)) \
traini h
= —Vgl(f(x(t); 9)’y(t)) - )\V(;Q(O) l”alnlng:epoc
0—0+aA teration over all examples

+ To apply this algorithm to neural rietwork training, we need
» the loss function l(f(x(t); 0), y(t))
» a procedure to compute the parameter gradients Vg (f (x(t); 9), y(t))
» the regularizerQ(g) (and the gradientV5)(6) )

34 » Initialization method



Motivation for backpropagation:
gradient-based optimization

e Knowing how a small change of parameters influences loss L tells
us how to change the parameters f

0L
* The gradient 3; measures the ratio of error change due to a

small parameter change.

* |ndicates the best local descent direction!
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Why backprop is powerful

36

With n parameters need O(n) computations to obtain L
Also need only O(n) computations to obtain gradient by backprop

Dumb alternative, by finite differences:

8[/(9@, 0—2) L(@Z + €, 9—@) — L(@Z, 9_@>

I
%

892 €

But that would cost O(n?) instead of O(n) by backprop!




Confusion on the word BACKPROP

e Backprop: the backward accumulation procedure to compute
gradients efficiently wrt a scalar (the loss)

e NOT THE SAME THING AS gradient descent, nor the MLP
architecture.

e Backprop is not just used for supervised learning: also for
unsupervised learning and RL, with different losses

37



Back-Prop & Chain Rule

38

Compute gradient of example-wise loss wrt
parameters, by considering intermediate values such
as the outputs of neurons

Simply applying the derivative chain rule wisely

0
1=y y=g(x) F=F5



Chain Rule

Also works if all these
quantities are tensors,
using the appropriate
tensor products
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Az = @Ay
Ay = 8yAZIZ

_ 6’2 0y
Az = 5 8xAx

0z _ 0z 0y

0r — Oy Oz




Muﬂ:ipte Pabths Chain Rule

Oz __ 0Oz Oy

Oz 0yYs

X Ox ~ Oy; Ox

40

Oys Ox



Mut&ipte Pabths Chain Rule - Gewneral

&
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Chain ZRuLe in Flow G"mpk

Flow graph: any directed acyclic graph
node = computation result
arc = computation dependency

{y1, Y2, ... yn}=successors of I

0z 0vy;
Z 0y; Ox

42



error

Backprop A
MuL&i*Lagver
Nek:

How ou!:pu!:s
could change
to malkee error
smaller
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error

Backprop A
MuL&i*Laver
Nek:

How h, could
change to
malkee error
smaller

Y
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error

Backprop A
MuL&i*Lave.r
Nek:

How h, could
change to
malee error
smaller

Y
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error

Backprop A
MuL&i*Lave.r
Nek:

HQN Wl Couid
change to
malee error
smaller

Y
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Back-?rop in Greneral Flow Gr'mpk

Single scalar output 2

1. Fprop: visit nodes in topo-sort order
- Compute value of node given predecessors
2. Bprop:
- initialize output gradient =1
- visit nodes in reverse order:
Compute gradient wrt each node using
gradient wrt successors

{yl, Y2, ... yn} = successors of X

47



Back-Prop in Recurrent % Recursive

Nets

Replicate a
parameterized function

over different time steps
or nodes of a DAG

Output state at one
time-step / node is used
as input for another
time-step / node

48

Zt—l Zt zt+1
o () o
- ® >® 0L
o () > )
> @ () )
Xi-1 X | Xt+1
0000 0000 0000
A small crowd
quietly enters
the historic
- church
VP S
"""" emantic
NP VP ,,,,,,, P Representations
A small quietly N P
crowd enters Det Adj. N

i J i }
istoric  church
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Automatic Differentiaotion

)'

&wé
0L 4
theano. °

Tensor

* The gradient computation
can be automatically
inferred from the symbolic
expression of the fprop.

* Each node type needs to
know how to compute its
output and how to compute
the gradient wrt its inputs
given the gradient wrt its
output

Easy and fast prototyping

PYTHRCH



Log-Likelihood as Loss function

(from Topics: oss function for classification

Hugo

Larochelle) Neural network estimatesf(x), = p(y = ¢/x)

» we could maximize the probabilities ofy(t) givenx(®) in the training set

o o frame as minimization, we minimize the
negative log-likelihood natural log (In

l(f(X), y) - Zc 1(yzc) lom f(X)y

» - we take the log to simplify for numerical stability and math simplicity

0 » sometimes referred to as cross-entropy



Log-Likelihood for Neural Neks

e Estimating a conditional probability P(Y‘X)
o Parametrizeitby P(Y|X) = P(Y|w = fo(X))
e Loss= —log P(Y|X)
e E.g.GaussianyY, w = (,u, (7)
typically only [ is the network output, depends on X
Equivalent to MSE criterion:
Lloss= —log P(Y|X) =logo + || fo(X) — Y||?/o?
e E.g. Multinoulli Y for classification,
w; = P(Y = i|z) = f5:(X) = softmax;(a(X))
Loss= — logwy = —log fo v (X)

51



Multiple Output Variables

e If they are conditionally independent (given X), the individual
prediction losses add up:

—log P(Y|X) = —log P(Y1,...Y3| X) = logHP Y| X) = ZlogP

* Likelihood if some Y/s are missing: just ignore those Iosses

e |f not conditionally independent, need to capture the conditional
joint distribution P(Yh o Yk‘X)
* Example: output = image, sentence, tree, etc.
e Similar to unsupervised learning problem of capturing joint

e Exact likelihood may similarly be intractable, depending on

model
52






