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From Al to Learning

= Intelligence requires knowledge - decisions
= Knowledge can be implicit
= Explicitly providing knowledge failed (expert
systems)
Verbally expressed knowledge is incomplete
And lacks the required expression of uncertainty

Learning captures knowledge from data

Can capture what is needed (completeness)
Can be actionable (learn to predict & act)
Can handle uncertainty (probabilistic models)



Learning to Generalize. How?

= Capturing dependencies between random
variables

= Spreading out the probability mass from
the empirical distribution. Where???

= Discovering underlying abstractions /
explanatory factors



Onto Deep Learning

= Real-world distributions have convoluted
unknown structure, not all captured by the
principle of local generalization

= We want weak priors that are stronger
than the usual smoothness prior

» Deep Learning: a way to address this by
the discovery of multiple levels of
representation capturing the underlying
factors of variation



Shallow learning architecture

1-layer NNet, SVM, GP predictor, decision
tree, boosted stumps, etc.



Deep learning architecture
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Deep Motivations

=Brains have a deep architecture
= Cortex seems to have a generic
learning algorithm
»Humans’ ideas composed from
simpler ones
= Insufficient depth can be
exponentially inefficient

= Distributed (possibly sparse) fask 1 fask2  fosk3
representations necessary for non-
local generalization, exponentially ( < | a | e
more efficient than 1-of-N | e tations
enumeration of latent variable values ¢

= Multiple levels of latent variables ¢ : )

allow combinatorial sharing of i

statistical strength raw input x



Deep Architecture in our Mind

= Humans organize their ideas and concepts

hierarchically MAN]| [siTTING
= Humans first learn simpler concepts and ‘
then compose them to represent more ‘ZC

abstract ones

very high level representation:

slightly higher level representation

» Engineers break-up solutions into multiple

levels of abstraction and processing
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= [t would be nice to learn / discover these
concepts

(knowledge engineering failed because of
limits of introspection?)

raw input vector representation:
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Deep Learning Hypotheses

= Hypothesis 1. deep hierarchy of features useful to
efficiently represent and learn complex abstractions needed
for Al and mammal intelligence.

Computational & statistical efficiency
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= Hypothesis 2: unsupervised learning of representations is

. . \¥
a crucial component of the solution. &

>
Optimization & regularization. zx\‘bb
&
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= Theoretical and ML-experimental support for both.



Principle of Local Generalization

* = training example
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The Curse of
Dimensionality

To generalize 100 positions @
locally, need :
representative
examples for all
relevant
variations!

1 dimension:
10 positions
@

» 3 dimensions:
1000 positions!

Classical solution:
hope for a
smooth enough
target function



Limits of Local Generalization:
Theoretical Results

= Theorem: Gaussian kernel machines need at least k
examples to learn a function that has 2k zero-
crossings along some line
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» Theorem: For a Gaussian kernel machine to learn

some maximally varying functions over d inputs
requires O(29) examples
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e.g. Gaussian (RBF) SVM




Curse of Dimensionality When Generalizing
Locally on a Manifold (Bengio et al 2006) @

O(d %) examples are needed

d=manifold dim.
r=radius of curvature
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How to Beat the Curse of Many
Factors of Variation?

Compositionality: exponential gain in
representational power

« Distributed representations / embeddings: feature learning

« Deep architecture: multiple levels of feature learning

Can generalize to new configurations



Distributed Representations

= Many features active simultaneously

= |nput represented by the activation of a set
of features that are not mutually exclusive

= Can be exponentially more efficient than
local representations

= = FEATURE LEARNING instead of / on top
of manual feature-engineering



Local vs Distributed Latent Variables

Exponentially more regions can be distinguished for the
ame number of parameters, i.e., examples
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RBM Hidden Units Carve Input Space
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Restricted Bolizmann Machine

= The most popular 1
building block for deep P(z,h) = Z
architectures

ebTh+cTa:+hTWa:

h| |Hidden
units

® Bipartfite undirected
graphical model

m Inference is frivial: Visible

= P(h|x) & P(x|h) factorize units



Discrete Input RBMs are Universal
Approximators

m Adding one hidden unit (with proper choice of parameters)
guarantees increasing likelihood

= With enough hidden units, can perfectly model any discrete
distribution

m RBMs with variable nb of hidden units = non-parametric



Conftinuous Inputs - The Best Generative
Model of Imoges Sp||<e -and S|Ob RBM

Samples from p-ssRBM:

Nearest examples in CIFAR:
(least square dist.)




N
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"Deep” computer program



subroutine1 includes gybroutine? includes
subsub1 code and  sybsub2 code and
subsub2 code and  sybsub3 code and
subsubsub1 code subsubsub3 code and ...

\\ /

main

“Shallow” computer program



Architecture Depth
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“Shallow” circuit

output

=

101 o Input

Falsely reassuring theorems: one can approximate any
reasonable (smooth, boolean, etc.) function with a 2-layer
architecture



Deep Architectures are More Expressive

Theoretical arguments:

pu—

Logic gates
2 layers of = Formal neurons = universal approximator

RBF units O
RBMs & auio-eT\coders = universal approximator
Theorems on advantage of depth:
(Hastad et al 86 & 91, Bengio et al 2007,
Bengio & Delalleau 2011, Braverman 2011) 7573
Functions compactly represented
with k layers may require
exponential size with insufficient
depth OO

1 2 3 n



Sharing Components in a Deep Architecture
Polynomial expressed with shared components:
advantage of depth may grow exponentially

2
(."2’1.’1’2)(X2X3) + (.’1‘1:1‘2)(.’1‘3:1‘4) + (X2X3) + (X2X3)(:I‘3."2’4)

Sum-
product
network



Sum-Product Networks

. Depth 2 suffices to represent any finite
polynomial (sum of products)

. (Poon & Domingos 2010) use deep
sum-product networks to efficiently
parametrize partition functions



Polynomials that Need Depth
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More Polynomials that Need Depth
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More Deep Theory

Poly-logarithmic Independence Fools
Bounded-Depth Boolean Circuits
Braverman, CACM 54(4), April 2011.

If all marginals of the input distribution
involving at most k variables are uniform,
higher depth makes it exponentially easier to
distinguish the joint from the uniform.



Deep Architectures and Sharing Statistical
Strength, Multi-Task Learning

= Generalizing better to oulputyr  outputys  oulputys

new tasks is crucial to

approach Al ;3 ;) ;)
= Deep architectures learn ¢ N ( N (

good intermediate

representations that can
be shared across tasks

= Good representations
make sense for many

v
tasks !

raw input x

shared
infermediate
represen’rohon h




Parts Are Re-Used to
Form Different Objects

Layer 3: objects

rr ﬁ.' \‘ =
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’ “ ‘\ - . _{_ Layer 1. edges
(Lee et al. ICML 2009)



Before 2006

Failing to train deep architectures






20006: The Deep Breakthrough

 Hinton, Osindero & Teh
« A Fast Learning
Algorithm for Deep
Belief Nets », Neural
Computation, 2006

 Bengio, Lamblin,
Popovici, Larochelle
« Greedy Layer-Wise
Training of Deep

Beﬁgig Networks », NIPS’2006
Montreal « Ranzato, Poultney,
Toront - Chopra, LeCun
iInto « Efficient Learning of

2% Le Cun Sparse Representations
" New York with an Energy-Based
Model », NIPS’2006




Deep training

Input 000 ...O



Layer-Wise Unsupervised Pre-training

features OOO O



Layer-Wise Unsupervised Pre-training
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Layer-Wise Unsupervised Pre-training

features OOO O



Layer-Wise Unsupervised Pre-training

More abstract

features V 'ﬁ

features OOO

Input OO



Layer-Wise Unsupervised Pre-training

reconstruction o o - 000 O

More abstract

features ﬁ'

features OOO

iInput



Layer-Wise Unsupervised Pre-training

More abstract

features V 'ﬁ

features OOO

Input OO



Layer-Wise Unsupervised Pre-training

Even more abstract
features O

O
More abstract jéx
features V 'ﬁ

features OOO O



Supervised Fine-Tuning

O
Even more abstract / \ {
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Stacking Auto-Encoders
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Palette of Tricks to Train Energy-
Based Models

Partition function expensive (vocab.) or intractable
Contrastive Divergence
PCD /SML  + MCMC tricks

* Tempering
+ Mean-field / variational, etc.

(regularized) Score Matching / denoising
Sparse coding / Sparse Predictive Decomposition
Ratio Matching

Pseudo-likelihood

Ranking / margin-based criteria

Noise contrastive estimation

* Most rely on + vs — examples contrast
See my book / review paper (F&TML 2009):



Sparse Auto-Encoders & Sparse Coding

= Penalty on the representation to achieve
sparsity.
= Stacked sparse auto-encoders

successfully used by Andrew Ng's group
at Stanford (e.g. ICML 2011)

= Used by Google in their Google Goggles
vision system

= Sparse coding (recently stacked as well)
= Sparse Predictive Decomposition (LeCun)



Denoising Auto-Encoder f

(Vincent et al 2008, 2010)

= Stochastically corrupt the input
= Reconstruction target = clean input

Code h=tanh(b+Wz)  Reconstruction error

/OOQ\ o

ROROO)e (O0000) (OOOO0)

Corrupted input z Clean input x Reconstruction r=tanh(c+W’h)




Stacked Denoising Auto-

Encoders

No partition function,
can measure training
criterion

Encoder & decoder:
any parametrization

As good or better than
RBMs for feature
learning

= reqularized score
matching

Online classification error

Budget of 10 million iterations
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Unsupervised and Transfer Learning
Challenge: 15t Place in Final Phase
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Contractive Auto-Encoders

. Few active units
represent the active
subspace local chart

. Jacobian’s spectrum is
peaked = local low-
dimensional
representation / relevant

cannot afford contraction
in manifold directions wants contraction in all

Training criterion: directions
Tean(0) = Y (L. g(h(x)) + Ay (L2

mEDn




Manifold Tangent Classifier (ips 2011)
« Leading singular vectors on MNIST, CIFAR-10, RCV1:

Trading +gilt -slow +matur P t | +bin -anti +interest -sen
& +ye -term +auctio t +coupon  -predict | +calcul -californ
Market: +usd -debt +treas p ure | +discount -belgian | +overnight -introduc

 Knowledge-free MNIST: 0.81% error

K-NN NN SVM  DBN CAE DBM CNN MTC
3.09% 1.60% 1.40% 1.17% 1.04% 095% 0.95% 0.81%




Unsupervised Learning:

Disentangling Factors of Variation

(Goodfellow et al NIPS°2009): some hidden
units more invariant (with more depth) to input

geometry variations

(Glorot et al ICML’2011 . some hidden units
specialize on one aspect (domain) while others
on another (sentiment)

We don’t want invariant representations
because it is not clear to what aspects, but
disentangling factors would help a lot

Sparse/saturated units seem to help
Why?
How to train more towards that objective?



Recent Deep Learning Highlights

Google Goggles uses stacked sparse auto-
encoders (Hartmut Neven @ ICML 2011)

UofT breaks old accuracy ceiling in TIMIT
phoneme detection

Stanford breaks records in video / gesture
classification

NYU breaks records in traffic sign class

Montreal wins Unsupervised & Transfer Learning
Challenge



Conclusions

* Deep Learning: powerful arguments &
generalization principles

* Unsupervised Feature Learning is crucial:
many new algorithms and applications in

recent years

» DL particularly suited for multi-task
learning, transfer learning, domain
adaptation, self-taught learning, and semi-
supervised learning with few labels
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