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3&km New with Dee ;7 Learning since the

Nearal Nebs of the 90s:

Rectified linear units instead of sigmoids, enable training much
deeper networks by backprop (Glorot & Bengio AISTATS 2011)

Some forms of noise (like dropout) are powerful regularizers
vielding superior generalization abilities

Success of deep convnets trained on large labeled image datasets,
success of skip connections (ResNets)

Success of recurrent nets with more memory, with gating units
Success of word embedding, neural machine translation, deep NLP

Attention mechanisms liberate neural nets from fixed-size inputs
Autoencoders, adversarial training, generating images & sounds

Transfer learning, meta-learning, deep reinforcement learning
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Maps Bebween "
Represan&a!:ious

x and y represent different
modalities, e.g., image,
text, sound...

Can provide 0-shot
generalization to new
categories (values of y)

— — (z,y) pairs in the training set

—— -representation (encoder) function f;,

(Larochelle et al AAAI 2008) = = o Y -representation (encoder) function f,

«-----» relationship between embedded points
within one of the domains

<«—> maps between representation spaces



Multi-Task Learning

e Generalizing better to new tasks
(tens of thousands!) is crucial to
approach Al

e Deep architectures learn good
intermediate representations that
can be shared across tasks

(Collobert & Weston ICML 2008,
Bengio et al AISTATS 2011)

e Good representations that
disentangle underlying factors of
variation make sense for many tasks  E.g. dictionary, with intermediate

because each task concerns a concepts re-used across many definitions
subset of the factors

Prior: shared underlying explanatory factors between tasks



Combining Multiple Sources of Evidence
with Shared Represeul:aﬁous

0 TradiFionaI ML: fJIata = m?trix ﬁ _m

e Relational learning: multiple sources,

different tuples of variables
e Share representations of same types N
across data sources
e Shared learned representations help event ur' person

propagate information among data
sources: e.g., WordNet, XWN,
Wikipedia, FreeBase, ImageNet...

(Bordes et al AISTATS 2012, IVI‘LJ 2013)
* FACTS = DATA P(person,url,event)
e Deduction = Generalization ®#%

P(url,words,history)

history words url




Recurrent Neural Nebworles

e Can produce an output at each time step: unfolding the graph
tells us how to back-prop through time.
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Recurrent Neural Nebtworles

e Selectively summarize an input sequence in a fixed-size state
vector via a recursive update

St = FH(St—lamt)

Iy
S St—1 St+1
unfold (T} i" ﬁ?‘
f/ shared ov rtlme
X Lt—1 Lt41

St — Gt(xta Lt—1yLt—2y 4L, 331)

=» Generalizes naturally to new lengths not seen during training
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Greneratbive RNNs

e An RNN can represent a fully-connected directed generative
model: every variable predicted from all previous ones.

T
P(x) = P(z1,...27) = HP(SCt|CUt—1, Tt—9,...21)
t=1

Li_1 Ly Litq

Lt = — lOg P($t|xt—17$t—2a c. 5(31)
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Sequence to vector

Sequence to sequence of the
same length, aligned

Vector to sequence

t—1 t t+1

Lt—1 qﬂ?t *$t+1 q$t+2
Sequence to sequence



Moximum Likelihood = /7

Test-time
. ) ! h
Teacher Forcing i~ Pl | hy) P
-
* During training, pasty Training-
in input is from training Py, | ht)Q “mepatz

data

* At generation time,
past y in input is
generated

e Mismatch can cause
”compounding error”

(¢, y¢) : next input/output training pair
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Ideas to reduce the train/generate
mismakch in teacher forcing

e Scheduled sampling (S. Bengio et al, NIPS 2015)

Loss
\ nSoﬂmaxover Softmax over / REIated tO
Y SEARN (Daumé et al 2009)

DAGGER (Ross et al 2010)

h() | ...— ] h1) hty =

Gradually increase the
probability of using

A
~ the model’s samples
sampled y(t2)  true y(t-2) e y{t-1) vs the ground truth
as input.

e Backprop through open-loop sampling recurrence & minimize
long-term cost (but which one? GAN would be most natural 2
Professor Forcing)

12



Increasing the Expressi.ve Power of
K NNs wu&k more De F

e |CLR 2014, How to construct deep recurrent neural networks

+ deep hid-to-out
+ deep hid-to-hid
+deep in-to-hid

Ordinary RNNs Vi Vi
Zi i %
+ stacking WY h
h, y
- t

13

+ skip connections for
creating shorter paths



Bidirectional RNNs, Recursive Nets,
Multidimensional RNNs, etc,

e The unfolded architecture needs not be a straight chain

Bidirectional RNNs (Schuster and Paliwal, 1997)

Recursive (tree-structured)
Neural Nets:

: FORWARD
Frasconietal 97  ¢rires

Socher et al 2011 )

\ (i-1,j) (i.)) (i,i-1)

See Alex Graves’s work, e.g., 2012

input layer (i) sional RNNs, Graves et al 2007)
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Mutéipti.caki‘.ve Interactions

(Wu et al, 2016, arXiv:1606.06630)

e Multiplicative Integration RNNs:

3.0 . : (b) , :
2.7 :;\//Ia:-nFlklll\lal\-l-Rsl?r:ple ]
® Replace O —0— MI-RNN-general
Wx + Uz + b) £%%
¢( ) 8 2.1f
° By E’
d(Wx ©Uz+b) *
1.5} . —a—
* Or more general: 0 5 10 15 20 25

number of epochs

PlaOWxoUz+ 03, 0Uz+ 6,0 Wz +b)
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Multiscale or Hierarchical RNNs

o (Bengio & Elhihi, NIPS 1995)
e Motivation :

o Gradients can propagate over longer spans through slow time-scale paths
* Approach :

o Introduce a network architecture that update the states of its hidden layers
with different speeds in order to capture multiscale representation of
sequences.




Learning Long-Term
Tﬁepemdeme&es wikh
Grradient Descent is

Difficult

Y. Bengio, P. Simard & P. Frasconi, IEEE Trans. Neural Nets, 1994



How to store 1 bikt? Dynamics with
multiple basins of attraction in some
dimensions

e Some subspace of the state can store 1 or more bits of

information if the dynamical system has multiple basins of
attraction in some dimensions

Basins

Note: gradients MUST be high near the boundary
18



Robustly storing 1 bit in the presence
of bounded noise

e With spectral radius > 1, noise can kick state out of attractor

UNSTABLE

Domain of a;

e Not so with radius<1

CONTRACTIVE
-> STABLE



Storing Reliably

e Reliably storing bits of information requires spectral radius<1

e The product of T matrices whose spectral radius is < 1 is a matrix
whose spectral radius converges to O at exponential ratein T

L=L(sp(s7_1(...8041(5¢,...))))
8_L B 0L Ost 0S¢11
Os;  OsT Osp_1  Osy

e |f spectral radius of Jacobian is < 1 =» propagated gradients vanish

20



Vanishing or Exploding Gradients

e Hochreiter’s 1991 MSc thesis (in German) had independently
discovered that backpropagated gradients in RNNs tend to either
vanish or explode as sequence length increases

1991: SEPP HOCHREITER'S ANALYSIS OF TH
FUNDAMENTAL DEEP LEARNING PROBLEM

de(t-q)
de(f)

[ (B ﬁWF'(Ner(t -m))ll

m=|

<(IWlimax,, {IF'(Net)ll})’
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Why it hurts gradient-based Learning

e Long-term dependencies get a weight that is exponentially
smaller (in T) compared to short-term dependencies

801} 86} 8@7 0015 8at 80,7

Z * da, OW Z * da;\daz OW

t

Becomes exponentially smaller
for longer time differences,
when spectral radius < 1
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Vanishing Gradients in Deep Neks are

Different from the Case in RNNs A

e |f it was just a case of vanishing gradients in deep nets, c;__)L_
we could just rescale the per-layer learning rate, but Q

that does not really fix the training difficulties. =

St 1 3t—|—1 Jf&)

%% %% ~

~|=

Q

e Can’t do that with RNNs because the weights are
shared, & total true gradient = sum over different =~
“depths”

8Ct 36} 8a,T 8Ct aa,t 8a7

Z * da, OW Z * da; da; OW
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To store information robustly the
dynamics must be contractive

e The RNN gradient is a product of Jacobian matrices, each
associated with a step in the forward computation. To store
information robustly in a finite-dimensional state, the dynamics
must be contractive [Bengio et al 1994].

[, = L(ST(ST—1<° . 3t—|—1(3t7 . ))))
OL oL aST 88754-1 Storing bits

ast aST aST—l S aSt robustly requires

e-values<1

e Problems: Gradient
 e-values of Jacobians > 1 = gradients explode e clipping

* or e-values < 1 - gradients shrink & vanish

* or random -2 variance grows exponentially

24



Dealing with Gradient Explosion by
Gradient Norm Clipping

(Mikolov thesis 2012;
Pascanu, Mikolov, Bengio, ICML 2013)

A Oerror

& < o

if ||g|| > threshold then
A threshold A
8 T 8

end if

eIrror

25 0

~
\\
== \\\ 3
—S< > (0.10

0.35
'0.30

'0.25 .
s C
0.20 £
L [¢))
0.15

'0.05



RNN Triclkes

(Pascanu, Mikolov, Bengio, ICML 2013; Bengio, Boulanger & Pascanu, ICASSP 2013)

e Clipping gradients (avoid exploding gradients)

e Leaky integration (propagate long-term dependencies)

e Momentum (cheap 2" order)

e |nitialization (start in right ballpark avoids exploding/vanishing)
e Sparse Gradients (symmetry breaking)

e Gradient propagation regularizer (avoid vanishing gradient)

e Gated self-loops (LSTM & GRU, reduces vanishing gradient)

26



Delays & Hierarchies to Reach Farther

e Delays and multiple time scales, Elhihi & Bengio NIPS 1995,
Koutnik et al ICML 2014 é

e How to do this right?

e How to automatically S@
and adaptively do it? 3

Hierarchical RNNs (words / sentences):
Sordoni et al CIKM 2015, Serban et af =~~~
AAAl 2016

27 wow , i keep on bumping into you . i hope your mango



Fighting the vawnishing gradient:
LSTM & GRU

(Hochreiter 1991); first version of LSTM: (Hochreiter & Schmidhuber 1997)

the LSTM, called Neural Long-

Term Storage with self-loop output
C h wh new state = old state 4+ update

rejjce a pat f\'llv erfe Onew state
gra |ent§ can flow for Fold state
longer with a self-loop
self-loop
Corresponds to an
eigenvalue of Jacobian
slightly less than 1
LSTM is now heavily used
(Hochreiter & Schmidhuber
1997)
input input gate forget gate output gate

GRU light-weight version e e

"

(Cho et al 2014) f \
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Grating for Atktention-Based Neural
Machine Translation

Related to earlier Graves 2013 for generating handwriting

e (Bahdanau, Cho & Bengio, arXiv sept. 2014)
e (Jean, Cho, Memisevic & Bengio, arXiv dec. 2014)

f= (La, croissance, économique, s'est, ralentie, ces, dernicres, années, .)

9 | | | |
= £ W || | |
S 2 | | | |

i | | || ||
-
=
e
Z 2
2 7

Mechanism

L
R
.
0
"
L

Annotation  Attention

e = (Economic, growth, has, slowed, down, in, recent, years, .)

Vectors
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What's New with Deep Learning?

e |ncorporating the idea of attention, using GATING units, has
unlocked a breakthrough in machine translation:

Neural Machine Translation  (ICLR’2015)

Q0000000000000 000

Higher-level
Softmax over lower
locations conditioned
on context at lower and
higher locations
Q0000 O Q0000000
Lower-level
e Now in Google Translate:
current
n-gram neural net  human
translation translation translation
. I . I Human
1

) ' ) evaluation
30



Gmpk Attention Nelworles
Velickovic et al, ICLR 201%

e Handle variable-size neighborhood of each node using the same
neural net by using an attention mechanism to aggregate
information from the neighbors

e Use multiple attention heads to collect different kinds of
information

concat/avg
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What's New with Deep Learhing?

Attention has also opened the door to neural nets which can
write to and read from a memory
* 2 systems:

e Cortex-like (state controller and representations)
e System 1, intuition, fast heuristic answer

e Hippocampus-like (memory) + prefrontal cortex write

e System 2, slow, logical, sequential

e Memory-augmented networks gave rise to
e Systems which reason

e Sequentially combining several selected pieces of
information (from the memory) in order to obtain
a conclusion
* Systems which answer questions
e Accessing relevant facts and combining them

32



Attention Mechanisms for Memory Access

e Neural Turing Machines (Graves et al 2014)
e and Memory Networks (Weston et al 2014)

e Use a content-based attention mechanism
(Bahdanau et al 2014) to control the read

and write access into a memory

e The attention mechanism outputs a softmax
over memory locations

> efith)

i g ;C; Read = weighted average of
1

O =

attended contents

33



Large Memory Networlks: Sparse Access
Memory for Long-Term Dependencies

e Memory = part of the state
e Memory-based networks are special RNNs

e A mental state stored in an external memory can stay for arbitrarily long
durations, until it is overwritten (partially or not)

e Forgetting = vanishing gradient.
e Memory = higher-dimensional state, avoiding or reducing the need for
forgetting/vanishing

34



Pointing the Unlcnown Words

Gulcehre, Ahn, Nallapati, Zhou & Bengio ACL 2016
Based on ‘Pointer Networks’, Vinyals et al 2015

The next Word French: Euillaume|et|Ces%ont une voiture bIeuE.
i T /:IOpy Copy

generated can elther EngliSh: Guillaume|and[Cesar]| have a blue car in .

come from vocabulary

or is copied from the Vocabulary softmax
input sequence. il

Point & copy

Pointer distribution (¢,)

e e

:

Target Sequence Source Sequence

Table 5: Europarl Dataset (EN-FR)

BLEU-4
NMT 20.19
NMT +PS  23.76

Machine
Translation

Table 3: Results on Gigaword Corpus for model-
ing UNK’s with pointers in terms of recall.

Rouge-1 Rouge-2 Rouge-L
NMT + 1vt 36.45 17.41 33.90

NMT + vt + PSS 37.29 17.75 34.70 Text summarization
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Variational Hierarchical RNNs for
Dialogue Generation (Serban et al 2016)

e Lower level = words of an utterance (turn of speech)
e Upper level = state of the dialogue
* Inject high-level choices .., ... waw _ Wi .. wap

prediction

context ~
S

hidden state 8 -..

0O ©Ceo ©O

36 wi 1 ¢ .. wi, N w21 e s w2 N




Still Far from Human-Level Al

* Industrial successes mostly based on supervised
learning

* Learning superficial clues, not generalizing well
outside of training contexts, easy to fool trained
networks:

— Current models cheat by picking on surface regularities

e Still unable to discover higher-level abstractions



How to Discover Grood
Disentangled Representations

e How to discover abstractions?

e What is a good representation? (Bengio et al 2013)

 Need clues (= priors) to help disentangle the underlying
factors, such as

e Spatial & temporal scales
* Marginal independence

* Simple dependencies between factors

* Consciousness prior

e Causal / mechanism independence
e Controllable factors

| l | ) ( | ( |
N .’/ N N

38



Acting to Guide —>
Re. resen&a&mu Learhing
tsentangling

(E. Bengio et al, 2017; V. Thomas et al, 2017)

e Some factors (e.g. objects) correspond to
‘independently controllable’ aspects of the world

e Can only be discovered by acting in the world

* Control linked to notion of objects & agents

* Causal but agent-specific & subjective: affordances



Abstraction Challenge for Unsupervised
Learhing

e Why is modeling P(acoustics) so much worse than modeling
P(acoustics | phonemes) P(phonemes)?

e Wrong level of abstraction?

many more entropy bits in acoustic details then linguistic content

-> predict the future in in abstract space instead: non-trivial



The Consciousness Prior
Bengio 2017, arXiv:

e Conscious thoughts are very low-dimensional objects compared
to the full state of the (unconscious) brain

e Yet they have unexpected predictive value or usefulness

—> strong constraint or prior on the underlying representation

* Thought: composition of few selected factors / concepts
(key/value) at the highest level of abstraction of our brain

* Richer than but closely associated with short verbal
expression such as a sentence or phrase, a rule or fact
(link to classical symbolic Al & knowledge representation)

41



How to select a few
relevant abstract
conceplts making a

thought?

Conkent-based
Aktention




On the Relakion betweewn Abstraction
and Attention

e Attention allows to focus on a few elements out of a large set

e Soft-attention allows this process to be trainable with gradient-
based optimization and backprop

Top-down
attention

Bottom-up
attention

Attention focuses on a few
appropriate abstract or concrete
elements of mental
representation

43



The Consciousness Prior
Bengio 2017, arXiv:1709,05856%

e 2 levels of representation:

* High-dimensional abstract representation space (all known
concepts and factors) h

* Low-dimensional conscious thought ¢, extracted from h

conscious state ¢ >

attentionrl: I
unconscious state h >

e cincludes names (keys) and values of fac

input x

44



Disentangling up to Linear Projection

e My old view of disentangling: each dimension of the
representation = one ‘nameable’ (semantic) factor

e Potential problem: the number of ‘nameable’ factors is limited
by the number of units, and brains don’t use a completely
localized representation for named things

e My current view of disentangling: it is enough that a linear
projection exist to ‘classify’ or ‘predict’ any of the factors

e The ‘number’ of potential ‘nameable’ factors is now
exponentially larger (e.g. subsets of dimensions, weights of these
4,5 Pprojections)



The Consciousness Prior
Bengio 2017, arXiv:1709,0556%

e Conscious prediction over attended variables A (soft attention)

V = —ZwAlogP(htA alc
A

= alci_1)
P AN
Earller Cconscious

state

Predicted

Attention weights
g Factor value

conscious state ¢ >

aﬁenﬁonfl_-,» I

unconscious state h >

name

input x
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conscious state c,, ™)  conscious state c, ,

What Training | |
ObJQC&EaVQ? unconscious state h, , mmmm) unconscious state h,,

1 |

X1 Xi.1
e How to train the attention mechanism which

selects which variables to predict?

* Representation learning without reconstruction:
e Maximize entropy of code
e Maximize mutual information between past and future

* Objective function completely in abstract space, higher-level
parameters model dependencies in abstract space

e Usefulness of thoughts: as conditioning information for action,
i.e., a particular form of planning for RL, i.e., the estimated
gradient of rewards could also be used to drive learning of

,, abstract representations






