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Humans outperform machines at 
unsupervised learning 

•  Humans	are	very	good	at	
unsupervised	learning,	e.g.	a	2	
year	old	knows	intuiGve	physics	

•  Babies	construct	an	
approximate	but	sufficiently	
reliable	model	of	physics,	how	
do	they	manage	that?	Note	that	
they	interact	with	the	world,	
not	just	observe	it.	



Invariance and Disentangling 

•  Invariant	features	

•  Which	invariances?	

•  AlternaGve:	learning	to	disentangle	factors	

•  Good	disentangling	à		
					avoid	the	curse	of	dimensionality:	

Dependencies	are	“simple”	when	the	data	
is	projected	in	the	right	abstract	space	

3	



Domain Adaptation for Sentiment Classification with Deep Learning

Figure 1. Transfer losses on the Amazon benchmark of 4 domains: Kitchen(K), Electronics(E), DVDs(D) and
Books(B). All methods are trained on the labeled set of one domain and evaluated on the test sets of the others. SDAsh

outperforms all others on 11 out of 12 cases.

Figure 2. Left: Transfer ratios on the Amazon benchmark. Both SDA-based systems outperforms the rest even if
SDAsh is better. Right: Proxy A-distances between domains of the Amazon benchmark for the 6 di↵erent pairs.
Transforming data with SDAsh increases the proxy A-distance.
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Figure 3. L1 feature selection on the Amazon benchmark. Both graphs depict the number of tasks of domain
recognition (x-axis) and sentiment analysis (y-axis) in which a feature is re-used by L1-classifiers trained on raw features
(left) or features transformed by SDAsh. (right). See Section 4.3 for details.

Disentangling from denoising objective 
(Glorot, Bordes & Bengio ICML 
2011) 
•  Early	deep	learning	research	already	is	looking	for	possible	

disentangling	arising	from	unsupervised	learning	of	
representaGons	

•  Experiments	on	stacked	denoising	auto-encoders	with	ReLUs,	on	
BoW	text	classificaGon	

•  Features	tend	to	specialize	to	either	senGment	or	domain	



•  MLP	whose	target	output	=	input	
•  ReconstrucGon=decoder(encoder(input)),															

e.g.	
	

•  Code	=	new	coordinate	system	
•  Encoder	and	decoder	can	have	more	layers	
•  ReconstrucGon	can	be	probability	distribuGon	

Unsupervised Learning of 
Representations: Simple Auto-Encoders 

…	

	code=	latent	features	

…	

	encoder	 	decoder	
	input	

	reconstrucGon	
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Denoising Auto-Encoder 
(Vincent	et	al	2008)	

•  Corrupt	the	input	during	training	only	
•  Train	to	reconstruct	the	uncorrupted	input	

KL(reconstruction | raw input) Hidden code (representation) 

Corrupted input Raw input reconstruction 

•  Encoder	&	decoder:	any	parametrizaGon	
•  As	good	or	beder	than	RBMs	for	unsupervised	pre-training	



Denoising Auto-Encoder 
•  Learns	a	vector	field	poinGng	towards	higher	

probability	direcGon	(Alain	&	Bengio	2013)	

•  Some	DAEs	correspond	to	a	kind	of	Gaussian	
RBM	with	regularized	Score	Matching	
(Vincent	2011)	

					[equivalent	when	noiseà0]	

•  Compared	to	RBM:	
No	parGGon	funcGon	issue,		 	 																		+	
can	measure	training		 						criterion	

Corrupted input 

Corrupted input 

prior:	examples	
concentrate	near	a	
lower	dimensional	
“manifold”		

r(x)-x					dlogp(x)/dx	/
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Auto-Encoders Learn Salient 
Variations, like a non-linear PCA 

•  Minimizing	reconstrucGon	error	forces	to	
keep	variaGons	along	manifold.	

•  Regularizer	wants	to	throw	away	all	
variaGons.	

•  With	both:	keep	ONLY	sensiGvity	to	
variaGons	ON	the	manifold.	



Manifold Learning =  
 Representation Learning 
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tangent directions

tangent plane

Data on a curved manifold



Space-Filling in Representation-Space 
•  Deeper	representa/ons	è	abstrac/ons	è	disentangling	
•  Manifolds	are	expanded	and	flaFened	

Linear	interpolaGon	at	layer	2	

Linear	interpolaGon	at	layer	1	

3’s	manifold	

9’s	manifold	

Linear	interpolaGon	in	pixel	space	

Pixel	space	

9’s	manifold	 3’s	manifold	

RepresentaGon	space	

9’s	manifold	 3’s	manifold	

X-space	

H-space	

(Bengio	et	al	ICML	2013)	



Interpolating in Latent Space 
If	the	model	is	good	(unfolds	the	manifold),	interpolaGng	between	
latent	values	yields	plausible	images.	
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Under review as a conference paper at ICLR 2016

Figure 4: Top rows: Interpolation between a series of 9 random points in Z show that the space
learned has smooth transitions, with every image in the space plausibly looking like a bedroom. In
the 6th row, you see a room without a window slowly transforming into a room with a giant window.
In the 10th row, you see what appears to be a TV slowly being transformed into a window.

scene classification learn object detectors (Oquab et al., 2014). We demonstrate that an unsupervised
DCGAN trained on a large image dataset can also learn a hierarchy of features that are interesting.
Using guided backpropagation as proposed by (Springenberg et al., 2014), we show in Fig.5 that the
features learnt by the discriminator activate on typical parts of a bedroom, like beds and windows.
For comparison, in the same figure, we give a baseline for randomly initialized features that are not
activated on anything that is semantically relevant or interesting.

6.3 MANIPULATING THE GENERATOR REPRESENTATION

6.3.1 FORGETTING TO DRAW CERTAIN OBJECTS

In addition to the representations learnt by a discriminator, there is the question of what representa-
tions the generator learns. The quality of samples suggest that the generator learns specific object
representations for major scene components such as beds, windows, lamps, doors, and miscellaneous
furniture. In order to explore the form that these representations take, we conducted an experiment
to attempt to remove windows from the generator completely.
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Under review as a conference paper at ICLR 2016

Figure 7: Vector arithmetic for visual concepts. For each column, the Z vectors of samples are
averaged. Arithmetic was then performed on the mean vectors creating a new vector Y . The center
sample on the right hand side is produce by feeding Y as input to the generator. To demonstrate
the interpolation capabilities of the generator, uniform noise sampled with scale +-0.25 was added
to Y to produce the 8 other samples. Applying arithmetic in the input space (bottom two examples)
results in noisy overlap due to misalignment.
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Radford	et	
al	2016	



Deep Unsupervised  
Generative Models 

1
2

Texture	 Shakespeare	

Hand-wriGng	 Bedrooms	

Chinese	characters	



Latent Variables and Abstract 
Representations 

•  Encoder/decoder	view:	maps	
between	low	&	high-levels	

•  Encoder	does	inference:	interpret	
the	data	at	the	abstract	level	

•  Decoder	can	generate	new	
configuraGons	

•  Encoder	fladens	and	disentangles	
the	data	manifold	
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encoder	 decoder	P(x|h)	

P(h)	

data	space	

Q(h|x)	 Abstract		
representa@on	
	space,	flaCened	
manifold	



Extracting Structure By Gradual 
Disentangling and Manifold Unfolding 
(Bengio 2014, arXiv 1407.7906)  
Each	level	transforms	the	
data	into	a	representaGon	in	
which	it	is	easier	to	model,	
unfolding	it	more,	
contracGng	the	noise	
dimensions	and	mapping	the	
signal	dimensions	to	a	
factorized	(uniform-like)	
distribuGon.	
	
	
for	each	intermediate	level	h	
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Q(x)	

f1	
g1	

Q(h1)	
P(h1)	

fL	 gL	

Q(hL)	
P(hL)	no

ise
	

signal	

…	

P(x|h1)	
Q(h1|x)	

Q(h2|h1)	 f2	 P(h2|h1)	g2	

minKL(Q(x, h)||P (x, h))



Q(h1|x)

x

h1

h2

h3

P (x|h1)

P (h1|h2)

P (h2|h3)

P (h3)

Q(h2|h1)

Q(h3|h2)

Q(x)

Helmholtz Machines (Hinton	et	al	1995)		and 
Variational Auto-Encoders (VAEs) 

•  Parametric	approximate	
inference	

•  Successors	of	Helmholtz	
machine	(Hinton	et	al	‘95)	

•  Maximize	variaGonal	lower	
bound	on	log-likelihood:	

	
where														=	data	distr.		
or	equivalently	
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(Kingma	&	Welling	2013,	ICLR	2014)	
(Gregor	et	al	ICML	2014;	Rezende	et	al	ICML	2014)	
(Mnih	&	Gregor	ICML	2014;	Kingma	et	al,	NIPS	2014)	

	

minKL(Q(x, h)||P (x, h))
Q(x)

X

x,h

Q(x)Q(h|x) log P (x, h)

Q(h|x) =

X

x,h

Q(x)Q(h|x) logP (x|h) +KL(Q(h|x)||P (h))
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Adversarial nets framework 

1
6	

GAN: Generative Adversarial Networks 
A radical alternative to max. likelihood 

Generator	
Network	

Discriminator	
Network	

Fake	
Image	

Real	
Image	

Training	
Set	

Random	
Vector	

Random	
Index	

Goodfellow	et	al	NIPS	2014	
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Early Days of GAN Samples 

�X

MNIST TFD

CIFAR-10 (fully connected) CIFAR-10 (convolutional)



Convolutional GANs 

Strided	convoluGons,	batch	normalizaGon,	only	convoluGonal	
layers,	ReLU	and	leaky	ReLU	
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(Radford	et	al,	arXiv		1511.06343)	

Under review as a conference paper at ICLR 2016

Figure 2: Generated bedrooms after one training pass through the dataset. Theoretically, the model
could learn to memorize training examples, but this is experimentally unlikely as we train with a
small learning rate and minibatch SGD. We are aware of no prior empirical evidence demonstrating
memorization with SGD and a small learning rate in only one epoch.

Figure 3: Generated bedrooms after five epochs of training. There appears to be evidence of visual
under-fitting via repeated textures across multiple samples.

4.3 IMAGENET-1K

We use Imagenet-1k (Deng et al., 2009) as a source of natural images for unsupervised training. We
train on 32⇥ 32 min-resized center crops. No data augmentation was applied to the images.
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Convolutional Networks 

•  Scale	up	neural	networks	to	process	very	large	images	/	
video	sequences	

-  Sparse	connecGons	

-  Parameter	sharing	

•  AutomaGcally	generalize	across	spaGal	translaGons	of	
inputs	

•  Applicable	to	any	input	that	is	laid	out	on	a	grid	(1-D,	2-
D,	3-D,	…)	



Convnets: Key Idea 

•  Replace	matrix	mulGplicaGon	in	ordinary	
neural	nets	with	convoluGon	

•  Everything	else	stays	the	same	
-  Maximum	likelihood	
-  Back-propagaGon	
-  etc.	



Convolutional Neural Networks 

•  A	special	kind	of	deep	learning	tailored	for	images	
•  Exploits	the	invariance	to	translaGons	
•  Exploits	mulG-scale	hierarchy	

21	

Convolu@onal	neural	network	for	imaging	data	



2D Convolution 

Figure	9.1,	Deep	Learning	book,	Goodfellow	et	al	2016	



Sparse Connectivity 

Sparse	
connecGons	
due	to	small	
convoluGon	
kernel	

Dense	
connecGons	

Figure	9.2	



Sparse Connectivity 

Sparse	
connecGons	
due	to	small	
convoluGon	
kernel	

Dense	
connecGons	

Figure	9.3	



Growing Receptive Fields 

Figure	9.4	



Parameter Sharing 

ConvoluGon	shares	the	
same	parameters	across	
all	spaGal	locaGons	

TradiGonal	matrix	
mulGplicaGon	does	not	
share	any	parameters	

Figure	9.5	



Cross-Channel Pooling and 
Invariance to Learned 
Transformations 

Figure	9.9	



Pooling with 
Downsampling 

Figure	9.10	



Convolution with Stride 

Figure	9.12	



Major ConvNet Architectures 
•  SpaGal	Transducer	Net:	input	size	scales	with	output	size,	
all	layers	are	convoluGonal	

•  All	ConvoluGonal	Net:	no	pooling	layers,	just	use	strided	
convoluGon	to	shrink	representaGon	size	

•  IncepGon:	complicated	architecture	designed	to	achieve	
high	accuracy	with	low	computaGonal	cost	

•  ResNet:	blocks	of	layers	with	same	spaGal	size,	with	each	
layer’s	output	added	to	the	same	buffer	that	is	repeatedly	
updated.	Very	many	updates	=	very	deep	net,	but	without	
vanishing	gradient.	



ResNets: Skip Connections 

•  IdenGty	paths	make	it	possible	for	gradients	to	flow	through	
deeper	networks	(He	et	al	2015),	SOTA	on	object	recogniGon	
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Deep Data Fusion 

•  Deep	nets	are	very	good	at	combining	mulGple	sources	of	data,	
mulGple	sensors	or	modaliGes	

•  Can	have	separate	pre-processing	stages	for	each	modality,	then	
CONCATENATE	the	representaGons	before	conGnuing	processing	

32	

Need	to	map	
to	the	same		
spaGal	scale,	
or	‘copy’	a	
non-spaGal	
modality	at	all	
posiGons.	



Generating Text from Images 
•  (Kiros	et	al.,	2014;	Mao	et	al.,	

2014;	Donahue	et	al.,	2014;	
Vinyals	et	al.,	2014;	Fang	et	
al.,	2014;	Chen	and	Zitnick,	
2014;	Karpathy	and	Li,	2014;	
Venugopalan	et	al.,	2014).		

•  ConvoluGonal	net	à	
generaGve	RNN	
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Generative Adversarial Networks 
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Image 2 Image 
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Introduction
Image → Image

GANs

Isola	et	al.	2016	



Text 2 Image, B&W 2 Color 
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Lucy	Li	

Zhang	et	al.	2017	



Horse 2 Zebra: matching 2 domains by 
analogy of their distribution structure 
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Input	video	 Output	video	

CycleGANs:	Zhu	et	al.	2017	

Looks	like	a	zebra?	
Looks	like	a	horse?	

2-way	auto-encoder	



The Future of Deep AI 

•  ScienGfic	progress	is	slow	and	conGnuous,	but	social	and	
economic	impact	can	be	disrupGve	

•  Many	fundamental	research	quesGons	are	in	front	of	us,	with	
much	uncertainty	about	when	we	will	crack	them,	but	we	will	

•  Importance	of	conGnued	investment	in	basic	&	exploratory	AI	
research,	for	both	pracGcal	(recruitment)	short-term	and	long-
term	reasons		

•  Let	us	conGnue	to	keep	the	field	open	and	fluid,	be	mindful	of	
social	impacts,	and	make	sure	AI	will	bloom	for	the	benefit	of	all	
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Montreal	Ins/tute	for	
Learning	Algorithms	


