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From AI to Learning 

§  Intelligence requires knowledge à decisions 
§  Knowledge can be implicit 
§  Explicitly providing knowledge failed (expert 

systems) 
ú  Verbally expressed knowledge is incomplete 
ú  And lacks the required expression of uncertainty  

§  Learning captures knowledge from data 
ú  Can capture what is needed (completeness) 
ú  Can be actionable (learn to predict & act) 
ú  Can handle uncertainty (probabilistic models) 



Learning to Generalize. How? 

§  Capturing dependencies between random 
variables 

§  Spreading out the probability mass from 
the empirical distribution. Where??? 

§  Discovering underlying abstractions / 
explanatory factors  



Onto Deep Learning 

§  Real-world distributions have convoluted 
unknown structure, not all captured by the 
principle of local generalization  

§  We want weak priors that are stronger 
than the usual smoothness prior 

§  Deep Learning: a way to address this by 
the discovery of multiple levels of 
representation capturing the underlying 
factors of variation 



Shallow learning architecture 

… 

… 

1-layer NNet, SVM, GP predictor, decision 
tree, boosted stumps, etc. 



Deep learning architecture 

… 

… 

… 

… 

… 

Output: is this bob 
Bob? 

 
Highest-level features: 

Faces 

Abstract features: 
Shapes 

 
Primitive features: 

Edges 

 
Input: Raw pixels 



Deep Motivations  
 § Brains have a deep architecture 
§ Cortex seems to have a generic 

 learning algorithm 
§ Humans’ ideas composed from 
simpler ones 

§ Insufficient depth can be 
exponentially inefficient 

§ Distributed (possibly sparse) 
representations necessary for non-
local generalization, exponentially 
more efficient than 1-of-N 
enumeration of latent variable values 

§ Multiple levels of latent variables 
allow combinatorial sharing of 
statistical strength raw input x 

task 1  task 3  task 2 
 

shared 
intermediate 
representations  



Deep Architecture in our Mind 

§ Humans organize their ideas and concepts 
hierarchically 

§ Humans first learn simpler concepts and 
then compose them to represent more 
abstract ones 

§ Engineers break-up solutions into multiple 
levels of abstraction and processing 

§  It would be nice to learn / discover these 
concepts  

  (knowledge engineering failed because of 
limits of introspection?) 



Deep Learning Hypotheses 

§  Hypothesis 1:  deep hierarchy of features  useful to 
efficiently represent and learn complex abstractions needed 
for AI and mammal intelligence.  
�  Computational & statistical efficiency 

§  Hypothesis 2: unsupervised learning of representations is 
a crucial component of the solution.  
�  Optimization & regularization. 

§  Theoretical and ML-experimental support for both. 
 



Principle of Local Generalization 



The Curse of 
Dimensionality 
   To generalize 

locally, need 
representative 
examples for all 
relevant 
variations! 

 
Classical solution: 

hope for a 
smooth enough 
target function 



Limits of Local Generalization: 
Theoretical Results 

§  Theorem: Gaussian kernel machines need at least k 
examples to learn a function that has 2k zero-
crossings along some line 

 
 
 
 
 
§  Theorem: For a Gaussian kernel machine to learn 

some maximally varying functions  over d inputs 
requires O(2d) examples 

 

(Bengio, Delalleau & Le Roux 2007) 

e.g. Gaussian (RBF) SVM 



Curse of Dimensionality When Generalizing 
Locally on a Manifold         (Bengio et al 2006) 

O(d rd) examples are needed 

d=manifold dim. 
r=radius of curvature 



How to Beat the Curse of Many 
Factors of Variation? 
 
Compositionality: exponential gain in 
representational power 

•  Distributed representations / embeddings: feature learning 

•  Deep architecture: multiple levels of feature learning 

Can generalize to new configurations 

 
 



Distributed Representations 

§  Many features active simultaneously 
§  Input represented by the activation of a set 

of features that are not mutually exclusive 
§  Can be exponentially more efficient than 

local representations 
§  = FEATURE LEARNING instead of / on top 

of manual feature-engineering 



Local vs Distributed  

Multi-clustering Clustering 

Exponentially more regions can be distinguished for the 
same number of parameters, i.e., examples 



RBM Hidden Units Carve Input Space 

h1 h2 h3 

x1 x2 



Restricted Boltzmann Machine 

¡  The most popular 
building block for deep 
architectures 

 

¡  Bipartite undirected 
graphical model 

¡  Inference is trivial: 

¡  P(h|x) & P(x|h) factorize                                                      

    
      

                                                        

 

 

 

Visible 
units 

Hidden 
units 



Discrete Input RBMs are Universal 
Approximators 

¡ Adding one hidden unit (with proper choice of parameters) 
guarantees increasing likelihood  

¡ With enough hidden units, can perfectly model any discrete 
distribution 

¡  RBMs with variable nb of hidden units = non-parametric 

(Le Roux & Bengio 2008, Neural Comp.) 
 



Continuous Inputs - The Best Generative 
Model of Images: Spike-and-Slab RBM 

ICML 
2011 



main 

sub1 sub2 sub3 

subsub1 subsub2 subsub3 

subsubsub1 subsubsub2 
subsubsub3 

“Deep” computer program 



main 

subroutine1 includes 
subsub1 code and 
subsub2 code and 
subsubsub1 code 

“Shallow” computer program 

subroutine2 includes 
subsub2 code and 
subsub3 code and 
subsubsub3 code and … 



Architecture Depth 

Depth = 3 Depth = 4 



“Deep” circuit 



“Shallow” circuit 

input 

… 
? 

1 2 3 
… 

n 

output 

Falsely reassuring theorems: one can approximate any 
reasonable (smooth, boolean, etc.) function with a 2-layer 
architecture 

1 2 3 



Deep Architectures are More Expressive 

Theoretical arguments: 

… 
1 2 3 2n 

1 2 3 
… 

n 

= universal approximator 2 layers of 
Logic gates 
Formal neurons 
RBF units 

Theorems on advantage of depth: 
(Hastad et al 86 & 91, Bengio et al 2007, 
Bengio & Delalleau 2011, Braverman 2011) 

Functions compactly represented 
with k layers may require 
exponential size with insufficient 
depth 

RBMs & auto-encoders = universal approximator 



Sharing Components in a Deep Architecture 
Polynomial expressed with shared components: 
advantage of depth may grow exponentially  
 

Sum-
product 
network 



•  . Depth 2 suffices to represent any finite 
polynomial (sum of products) 

•  . (Poon & Domingos 2010) use deep 
sum-product networks to efficiently 
parametrize partition functions 

Sum-Product Networks 



Polynomials that Need Depth 

* Need O(n) 
nodes with depth 
log(n) circuit 

* Need O(2√n) 
nodes with 
depth-2 circuit 



•  Need O(dn) nodes with depth d circuit 
•  Need O(nd) nodes with depth-2 circuit 

More Polynomials that Need Depth 

* Need O(dn) 
nodes with 
depth d circuit 

* Need O(nd) 
nodes with 
depth-2 circuit 



Poly-logarithmic Independence Fools 
Bounded-Depth Boolean Circuits, 
Braverman, CACM 54(4), April 2011. 
 
If all marginals of the input distribution 
involving at most k variables are uniform, 
higher depth makes it exponentially easier to 
distinguish the joint from the uniform. 

More Deep Theory 



Deep Architectures and Sharing Statistical 
Strength, Multi-Task Learning 

§  Generalizing better to 
new tasks is crucial to 
approach AI 

§  Deep architectures learn 
good intermediate 
representations that can 
be shared across tasks 

§  Good representations 
make sense for many 
tasks 

raw input x 

task 1  
output y1 

task 3  
output y3 

task 2 
output y2 

shared 
intermediate 
representation h 



Parts Are Re-Used to 
Form Different Objects 

Layer 1: edges 

Layer 2: parts 

Lee et al. ICML’2009 

Layer 3: objects 

(Lee et al. ICML 2009) 



   Before 2006 
 

   Failing to train deep architectures 



Breakthrough! 
   2006 



Montréal 
Toronto 

Bengio 

Hinton 
Le Cun 
New York 

•  Hinton, Osindero & Teh 
« A Fast Learning 
Algorithm for Deep 
Belief Nets », Neural 
Computation, 2006 

•  Bengio, Lamblin, 
Popovici, Larochelle 
« Greedy Layer-Wise 
Training of Deep 
Networks », NIPS’2006 

•  Ranzato, Poultney, 
Chopra, LeCun 
« Efficient Learning of 
Sparse Representations 
with an Energy-Based 
Model », NIPS’2006 

2006: The Deep Breakthrough 



Deep training 

… input 



Layer-Wise Unsupervised Pre-training 

… 

… 

input 

features 



Layer-Wise Unsupervised Pre-training 

… 

… 

… 

input 

features 

reconstruction 
of input = 

? 
… input 



Layer-Wise Unsupervised Pre-training 

… 

… 

input 

features 



Layer-Wise Unsupervised Pre-training 

… 

… 

input 

features 

… More abstract 
features 



… 

… 

input 

features 

… More abstract 
features 

reconstruction 
of features = 

? 
… … … … 

Layer-Wise Unsupervised Pre-training 



… 

… 

input 

features 

… More abstract 
features 

Layer-Wise Unsupervised Pre-training Layer-Wise Unsupervised Pre-training 



Layer-Wise Unsupervised Pre-training 

… 

… 

input 

features 

… More abstract 
features 

… 
Even more abstract 

features 



Supervised Fine-Tuning 

… 

… 

input 

features 

… More abstract 
features 

… 
Even more abstract 

features 

Output 
f(X) six 

Target 
Y 

two! = 
? 



Stacking Auto-Encoders 



Palette of Tricks to Train Energy-
Based Models 
 Partition function expensive (vocab.) or intractable 

ú  Contrastive Divergence 
ú  PCD  / SML      + MCMC tricks 

�  Tempering 
�  Mean-field / variational, etc. 

ú  (regularized) Score Matching / denoising 
ú  Sparse coding / Sparse Predictive Decomposition 
ú  Ratio Matching 
ú  Pseudo-likelihood 
ú  Ranking / margin-based criteria 
ú  Noise contrastive estimation 

§  Most rely on + vs – examples contrast 
See my book / review paper (F&TML 2009): Learning Deep Architectures for AI 



Sparse Auto-Encoders & Sparse Coding 

§  Penalty on the representation to achieve 
sparsity. 

§  Stacked sparse auto-encoders 
successfully used by Andrew Ng’s group 
at Stanford (e.g. ICML 2011) 

§  Used by Google in their Google Goggles 
vision system 

§  Sparse coding (recently stacked as well) 
§  Sparse Predictive Decomposition (LeCun) 



Denoising Auto-Encoder 
(Vincent et al 2008, 2010) 

§  Stochastically corrupt the input 
§  Reconstruction target = clean input 

Clean input x Corrupted input z 

Code h=tanh(b+Wz) 

Reconstruction r=tanh(c+W’h) 

Reconstruction error 



Stacked Denoising Auto-
Encoders 

•  No partition function, 
can measure training 
criterion 

•  Encoder & decoder:       
any parametrization 

•  As good or better than 
RBMs for feature 
learning  

•  = regularized score 
matching 

Infinite MNIST 



Unsupervised and Transfer Learning 
Challenge: 1st Place in Final Phase 

Raw data 

1 layer 2 layers 

4 layers 

3 layers 

ICML’2011 
workshop 
on UTL 



Contractive Auto-Encoders 

Training criterion: 
 

wants contraction in all 
directions 

cannot afford contraction 
in manifold directions 

•  Few active units 
represent the active 
subspace (local chart 

•  Jacobian’s spectrum is 
peaked = local low-
dimensional 
representation / relevant 
factors 



Manifold Tangent Classifier (NIPS 2011) 
•  Leading singular vectors on MNIST, CIFAR-10, RCV1: 

•  Knowledge-free MNIST: 0.81% error 
 



Unsupervised Learning: 
Disentangling Factors of Variation 
•  (Goodfellow et al NIPS’2009): some hidden 

units more invariant (with more depth) to input 
geometry variations 

•  (Glorot et al ICML’2011): some hidden units 
specialize on one aspect (domain) while others 
on another (sentiment) 

•  We don’t want invariant representations 
because it is not clear to what aspects, but 
disentangling factors would help a lot 

•  Sparse/saturated units seem to help 
•  Why? 
•  How to train more towards that objective? 



Recent Deep Learning Highlights 

•  Google Goggles uses stacked sparse auto-
encoders (Hartmut Neven @ ICML 2011) 

•  UofT breaks old accuracy ceiling in TIMIT 
phoneme detection 

•  Stanford breaks records in video / gesture 
classification 

•  NYU breaks records in traffic sign class 
•  Montreal wins Unsupervised & Transfer Learning 

Challenge 



Conclusions 

•  Deep Learning: powerful arguments & 
generalization principles 

•  Unsupervised Feature Learning is crucial: 
many new algorithms and applications in 
recent years 

•  DL particularly suited for multi-task 
learning, transfer learning, domain 
adaptation, self-taught learning, and semi-
supervised learning with few labels 



http://deeplearning.net/software/theano : numpy à GPU 
 

http://deeplearning.net 


