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Ulkimate Groal

* Understand the principles
giving rise to intelligence



FOoCWs

» Learning: mathematical
and computational
principles allowing one to
learn from examples in
order to acquire knowledge



Breakthrough

» Deep Learning: machine
learning algorithms inspired
by brains, based on learning
multiple levels of
representation / abstraction.



Im Pac&

Deep learning has revolutionized
* Speech recognition
* Object recognition

More coming, including other
areas of computer vision, NLP,
dialogue, reinforcement learning..



The dramatic impact of Dee
Learhing o Speech Recognition

100%A According to Microsoft’s
speech group:

Using DL
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ImagetNet Breakthrough
ad ® Achieves state-of-the-art on many
object recognition tasks.

Ty— v . ' ’
i pickup Jelly fungus elderberry titi

beach wagon glll fungus bullterrier indri
fire engine | dead-man's-fingers currant howler monkey

See: deeplearning.cs.toronto.edu



ImageNet Classification 2012

* Krizhevsky et al. -- 16.4% error (top-5)

e Next best (non-convnet) — 26.2% error

Slide from Rob Fergus, NIPS tutorial, 2012




Object Recognition Worlks

e Try it at http://deeplearning.cs.toronto.edu

Possible tags: Possible tags:
v X chimpanzee, chir s o¢ (N S German shepherd,
« x “gorilla, Gorilla gorilla « x dingo, warrigal, warragal

« x “ram, tup v x PSEM Norwich terrier

« x mhippopotamus, hippo, river horse « x Lk 3 Airedale, Airedale terrier

« x Mmask
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Mowntreal Deep Nebks Win Emotion
Recognition in the Wild Challenge

Predict emotional expression from video (using images + audio)

Dec. 9, 2013
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S 10 BREAKTHROUGH
= TECHNOLOGIES 2013

DeeplLearning Temporary Social Prenatal DNA Adc
Media Sequencing Mai
With massive Reading the DNA of
amounts of ; fetuses will be the
comﬁptatlonal power, Messages that quickly next frontier of the Ske
machines can now self-destruct could genomic revolution. prin
recogrnlze objects and enhance the privacy But do you really want wor
translate speech in of online to know about the mar
real time. Artificial communications and genetic problems or the
intelligence is finally make people freer to musical aptitude of tect
getting smart. be spontaneous. - your unborn child? - jetg
Memoryimplants Smart Watches Ultra-Efficient Solar Big
Power Phc
A maverick
neuroscientist Coll
believes he has Doubling the ana
deciphered the code efficiency of a solar fron
o whircrh the hrain ~rall vwirnild camnlaetahs nhn
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EXCLUSIVE

Facebook, Google in 'Deep Learning'
Arms Race

NEWS BULLETIN

Google Beat Facebook for DeepMmd

Google Acqulres Artificial Intelllgence Startup DeepMind
For More Than $5ooM

Catherine Shu (@cathe



Challenges

(Bengio, arxiv 1305.0445 Deep learning of representations: looking forward)

* Unsupervised Learning, Structured
outputs & Reinforcement Learning
* Intractable computations with latent variables

* Key to more adaptable models and complex
output decisions

e Scaling up
* Computation & Optimization
* Marrying Deep Learning & Reasoning
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Potential Outcome: AT

e Computers that can
*see and hear
*understand natural language
*understand human behavior

e Better understanding of human &
animal intelligence

e Personnal assistants, self-driving cars...

14



Technical Goals Hiemrckv

To reach Al:

* Needs knowledge
* Needs learning

* Needs generalization

e Needs ways to fight the curse of dimensionality
 Needs disentangling the underlying explanatory factors

15



ML 1ol, What We Are Fighting Against:
The Curse of ‘mmehsiovml,i!:v

To generalize locally,
need representative
examples for all
relevant variations!

Classical solution: hope
for a smooth enough
target function, or
make it smooth by
handcrafting good
features / kernel

1 dimension:
10 positions

2 dimensions:
100 positions
Q

» 3 dimensions:
1000 positions!



For AI Tasks: Manifold skructure

e examples concentrate near a lower dimensional “manifold

e Evidence: most input configurations are unlikely

. [shrinking
transformation

4 J'n
a

raw input vector space




Greomelbrical view on machine Learning

e Generalization: guessing where probability mass concentrates

e Challenge: the curse of dimensionality (exponentially many
configurations of the variables to consider)

e Representation Learning: mapping to a new space, unfolding

=
iy

%

=
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Putting Probabilit

Structure is Plausible

19

Empirical distribution:
mass at training examples

Smoothness: spread mass around

Insufficient

Guess some ‘structure’ and
generalize accordingly

Equivalent to guessing a good
representation in which distance is
meaningful and relationships are
simple, linear

Mass where



Representation Learning

e Good features essential for successful ML: 90% of effort

raw represented MACHINE
input > by téreserd ml | | EARNING
data features

 Handcrafting features vs learning them

e Good representation?

* guesses
the features / factors / causes
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Google Image Search:

Different object types represented in the
same space

DDDDDDD

DOLPHIN
— OBAMA
—EIFFEL TOWER

"?Google:

'S. Bengio, J.
Weston & N.
»_ Usunier

Se¢ (1JCAI 2011,
NIPS’2010,
JMLR 2010,
MLJ 2010)

[

4

100-dim
embedding space

Learn ®(+) and 9,-) to optimize precision@k.



Following up ol (Bengio et al NIPS2000)
Neural wor émbedqus - visualizakion

need help
come
go
take
qive keep
make get
meet cee continue
expect want become
think
say remain
are .
Is
be
wergas
being
been
haqmas
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Analogical Representations for Free
(Mc.kotov et al, ICLR 2013)

e Semantic relations appear as linear relationships in the space of
learned representations

* King —Queen = Man—-Woman
e Paris — France + Italy = Rome

France

a

Paris

Rome
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Breakthroughs in Machine Translation

e (Choetal, EMNLP 2014) Learning Phrase Representations using
RNN Encoder—Decoder for Statistical Machine Translation

Almost 2 BLEU points improvement for English-French

e (Devlin et al, ACL 2014) Fast and Robust Neural Network Joint
Models for Statistical Machine Translation

Best paper award, 6 BLEU points improvement for Arabic-English

Yt y
t— > Decoder

24

Encoder



EV\COdQ‘!‘-»bQCOdQT QOlq;: : orz Ieentu w
Framework for Machin
Trahsl’a&m“ Encode

Economic growth has slowed down in recent years .

e One encoder and one decoder per language

e Universal intermediate representation

 Encode(French) = Decode(English) = translation model

* Encode(English) = Decode(English) = language model

e Parametrization grows linearly with # languages, not quadratic

English sentence English sentence

For bitext data
For unilingual data

- French sentence English sentence



Learning multiple Levels of
representaktion

There is theoretical and empirical evidence in favor of
multiple levels of representation

Exponential gain for some families of functions

Biologically inspired learning
Brain has a deep architecture

Cortex seems to have a
generic learning algorithm

Humans first learn simpler
concepts and compose them

It works! Speech + vision breakthroughs N
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Learning mut&ipte levels BN
0{ TQPTQSQV\EQ&I:OV\ (Lee, Largman, Pham & Ng, NS 209)

) (Lee, Grosse, Ranganath & Ng, ICML 2009)
Successive model layers learn deeper intermediate representations

High-level
g Layer 3 linguistic representations

Parts combine
to form objects

A AN TN ALV VP
b SIS U SPIN L A b Laverd

Prior: underlying factors & concepts compactly expressed w/ multiple levels of abstraction




subroutine1 includes gybroutine? includes
subsub1 code and  sybsub2 code and
subsub2 code and  sybsub3 code and

subsubsub1 code subsubsub3 code and ...

\\ /

main

“Shallow” computer program



N

bsubsub] subsubsub?

subsubsu //////////fBbS“bSUbs
subsub1 subsub2 subsub3

sub //jgbZ sub3
\ . /

“Deep” computer program



Sharing Components in a Deep
Architecture

Polynomial expressed with shared components: advantage of
depth may grow exponentially

(r179)(XoX3) + (r129) (23224) + (X2X3)2 + (x9x3)(7374)

(X2X3) 9X3) + (r374)
Sum-product
network
X9X3 Ty
2 3

Theorems in
(Bengio & Delalleau, ALT 2011;
T W €Ty
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Delalleau & Bengio NIPS 2011)



'Dee.p Architectures are Mo»re
Expre.sswe.

Theoretical arguments:

=

Logic gates

2 layers of = Formal neurons = universal opproximo‘ror
RBF units

RBMs & ou’ro encoders = universal approximat;
Theorems on advantage of depth:

(Hastad et al 86 & 91, Bengio et al 2007,

Bengio & Delalleau 2011, Braverman 2011,

Pascanu et al 2014)

Some functions compactly
represented with k layers may

require exponential size with 2
layers




New theoretical result:
Expressiveness of deep hets with
plecewise-linear activation fns

(Pascanu, Montufar, Cho & Bengio; ICLR 2014)

Deeper nets with rectifier/maxout units are exponentially more
expressive than shallow ones (1 hidden layer) because they can split
the input space in many more (not-independent) linear regions, with
constraints, e.g., with abs units, each unit creates mirror responses,
folding the input space:
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Ability to train deep architectures by
using layer-wise unsupervised
learning, whereas previous purely
supervised attempts had failed

Unsupervised feature learners:
* RBMs

e  Auto-encoder variants

_ , Montréal
e  Sparse coding variants Torontg R
Hinto p

%8 Le Cun
2127 New York
(Bengio & LeCun 2007), Scaling Learning Algorithms towards Al




‘Dee.p Supervi.se.d Neural Nets

e Now can train them even without
unsupervised pre-training:
better initialization and non-
linearities (rectifiers, maxout),
generalize well with large labeled
sets and regularizers (dropout)

 Unsupervised pre-training:
rare classes, transfer, smaller

labeled sets, or as extra
regularizer.

34



Unsupervised and Transfer Learning
Challenge + Transfer Learning

Raw data

ICML’2011
workshop on

Unsup. &

Transfer Learning:™”|

095

085

curve (AUC)
o

o
< 065

3 layers

Cha%ﬁvxgez ‘De.e,gwg‘.aamm

2 layers

3 4
N umber ot tiaining e xamples)

SYLVESTER VALID: ALC=09316

q 1lst Place

NIPS’2011
Transfer
Learning

Challenge
Paper:
ICML’2012

& 9 & &
4 layers

LogziN umber ot training examples)




Is there any ho pe to
generalize vmw-tocauv?

Yes! Need good priors!

Depth prior: Abstraction



Bypassing the curse

We need to build compositionality into our ML models

Just as human languages exploit compositionality to give
representations and meanings to complex ideas

Exploiting compositionality gives an exponential gain in
representational power
Distributed representations / embeddings: feature learning

Deep architecture: multiple levels of feature learning

Prior: compositionality is useful to describe the
world around us efficiently
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Now-distributed representations

e (lustering, Nearest-
Neighbors, RBF SVMs, local
non-parametric density
estimation & prediction,
decision trees, etc.

Clustering

e Parameters for each
distinguishable region

LOCAL PARTITION

e # of distinguishable regions
is linear in # of parameters

- No non-trivial generalization to regions without examples

38



The need for distributed
represe.vx&a!:iov\s

39

Factor models, PCA, RBMs,
Neural Nets, Sparse Coding,
Deep Learning, etc.

Each parameter influences
many regions, not just local
neighbors

# of distinguishable regions

grows almost exponentially
with # of parameters

GENERALIZE NON-LOCALLY
TO NEVER-SEEN REGIONS

Multi-
Clustering

C1

artition 1

Cl=1
C2=0
C3=0

Cl1=0
C2=1
C3=0

Sub—partition 3
\

oL, Sub—partition 2
\ Cl= s

\ CjZ:(] .,:‘
\( .‘:I!~

\ C1=0
C2=1
\ C3=1

\

DISTRIBUTED PARTITION \

C2

input

C3

Non-mutually
exclusive features/
attributes create a
combinatorially large
set of distinguiable
configurations



The need for distributed

repre.se.v\&a&mvxs
Clusterin Multi-
: e
° Clusterin g Sub \\pf: Ilntmj]s 3 artition 2
P
/_// : ( : =() \‘ ,xl‘:
- Sub-partition 1 AN\ ci=
X \
X

C1=0
C2=1 \ C1=0
C3=0 \ C2=1

DISTRIBUTED PARTITION

Learning a set of features that are not mutually exclusive
can be exponentially more statistically efficient than

having nearest-neighbor-like or clustering-like models

40



How do humans generalize
from very few examples?

* They transfer knowledge from previous learning:
* Representations

*  Explanatory factors

* Previous learning from: unlabeled data
+ labels for other tasks

* Prior: shared underlying explanatory factors, in
particular between P(x) and P(Y|x)

41



Invariance and Disentangling

e |nvariant features

e Which invariances?

e Alternative: learning to disentangle factors

e Good disentangling =
avoid the curse of dimensionality

42



Emergence of 'Dusenkangtmg

e (Goodfellow et al. 2009): sparse auto-encoders trained
on images

* some higher-level features more invariant to
geometric factors of variation

e (Glorot et al. 2011): sparse rectified denoising auto-
encoders trained on bags of words for sentiment
analysis

 different features specialize on different aspects
(domain, sentiment)

43



Broad Priors as Hinks to Disentangle
the Factors of Variation

e Multiple factors: distributed representations

e Multiple levels of abstraction: depth

e Semi-supervised learning: Y is one of the factors explaining X
e Multi-task learning: different tasks share some factors

e Manifold hypothesis: probability mass concentration

e Natural clustering: class = manifold, well-separated manifolds
e Temporal and spatial coherence

e Sparsity: most factors irrelevant for particular X

e Simplicity of factor dependencies (in the right representation)

44



Space-Filling in Representation-Space
* Deeper representations = abstractions = disentangling
e Manifolds are expanded and flattened

- X-space
4 Pixel space A Representation space
" 3 il q symantol e htod X
Lmenr interpolation at Iayer 2 3’s manifold
. 3
o} ®
9’s mahifold B -
Pe_Linear interpolation at layer 1 ®

1 E

Linear mterpolatlon in pixel space

9|




Extracting Structure By Gradual
Disentangling and Manifold Unfolding
(Bengio 2014, arXiv 1407,7906) 3 .,
ath) 12
Each level transforms the D 114 | g
data into a representation TfL T
in which it is easier to
model, unfolding it more,
contracting the noise ah,/h,) |f, 9270011
dimensions and mapping
the signal dimensions to a a(h,)

factorized (uniform-like) g, P(x/h,)
Q(h, [x) sz l

P(

distribution.

min K L(Q(x,h)||P(x, h))

Q(x)
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Issues with Baclt-‘?rop

e QOver very deep nets or recurrent nets with many
steps, non-linearities compose and yield sharp non-
linearity = gradients vanish or explode

* Training deeper nets: harder optimization

* |n the extreme of non-linearity: discrete functions,
can’t use back-prop

* Not biologically plausible



How Brains Might Learn Without Backprop

e Two principles:
* The past tries to match the future: prediction
* The future tries to match the past: reconstruction
Not clear if these should be on same or different units.

e Plus: observations being clamped (not always)
No need to store

Different loops = past activations: just
Different lengths = average pre-synaptic
Different A H target he,x contributions with a

temporal kernel

e Does not depend 6n the form of activation function, tied
symmetric weights, differentiability of anything, using rates vs

spikes, etc.



Learning Multiple Levels of
Abstrackion

e The big payoff of deep learning is to allow learning
higher levels of abstraction

e Higher-level abstractions disentangle the factors of
variation, which allows much easier generalization and

transfer

Organizational Maturity

49




Optimization & Underfitting

e On large datasets, major obstacle is underfitting

Marginal utility of wider MLPs decreases quickly below
memorization baseline

e Current limitations: local minima, ill-conditioning or else?

50

Marginal utility (MU)

100

10

1000

3000

\

5000

Nb. of hidden units

7000

9000

B VLP
[l Baseline



Guided Training, Intermediate
Cos«cep&s

 In (Gulcehre & Bengio ICLR’2013) we set up a task that seems
almost impossible to learn by shallow nets, deep nets, SVMs,

trees, boosting etc

e Breaking the problem in two sub-problems and pre-training
each module separately, then fine-tuning, nails it

e Need prior knowledge to decompose the task

e Guided pre-training allows to find much better solutions, escape
effective local minima
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E{fQC‘Ei\IQ Local Minima

e Itis not clear that actual local minima are a real issue in training
deep nets

* But initial conditions can sometimes matter a lot!

* see evidence suggesting instead that saddle points create
plateaus that act as obstacles:

Pascanu et al, On the saddle point problem for non-convex optimization,
arXiv 2014

e An optimizer like the one in brains may get stuck = effective
local minima




Effect of Inikial Conditions
in Deep Nets

e (Erhan et al 2009, JMLR)

e Supervised deep net with vs w/o
unsupervised pre-training =2»very different minima

Neural net trajectories in w/o unsupervised pre-trainin
function space, visualized by e
t-SNE a o

No two training trajectories - o g @S 2 9 [y
end up in the same place 2 :
huge number of effective

local minima

with unsupervised pre-trarnihg
53



Cultural Evolution & Deep Learning

e Optimization difficulty for deeper nets, more abstract
concepts

e Humans manage to bypass this difficulty thanks to culture,
guidance from other humans

e The evolution of memes & culture is an effective way to
explore the space of brain configurations, by divide-and-
conquer:

* Evolutionary pressure on the memes themselves, not
just on their carrier

(Bengio 2013, Evolving culture vs local minima, ArXiv 1203.2990)



Conclusiowns

e Deep Learning has become a crucial machine learning tool:
e Int. Conf. on Learning Representation 2013 & 2014 a huge success!
Conference & workshop tracks, open to new ideas ©

e Industrial applications (Google, IBM, Microsoft, Baidu, Facebook,
and now Samsung...)

e Potential for more breakthroughs and approaching the
“understanding” part of Al by

* Scaling computation
* Numerical optimization (better training much deeper nets, RNNs)

* Bypass intractable marginalizations and exploit broad priors to
learn more disentangled abstractions

e Reason from incrementally added facts
55
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