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Neural Networks & AI: 
Underlying Assumption 

•  There	are	principles	giving	rise	to	intelligence	(machine,	human	
or	animal)	via	learning,	simple	enough	that	they	can	be	
described	compactly,	similarly	to	the	laws	of	physics,	i.e.,	our	
intelligence	is	not	just	the	result	of	a	huge	bag	of	tricks	and	
pieces	of	knowledge,	but	of	general	mechanisms	to	acquire	
knowledge.	



Learning Multiple Levels of 
Abstraction 
•  The	big	payoff	of	deep	learning	is	to	facilitate	learning	
higher	levels	of	abstracMon	

•  Higher-level	abstracMons	can	disentangle	the	
factors	of	varia6on,	which	allows	much	easier	
generalizaMon	and	transfer	
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(Bengio	&	LeCun	2007)	



Deep Learning AI Breakthroughs 

Computers	have	made	huge	
strides	in	

percep6on,	
manipulaMng	language,	playing	
games,	reasoning,	...	
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2010-2012: breakthrough in  
speech recognition 

Source: Microsoft 



2012-2015: breakthrough  
in computer vision 

•  Graphics Processing Units 
(GPUs) + 10x more data 

•  1,000 object categories, 
•  Facebook: millions of faces 
•  2015: human-level performance 
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Well received by expert clinicians and industry at many 
conferences, including Digestive Disease Week 2016 

Accuracy 

Medical Image Classification 
Clinical Validation: Optical Colonoscopy 

Imagia > 90%, real 
time 

GI Experts (Key Opinion 
Leaders)* ~ 90% 

GI Doctors Trained by 
KOLs* ~ 75% 

*(D. Rex, 2015) 

World’s first real-time colon polyp 
malignancy determination from 
unmodified endoscope raw video 
with deep learning  



•  GAN: Adversarial generative framework 
between D and G

•  Goal: generate from samples from noise, z, 
transformed by a function G, such that pg(x) is 
close (equal) to a target distribution pd(x).

•  Introduce a discriminator D

•  (Original) D maximizes the value function 
(min-max game): 

•  At the optimal discriminator (maximizing V), 
minimizing V amounts to minimizing JSD 
between pg(x) and pd(x).

•  Train purely through back-prop

•  Produces highly realistic data compared to 
MLE methods

•  Does not work naturally with discrete data
9!

Separately Controlling Style & Content

[Luan et. al., 2017]

Input Target style Output

[à la Zhu et. al., 2017]



Computers become Creative with 
Deep Generative Models

•  Progress	in	unsupervised	generaMve	neural	
nets	allows	them	to	synthesize	a	diversity	
images,	sounds	and	text	imitaMng	
unlabeled	images,	sounds	or	text	
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Index	

(Karras	et	al	2017)	

(Nguyen	et	al	2016)	

Predict	a	
mulM-modal	
future	

GANs	(Goodfellow	
et	al	NIPS’2014)		

Under review as a conference paper at ICLR 2018

Figure 5: 1024 ⇥ 1024 images generated using the CELEBA-HQ dataset. See Appendix F for a
larger set of results, and the accompanying video for latent space interpolations. On the right, two
images from an earlier megapixel GAN by Marchesi (2017) show limited detail and variation.

Mao et al. (2016b) (128⇥ 128) Gulrajani et al. (2017) (128⇥ 128) Our (256⇥ 256)

Figure 6: Visual quality comparison in LSUN BEDROOM; pictures copied from the cited articles.

mentation used an adaptive minibatch size depending on the current output resolution so that the
available memory budget was optimally utilized.

In order to demonstrate that our contributions are largely orthogonal to the choice of a loss function,
we have also trained the same network using LSGAN loss instead of WGAN-GP loss. Figure 1
shows six examples of 10242 images produced using our method using LSGAN. Further details of
this setup are given in Appendix B.

6.4 LSUN RESULTS

Figure 6 shows a purely visual comparison between our solution and earlier results in LSUN BED-
ROOM. Figure 7 gives selected examples from seven very different LSUN categories at 2562. A
larger, non-curated set of results from all 30 LSUN categories is available in Appendix G, and the
video demonstrates interpolations. We are not aware of earlier results in most of these categories,
and while some categories work better than others, we feel that the overall quality is high.

6.5 CIFAR10 INCEPTION SCORES

The best inception scores for CIFAR10 (10 categories of 32 ⇥ 32 RGB images) we are aware of
are 7.90 for unsupervised and 8.87 for label conditioned setups (Grinblat et al., 2017). The large
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Intelligence Needs Knowledge 
•  Learning:		
				powerful	way	to	transfer	knowledge	to	intelligent	agents	
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•  Failure	of	classical	symbolic	
AI:	a	lot	of	knowledge	is	
intui6ve,	difficult	to	put	in	
rules	&	facts,	not	
consciously	accessible	

•  SoluMon:	get	knowledge	
from	data	&	experience	
			

	
	
	
	
	
	
	
	
	

ArMficial	Intelligence	

	
	
	
	

Machine	Learning	

Deep		
Learning	



Machine Learning, AI 
& No Free Lunch 
•  Five	key	ingredients	for	ML	towards	AI	

1.  Lots	&	lots	of	data	
2.  Very	flexible	models	
3.  Enough	compuMng	power	
4.  ComputaMonally	efficient	inference	

5.   Powerful	priors	that	can	defeat	the	curse	of	
dimensionality	
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ML 101. What We Are 
Fighting Against:  The Curse 
of Dimensionality 

			To	generalize	
locally,	need	
representaMve	
examples	for	all	
relevant	
variaMons!	

	
Classical	soluMon:	

hope	for	a	smooth	
enough	target	
funcMon,	or	make	
it	smooth	by	
handcrafing	good	
features	/	kernel	



Bypassing the curse of 
dimensionality 
We	need	to	build	composiMonality	into	our	ML	models		

Just	as	human	languages	exploit	composiMonality	to	give	
representaMons	and	meanings	to	complex	ideas	

ExploiMng	composiMonality	can	give	an	exponen6al	gain	
in	representaMonal	power	

Distributed	representaMons	/	embeddings:	feature	learning	

Deep	architecture:	mulMple	levels	of	feature	learning	

Prior	assumpMon:	composiMonality	is	useful	to	
describe	the	world	around	us	efficiently	
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Distributed Representations: The Power of 
Compositionality – Part 1 

•  Distributed	(possibly	sparse)	representaMons,	learned	from	
data,	can	capture	the	meaning	of	the	data	and	state	

•  Parallel	composiMon	of	features:	can	be	exponenMally	
advantageous	

	

15	

Distributed	Not	Distributed	



Each feature can be discovered 
without the need for seeing the 
exponentially large number of 
configurations of the other features 
•  Consider	a	network	whose	hidden	units	discover	the	following	

features:	
•  Person	wears	glasses	
•  Person	is	female	
•  Person	is	a	child	
•  Etc.	

If	each	of	n	feature	requires	O(k)	parameters,	need	O(nk)	examples	
	
Non-parametric	methods	would	require	O(nd)	examples	
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9/25/2016 sofaloca.com/themes/ypanel/ionicons/src/ios7-glasses-outline.svg

http://sofaloca.com/themes/ypanel/ionicons/src/ios7-glasses-outline.svg 1/1



Under review as a conference paper at ICLR 2015
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Figure 9: (a) Segmentations from pool5 in Places-CNN. Many classes are encoded by several units
covering different object appearances. Each row shows the 3 top most confident images for each
unit. (b) Object frequency in SUN (only top 50 objects shown), (c) Counts of objects discovered by
pool5 in Places-CNN. (d) Frequency of most informative objects for scene classification.

4 EMERGENCE OF OBJECTS AS THE INTERNAL REPRESENTATION

As shown before, a large number of units in pool5 are devoted to detecting objects and scene-
regions (Fig. 8). But what categories are found? Is each category mapped to a single unit or are
there multiple units for each object class? Can we actually use this information to segment a scene?

4.1 WHAT OBJECT CLASSES EMERGE?

Fig. 9(a) shows some units from the Places-CNN grouped by the object class they seem to be detect-
ing. Each row shows the top three images for a particular unit that produce the strongest activations.
The segmentation shows the region of the image for which the unit is above a threshold. Each unit
seems to be selective to a particular appearance of the object. For instance, there are 6 units that
detect lamps, each unit detecting a particular type of lamp providing finer-grained discrimination;
there are 9 units selective to people, each one tuned to different scales or people doing different
tasks. ImageNet has an abundance of animals among the categories present: in the ImageNet-CNN,
out of the 256 units in pool5, there are 23 units devoted to detecting dogs or parts of dogs. The
categories found in pool5 tend to follow the target categories in ImageNet.

To answer the question of why certain objects emerge from pool5, we tested the Places-CNN on
fully annotated images from the SUN database (Xiao et al., 2014). The SUN database contains
8220 fully annotated images from the same 205 place categories used to train Places-CNN. There
are no duplicate images between SUN and Places. We use SUN instead of COCO (Lin et al., 2014)
as we need dense object annotations to study what the most informative object classes for scene
categorization are, and what the natural object frequencies in scene images are. For this study, we
manually mapped the tags given by AMT workers to the SUN categories. Fig. 9(b) shows the sorted
distribution of object counts in the SUN database which follows Zipf’s law.

One possibility is that the objects that emerge in pool5 correspond to the most frequent ones in the
database. Fig. 9(c) shows the counts of units found in pool5 for each object class (same sorting
as in Fig. 9(b)). The correlation between object frequency in the database and object frequency
discovered by the units in pool5 is 0.54. Another possibility is that the objects that emerge are the
objects that allow discriminating among scene categories. To measure the set of discriminant objects
we used the ground truth in the SUN database to measure the classification performance achieved by
each object class for scene classification. Then we count how many times each object class appears
as the most informative one. This measures the number of scene categories a particular object class
is the most useful for. The counts are shown in Fig. 9(d). Note the similarity between Fig. 9(c) and
Fig. 9(d). The correlation is 0.84 indicating that the network is automatically identifying the most
discriminative object categories to a large extent.

7

Hidden Units Discover Semantically 
Meaningful Concepts 

•  Zhou	et	al	&	Torralba,	arXiv1412.6856	,	ICLR	2015	
•  Network	trained	to	recognize	places,	not	objects	

17	

Under review as a conference paper at ICLR 2015

Figure 10: Interpretation of a picture by different layers of the Places-CNN using the tags provided
by AMT workers. The first shows the final layer output of Places-CNN. The other three show
detection results along with the confidence based on the units’ activation and the semantic tags.
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Figure 11: (a) Segmentation of images from the SUN database using pool5 of Places-CNN (J =
Jaccard segmentation index, AP = average precision-recall.) (b) Precision-recall curves for some
discovered objects. (c) Histogram of AP for all discovered object classes.

Note that there are 115 units in pool5 of Places-CNN not detecting objects. This could be due to
incomplete learning or a complementary texture-based or part-based representation of the scenes.

4.2 OBJECT LOCALIZATION WITHIN THE INNER LAYERS

Places-CNN is trained to do scene classification using the output of the final layer of logistic re-
gression and achieves the state-of-the-art performance. From our analysis above, many of the units
in the inner layers could perform interpretable object localization. Thus we could use this single
Places-CNN with the annotation of units to do both scene recognition and object localization in a
single forward-pass. Fig. 10 shows an example of the output of different layers of the Places-CNN
using the tags provided by AMT workers. Bounding boxes are shown around the areas where each
unit is activated within its RF above a threshold.

In Fig. 11 we evaluate the segmentation performance of the objects discovered in pool5 using the
SUN database. The performance of many units is very high which provides strong evidence that
they are indeed detecting those object classes despite being trained for scene classification.

5 CONCLUSION

We find that object detectors emerge as a result of learning to classify scene categories, showing
that a single network can support recognition at several levels of abstraction (e.g., edges, textures,
objects, and scenes) without needing multiple outputs or networks. While it is common to train a
network to do several tasks and to use the final layer as the output, here we show that reliable outputs
can be extracted at each layer. As objects are the parts that compose a scene, detectors tuned to the
objects that are discriminant between scenes are learned in the inner layers of the network. Note
that only informative objects for specific scene recognition tasks will emerge. Future work should
explore which other tasks would allow for other object classes to be learned without the explicit
supervision of object labels.

8



Deep Learning: Learning an 
Internal Representation 

•  Unlike	other	ML	methods	with	either	
•  no	intermediate	representaMon	(linear)	
•  or	fixed	(generally	very	high-dimensional)	
intermediate	representaMons	(SVMs,	kernel	
machines)		

•  What	is	a	good	representaMon?	Makes	other	
tasks	easier.	

	

18	
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Learning multiple levels 
of representation 
Successive	model	layers	learn	deeper	intermediate	representaMons	

	

Layer	1	

Layer	2	

Layer	3	
High-level	

linguisMc	representaMons	

(Lee,	Largman,	Pham	&	Ng,	NIPS	2009)	
(Lee,	Grosse,	Ranganath	&	Ng,	ICML	2009)		

20	
Prior:	underlying	factors	&	concepts	compactly	expressed	w/	mul6ple	levels	of	abstrac6on	
	

Parts	combine	
to	form	objects	



Why Multiple Layers? The World is 
Compositional 

Hierarchy	of	representaMons	with	increasing	level	of	abstracMon	
Each	stage	is	a	kind	of	trainable	feature	transform	
Image	recogniMon:	Pixel	→	edge	→	texton	→	moMf	→	part	→	object	
Text:	Character	→	word	→	word	group	→	clause	→	sentence	→	story	
Speech:	Sample	→	spectral	band	→	sound	→	…	→	phone	→	phoneme	→	word	

Trainable  
Classifier 

Low-Level 
Feature 

Mid-Level 
Feature 

High-Level 
Feature 



•  Expressiveness	of	deep	networks	with	piecewise	linear	acMvaMon	
funcMons:	exponenMal	advantage	for	depth 			

•  (Montufar	et	al	&	Bengio,	NIPS	2014)	
•  Number	of	pieces	disMnguished	for	a	network	with	depth	L	and	

ni	units	per	layer	is	at	least	

					or,	if	hidden	layers	have	width	n	and	input	has	size	n0	

22	

Exponential advantage 
of depth 



Myth	busted:	
•  Local	minima	dominate	in	low-D,	but	

saddle	points	dominate	in	high-D	
•  Most	local	minima	are	relaMvely	close	

to	the	booom	(global	minimum	error)	
(Dauphin	et	al	NIPS’2014,	
Choromanska	et	al	AISTATS’2015)	

23	

Not so terrible local minima: 
convexity is not needed 



Recap: Machine Learning 101 

•  Family	of	funcMons	
•  Tunable	parameters	
•  Examples	(x,y)		sampled	from	unknown	data	generaMng	

distribuMon	P(x,y)	

•  Loss	fn	L	compares	target	y	and	output													,	returns	a	
number				

•  Regularizer	R	(typically	depends	on				but	possibly	also	on	x	&	y)	
•  Training	criterion	for	supervised	learning:	

	

•  Approximate	minimizaMon	algorithm	to	search	for	good		
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f✓
✓

✓

✓

C(✓) = average(x,y)⇠datasetL(f✓(x), y) +R(✓, x, y)

f✓(x)



Logistic Regression 

•  Predict	the	probability	of	a	category	y,	
given	input	x	
•  P(Y=y	|	X=x)	

•  Simple	extension	of	linear	regression	
(binary	case):	
•  P(Y=1	|	X=x)	=	sigmoid(b	+	w.	x)	

•  Train	by	tuning	(b,w)	to	maximize	average	
log-likelihood	
Average(	log	P(Y=y|X=x)	)	

							over	training	pairs	(x,y),	by	gradient-
based	opMmizaMon	
•  This	is	a	very	shallow	neural	network	(no	

hidden	layer)	
25	

input	x	

logis[c	output	
neuron	
	

P(Y=1|x)	



Hidden units 

(from	
Hugo	
Larochelle)	
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ARTIFICIAL NEURON
2

Topics: connection weights, bias, activation function
Neuron pre-activation (or input activation):

Neuron (output) activation

     are the connection weights
    is the neuron bias 
         is called the activation function

•

•

•

•

•

...
1



A neural network = running several 
logistic regressions at the same time 

If	we	feed	a	vector	of	inputs	through	a	bunch	of	logisMc	regression	
funcMons,	then	we	get	a	vector	of	outputs	

But	we	don’t	have	to	
decide	ahead	of	Mme	
what	variables	these	
logisMc	regressions	
are	trying	to	predict!	

27	



A neural network = running several 
logistic regressions at the same time 

…	which	we	can	feed	into	another	logisMc	regression	funcMon	

and	it	is	the	training	
criterion	that	will	
decide	what	those	
intermediate	binary	
target	variables	should	
be,	so	as	to	make	a	
good	job	of	predicMng	
the	targets	for	the	next	
layer,	etc.	

28	



A neural network = running several 
logistic regressions at the same time 

•  Before	we	know	it,	we	have	a	mulMlayer	neural	network….	

29	



Multilayer network as universal 
approximator 

A	series	of	non-linear	
transformaMons	of	the	same	
type	but	different	parameters	
A	single	but	large	enough	
hidden	layer	yields	a	
universal	approximator	
	
More	layers	allow	
represenMng	more	
complex	funcMons	with	
less	parameters	

30	

Universal	
approximator	
property	does	not	
guarantee	
	
1.  easy	

opMmizaMon	
(low	training	
error	is	found)	

2.  good	
generalizaMon	



Non-linearity = activation function 

•  Stacking	linear	layers:	like	one	(factorized)	linear	layer		
•  Universal	approximator	:	stack	linear+nonlinear	transformaMons	
•  Many	types	of	non-lineariMes	are	possible:	acMvaMon	funcMon	

•  E.g.	linear,	sigmoid,	tanh,	recMfier	(ReLU),	sofmax	

•  Breakthrough	in	2011:	it	is	much	easier	to	train	a	deep	mul[layer	
network	with	rec[fiers	(ReLU)	than	with	sigmoid	or	tanh,	making	
it	possible	to	train	deep	nets	in	a	purely	supervised	way	for	the	
first	first	[me	(Glorot	&	Bengio	AISTATS	2011)	

31	
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ACTIVATION FUNCTION
4

Topics: sigmoid activation function
Squashes the neuron’s

pre-activation between 
0 and 1
Always positive
Bounded
Strictly increasing

•

•

•

•

NEURAL NETWORK
4

Topics: softmax activation function
For multi-class classification:

we need multiple outputs (1 output per class)
we would like to estimate the conditional probability 

We use the softmax activation function at the output:

strictly positive
sums to one

Predicted class is the one with highest estimated probability

•
‣

‣

•

‣

‣

•

ACTIVATION FUNCTION
5

Topics: hyperbolic tangent (‘‘tanh’’) activation function
Squashes the neuron’s

pre-activation between 
-1 and 1
Can be positive or

negative 
Bounded
Strictly increasing

•

•

•

•

ACTIVATION FUNCTION
6

Topics: rectified linear activation function
Bounded below by 0

(always non-negative)
Not upper bounded
Strictly increasing
Tends to give neurons

with sparse activities

•

•

•

•



…

…

input 

features 

…More abstract 
features 

…
Even more 

abstract 
features 

Output 
f(X) six 

Target 
Y two! = 

? 

Supervised training of an MLP by 
backpropagation 

Requires(X,Y)=(input,target)	pairs	as	training	data	
33	



Iterative training by SGD 
(from	
Hugo	
Larochelle)	

34	

MACHINE LEARNING
2

Topics: stochastic gradient descent (SGD)
Algorithm that performs updates after each example

initialize           (                                                                    )
for N iterations

for each training example

To apply this algorithm to neural network training, we need
the loss function
a procedure to compute the parameter gradients
the regularizer             (and the gradient                 )
initialization method

•
‣

‣
-

•
‣

‣

‣

‣

training epoch 
=

iteration over all examples



Motivation for backpropagation: 
gradient-based optimization 

•  Knowing	how	a	small	change	of	parameters	influences	loss	L	tells	
us	how	to	change	the	parameters	

•  The	gradient								measures	the	raMo	of	error	change	due	to	a	

small	parameter	change.				

•  Indicates	the	best	local	descent	direcMon!		
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Why backprop is powerful 

•  With	n	parameters	need	O(n)	computaMons	to	obtain	L		
•  Also	need	only	O(n)	computaMons	to	obtain	gradient	by	backprop	
	
•  Dumb	alternaMve,	by	finite	differences:	

•  But	that	would	cost	O(n2)	instead	of	O(n)	by	backprop!	
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Confusion on the word BACKPROP 

•  Backprop:	the	backward	accumulaMon	procedure	to	compute	
gradients	efficiently	wrt	a	scalar	(the	loss)	

•  NOT	THE	SAME	THING	AS	gradient	descent,	nor	the	MLP	
architecture.	

•  Backprop	is	not	just	used	for	supervised	learning:	also	for	
unsupervised	learning	and	RL,	with	different	losses		
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Back-Prop & Chain Rule 

•  Compute	gradient	of	example-wise	loss	wrt	
parameters,	by	considering	intermediate	values	such	
as	the	outputs	of	neurons		

•  Simply	applying	the	deriva6ve	chain	rule	wisely	
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Chain Rule 

39	

Also	works	if	all	these	
quanMMes	are	tensors,	
using	the	appropriate	
tensor	products	



Multiple Paths Chain Rule 
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Multiple Paths Chain Rule - General 

…	
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Chain Rule in Flow Graph 

…	

…	

…	

Flow	graph:	any	directed	acyclic	graph	
	node	=	computaMon	result	
	arc	=	computaMon	dependency	

	
																												 		=	successors	of		
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…	
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Backprop in 
Multi-Layer 
Net: 
 
How outputs 
could change 
to make error 
smaller 
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Multi-Layer 
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change to 
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smaller 
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Back-Prop in General Flow Graph 

…	

…	

…	

																												 		=	successors	of		

1.  Fprop:	visit	nodes	in	topo-sort	order		
-  Compute	value	of	node	given	predecessors	

2.  Bprop:	
	-	iniMalize	output	gradient	=	1		
	-	visit	nodes	in	reverse	order:	

	Compute	gradient	wrt	each	node	using		
						 	gradient	wrt	successors	

Single	scalar	output	
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Back-Prop in Recurrent & Recursive 
Nets 

•  Replicate	a	
parameterized	funcMon	
over	different	Mme	steps	
or	nodes	of	a	DAG		

•  Output	state	at	one	
Mme-step	/	node	is	used	
as	input	for	another	
Mme-step	/	node	

A	small	crowd	
quietly	enters	
the	historic	
church

historicthe

quietly	
enters

S
VP

Det. Adj.

NPVP

A	small	
crowd

NP

NP

church

N.

Semantic		
Representations

xt−1	 xt	 xt+1	

zt−1	 zt	 zt+1	
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Automatic Differentiation 

•  The	gradient	computaMon	
can	be	automaMcally	
inferred	from	the	symbolic	
expression	of	the	fprop.	

•  Each	node	type	needs	to	
know	how	to	compute	its	
output	and	how	to	compute	
the	gradient	wrt	its	inputs	
given	the	gradient	wrt	its	
output	

•  Easy	and	fast	prototyping	
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Log-likelihood as loss function 
(from	
Hugo	
Larochelle)	
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LOSS FUNCTION
3

Topics: loss function for classification
Neural network estimates

we could maximize the probabilities of         given         in the training set

To frame as minimization, we minimize the 
negative log-likelihood

we take the log to simplify for numerical stability and math simplicity
sometimes referred to as cross-entropy

•
‣

•

‣

‣

natural log (ln)



Log-Likelihood for Neural Nets 

•  EsMmaMng	a	condiMonal	probability	
•  Parametrize	it	by	
•  Loss	=		
•  E.g.	Gaussian	Y,	
					typically	only								is	the	network	output,	depends	on	X	
					Equivalent	to	MSE	criterion:		
													Loss	=	
•  E.g.	MulMnoulli	Y	for	classificaMon,		
	
												Loss	=		
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P (Y |X)
P (Y |X) = P (Y |! = f✓(X))

! = (µ,�)
µ

� logP (Y |X) = log � + ||f✓(X)� Y ||2/�2

!i = P (Y = i|x) = f✓,i(X) = softmaxi(a(X))

� logP (Y |X)

� log!Y = � log f✓,Y (X)



Multiple Output Variables 

•  If	they	are	condiMonally	independent	(given	X),	the	individual	
predicMon	losses	add	up:	

•  Likelihood	if	some	Yi’s	are	missing:	just	ignore	those	losses	

•  If	not	condiMonally	independent,	need	to	capture	the	condiMonal	
joint	distribuMon	
•  Example:	output	=	image,	sentence,	tree,	etc.	
•  Similar	to	unsupervised	learning	problem	of	capturing	joint	
•  Exact	likelihood	may	similarly	be	intractable,	depending	on	
model	
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� logP (Y |X) = � logP (Y1, . . . Yk|X) = � log

Y

i
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X
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