
From	Deep	Learning	of	Disentangled	

Representa4ons	to	Higher-Level	

Cogni4on	
Yoshua	Bengio,	October	24th,	2017	

University	of	Amsterdam	
	

S@ll	Far	from	Human-Level	AI	

•  Industrial	successes	mostly	based	on	
supervised	learning	

•  Learning	superficial	clues,	not	generalizing	
well	enough	outside	of	training	contexts,	easy	
to	fool	trained	networks:		
– Current	models	cheat	by	picking	on	surface	
regulari@es	

The	need	for	predic@ve	
causal	modeling:	rare	&	

dangerous	states	
•  Example:	autonomous	vehicles	in	

near-accident	situa@ons	
•  Current	supervised	learning	may	

not	handle	well	these	cases	
because	they	are	too	rare	(not	
enough	data)	

•  It	would	be	even	worse	with	current	RL	(sta@s@cal	inefficiency)	
•  Long-term	objec@ve:	develop	beWer	predic@ve	models	of	the	world	able	to	

generalize	in	completely	unseen	scenarios,	but	it	does	not	seem	reasonable	
to	model	the	sequence	of	future	states	in	all	their	details	

•  Human	drivers:	no	need	to	die	a	thousand	deaths	

Deep	Genera@ve	Models	&	GANs	
•  Simula@on	
•  Filling-in	missing	data	
•  Genera@ng	text	from	speech,	speech	from	text,	
image	2	image	

•  Inpain@ng,	denoising,	super-resolu4on	
•  Art,	etc.	

4	

Ledig	et	al.	2017	

Deep	Unsupervised	Learning	Takes	off	with	
GANs	(NIPS’2014)		

•  Progress	in	unsupervised	genera@ve	neural	
nets	allows	them	to	synthesize	a	diversity	
images,	sounds	and	text	imita@ng	
unlabeled	images,	sounds	or	text	

5	

Generator	
Network	

Discriminator	
Network	

Fake	
Image	

Real	
Image	

Training	
Set	

Random	
Vector	

Random	
Index	

Text	2	Image,	Coloriza@on	

6	

Lucy	Li	

Zhang	et	al.	2017	

Image	2	Image	

7	

Introduction
Image → Image

GANs

Isola	et	al.	2016	

What’s Missing?

Humans	outperform	machines	at	
autonomous	learning	

•  Humans	are	very	good	at	
unsupervised	learning,	e.g.	
a	2	year	old	knows	intui@ve	
physics	

•  Babies	construct	an	
approximate	but	sufficiently	
reliable	model	of	physics,	
how	do	they	manage	that?	
Note	that	they	interact	
with	the	world,	not	just	
observe	it.	

What’s Missing?

Learning	Mul@ple	Levels	of	Abstrac@on	

•  The	big	payoff	of	deep	learning	is	to	allow	learning	
higher	levels	of	abstrac@on	

•  Higher-level	abstrac@ons	disentangle	the	
factors	of	varia4on,	which	allows	much	easier	
generaliza@on	and	transfer	

11	

How	to	Discover	Good	Representa@ons	

•  How	to	discover	abstrac@ons?		
•  What	is	a	good	representa@on?	
•  Need	clues	to	disentangle	the	underlying	
factors	
– Spa@al	&	temporal	scales	
– Marginal	independence	
– Controllable	factors	

12	

Ac@ng	to	Guide		
Representa@on	Learning	

&	Disentangling	

•  Some	factors	(e.g.	objects)	correspond	to	

‘independently	controllable’	aspects	of	the	world	

•  Can	only	be	discovered	by	ac>ng	in	the	world	

7/17

Independently Controllable Features

Discrete Case Objective Function

Proposition

“Latent properties” can be controlled independently from other
“things” in the environment

Discrete case, � 2 {1, ..,N}, define selectivity:

NX

k=1

E
(s

t

,a
t

,s
t+1

)

2

4⇡
k

(a
t

|s
t

)
f

k

(s
t+1

)� f

k

(s
t

)P
k

0
|f
k

0(s
t+1

)� f

k

0(s
t

)|

3

5

Note: this is an objective, not a constraint (e.g. Whitney et al., 2016)

E. Bengio, J. Pondard, M. Sarfati, V. Thomas et al. Independently Controllable Features

In order to quantify the change in fk when actions are taken according to ⇡k, we define the selectivity of a feature as:

sel(s, a, k) = Es0⇠Pa
ss0


|fk(s0)� fk(s)|P
k0 |fk0

(s0)� fk0
(s)|

�
(1)

where s,s0 are successive raw state representations (e.g. pixels), a is the action, Pa
ss0 is the environment’s transition distribution from

s to s0 under action a. The normalization by the change in all features means that the selectivity of fk is maximal when only that

single feature changes as a result of some action.

By having an objective that maximizes selectivity and minimizes the autoencoder objective, we can ensure that the features learned
can both reconstruct the data and recover independently controllable factors. Hence, we define the following objective, which can be
minimized via stochastic gradient descent:

Es[
1
2 ||s� g(f(s))||22]| {z }
reconstruction error

� �
X

k

Es[

X

a

⇡k(a|s) log sel(s, a, k)]

| {z }
disentanglement objective

(2)

Here one can think of log sel(s, a, k) as the reward signal Rk(s, a) of a control problem, and the expected reward Ea⇠⇡k [Rk] is
maximized by finding the optimal set of policies ⇡k.

Note that it is also possible to have directed selectivity: by not taking the absolute value of the numerator of (1) (and replacing log sel
with log(1+sel) in (2)), the policies must learn to increase the learned latent feature rather than simply change it. This may be useful
if the policy to gradually increase a feature is distinct from the policy that decreases it.

2.3 A first toy problem

Consider the simple environment described in Figure 1(a): the agent sees a 2 ⇥ 2 square of adjacent cells in the environment, and
has 4 actions that move it up, down, left or right. An autoencoder with directed selectivity (see Figure 1(c,d)) learns latent features
that map to the (x, y) position of the square in the input space, without ever having explicitly access to these values, and while
reconstructing the input properly. An autoencoder without selectivity also reconstructs the input properly but without learning these
two latent (x, y) features explicitly.

In this setting f , g and ⇡ share some of their parameters. We use the following architecture: f has two 16⇥3⇥3 ReLU convolutional
layers, followed by a fully connected ReLU layer of 32 units, and a tanh layer of n = 4 features; g is the transpose architecture of f ;
⇡k is a softmax policy over 4 actions, computed from the output of the ReLU fully connected layer.

(a) (b) (c) (d)

Figure 1: (a) & (b) A simple environment with 4 actions that push a square left, right, up or down. (a) is an example ground truth,
(b) is the reconstruction of the model trained with selectivity. (c) The slope of a linear regression of the true features (the real x
and y position of the agent) as a function of each latent feature. White is no correlation, blue and red indicate strong negative or
positive slopes respectively. We can see that features 0 and 1 recover y and features 2 and 3 recover x. (d) Representation of the
learned policies. Each row is a policy ⇡k, each column corresponds to an action (left/right/up/down). Each cell (k, i) represents the
probability of action i in policy ⇡k; We can see that features 0 and 1 correspond to going down and up (�y/+y) and features 2 and 3
correspond to going right and left (+x/�x).

2.4 A slightly harder toy problem

In the next experiments, we aim to generalize the model above in a slightly more complex environment. Instead of having f and ⇡k

parametrized by the same parameters, we now introduce a different set of parameters for each policy and for the encoder, so that each
policy can be learned separately.

2

Independently Controllable Factors
(Emmanuel Bengio, Valentin Thomas, Joelle Pineau, Doina
Precup, Yoshua Bengio, 2017)
(Valentin Thomas, Jules Pondard, Emmanuel Bengio, Marc
Sarfati, Philippe Beaudoin, Marie-Jean Meurs, Joelle Pineau,
Doina Precup, Yoshua Bengio, 2017)
•  Jointly	train	for	each	aspect	(factor)	

•  A	policy									(which	tries	to	selec@vely	change	just	that	factor)	
•  A	representa@on	(which	maps	state	to	value	of	factor)	

	
•  Op@mize	both	policy								and	representa@on									to	minimize	

14	

1 Introduction

Whether in static or dynamic environments, decision making for real world problems is often confronted with the hard challenge of
finding a “good” representation of the problem. In the context of supervised or semi-supervised learning, it has been argued (Bengio,
2009) that good representations separate out underlying explanatory factors, which may be causes of the observed data. In such
problems, feature learning often involves mechanisms such as autoencoders (Hinton & Salakhutdinov, 2006), which find latent
features that explain the observed data. In interactive environments, the temporal dependency between successive observations
creates a new opportunity to notice structure in data which may not be apparent using only observational studies. The need to
experiment in order to discover causal structures has already been well explored in psychology (e.g. Gopnik & Wellman (in press)).
In reinforcement learning, several approaches explore mechanisms that push the internal representations of learned models to be
“good” in the sense that they provide better control (see Sec. 4).

We propose and explore a more direct mechanism, which explicitly links an agent’s control over its environment with its internal
feature representations. Specifically, we hypothesize that some of the factors explaining variations in the data correspond to aspects
of the world which can be controlled by the agent. For example, an object could be pushed around or picked up independently of
others. In such a case, our approach aims to extract object features from the raw data while learning a policy that controls precisely
these features of the data. In Sec. 2 we explain this mechanism and show experimental results in its simplest instantiation. In Sec. 3
we discuss how this principle could be applied more generally, and what are the research challenges that emerge.

2 Independently controllable features

To make the above intuitions concrete, assume that there are factors of variation underlying the observations coming from an inter-
active environment that are “independently controllable”. That is, for each of these factors of variation, there exists a policy which
will modify that factor only, and not the others. For example, the object behind a set of pixels could be acted on independently from
other objects, which would explain variations in its pose and scale when we move it around. The object in this case is a “factor of
variation”. What makes discovering and mapping such factors into features tricky is that the factors are not explicitly observed. Our
goal is to learn these factors, which we call independently controllable features, along with policies that control them. While these
may seem strong assumptions about the nature of the environment, our point of view is that they are similar to regularizers meant to
make a difficult learning problem better constrained.

There are many possible ways to express the desire to learn independently controllable features as an objective. Section 2.2 proposes
such an objective for a simple scenario. Section 2.3 illustrates the effect of this objective when all the features of the environment are
simple and controllable by the agent. Section 2.4 explores a slightly harder scenario in which there is redundancy and policies are
learned through a reinforcement learning algorithm.

2.1 Autoencoders

Our approach builds on the familiar framework of autoencoders (Hinton & Salakhutdinov, 2006), which are defined as a pair of
function approximators f, g with parameters ✓ such that f : X ! H maps the input space to some latent space H , and g : H ! X
maps back to the input space X ⇢ Rd. Autoencoders are trained to minimize the discrepancy between x and g(f(x)), a.k.a. the
reconstruction error, e.g.,:

min

✓

1
2kx� g(f(x))k22

We call f(x) = h 2 H ⇢ Rn the latent feature representation of x, with n features.

It is common to assume that n ⌧ d. This causes f and g to perform dimensionality reduction of X , i.e. compression, since there
is a dimension bottleneck through which information about the input data must pass. Often, this bottleneck forces the optimization
procedure to uncover principal factors of variation of the data on which they are trained. However, this does not necessarily imply that
the different dimensions of h = f(x) are individually meaningful. In fact, note that for any bijective function r, we could obtain the
same reconstruction error by replacing f by r � f and g by r�1 � g, so we should not expect any form of disentangling of the factors
of variation unless some additional constraints or penalties are imposed on h. This motivates the approach we are about to present.
Specifically, we will look for policies which can separately influence one of the dimensions of h, and we will prefer representations
which make such policies possible.

2.2 Policy Selectivity

Consider the following simple scenario: we train an autoencoder f, g producing n latent features, fk, k = 1, . . . n. In tandem with
these features we train n policies, denoted ⇡k. Autoencoders can learn relatively arbitrary feature representations, but we would like
these features to correspond to controllable factors in the learner’s environment. Specifically, we would like policy ⇡k to cause a
change only in fk and not in any other features. We think of fk and ⇡k as a feature-policy pair.

1

1 Introduction

Whether in static or dynamic environments, decision making for real world problems is often confronted with the hard challenge of
finding a “good” representation of the problem. In the context of supervised or semi-supervised learning, it has been argued (Bengio,
2009) that good representations separate out underlying explanatory factors, which may be causes of the observed data. In such
problems, feature learning often involves mechanisms such as autoencoders (Hinton & Salakhutdinov, 2006), which find latent
features that explain the observed data. In interactive environments, the temporal dependency between successive observations
creates a new opportunity to notice structure in data which may not be apparent using only observational studies. The need to
experiment in order to discover causal structures has already been well explored in psychology (e.g. Gopnik & Wellman (in press)).
In reinforcement learning, several approaches explore mechanisms that push the internal representations of learned models to be
“good” in the sense that they provide better control (see Sec. 4).

We propose and explore a more direct mechanism, which explicitly links an agent’s control over its environment with its internal
feature representations. Specifically, we hypothesize that some of the factors explaining variations in the data correspond to aspects
of the world which can be controlled by the agent. For example, an object could be pushed around or picked up independently of
others. In such a case, our approach aims to extract object features from the raw data while learning a policy that controls precisely
these features of the data. In Sec. 2 we explain this mechanism and show experimental results in its simplest instantiation. In Sec. 3
we discuss how this principle could be applied more generally, and what are the research challenges that emerge.

2 Independently controllable features

To make the above intuitions concrete, assume that there are factors of variation underlying the observations coming from an inter-
active environment that are “independently controllable”. That is, for each of these factors of variation, there exists a policy which
will modify that factor only, and not the others. For example, the object behind a set of pixels could be acted on independently from
other objects, which would explain variations in its pose and scale when we move it around. The object in this case is a “factor of
variation”. What makes discovering and mapping such factors into features tricky is that the factors are not explicitly observed. Our
goal is to learn these factors, which we call independently controllable features, along with policies that control them. While these
may seem strong assumptions about the nature of the environment, our point of view is that they are similar to regularizers meant to
make a difficult learning problem better constrained.

There are many possible ways to express the desire to learn independently controllable features as an objective. Section 2.2 proposes
such an objective for a simple scenario. Section 2.3 illustrates the effect of this objective when all the features of the environment are
simple and controllable by the agent. Section 2.4 explores a slightly harder scenario in which there is redundancy and policies are
learned through a reinforcement learning algorithm.

2.1 Autoencoders

Our approach builds on the familiar framework of autoencoders (Hinton & Salakhutdinov, 2006), which are defined as a pair of
function approximators f, g with parameters ✓ such that f : X ! H maps the input space to some latent space H , and g : H ! X
maps back to the input space X ⇢ Rd. Autoencoders are trained to minimize the discrepancy between x and g(f(x)), a.k.a. the
reconstruction error, e.g.,:

min

✓

1
2kx� g(f(x))k22

We call f(x) = h 2 H ⇢ Rn the latent feature representation of x, with n features.

It is common to assume that n ⌧ d. This causes f and g to perform dimensionality reduction of X , i.e. compression, since there
is a dimension bottleneck through which information about the input data must pass. Often, this bottleneck forces the optimization
procedure to uncover principal factors of variation of the data on which they are trained. However, this does not necessarily imply that
the different dimensions of h = f(x) are individually meaningful. In fact, note that for any bijective function r, we could obtain the
same reconstruction error by replacing f by r � f and g by r�1 � g, so we should not expect any form of disentangling of the factors
of variation unless some additional constraints or penalties are imposed on h. This motivates the approach we are about to present.
Specifically, we will look for policies which can separately influence one of the dimensions of h, and we will prefer representations
which make such policies possible.

2.2 Policy Selectivity

Consider the following simple scenario: we train an autoencoder f, g producing n latent features, fk, k = 1, . . . n. In tandem with
these features we train n policies, denoted ⇡k. Autoencoders can learn relatively arbitrary feature representations, but we would like
these features to correspond to controllable factors in the learner’s environment. Specifically, we would like policy ⇡k to cause a
change only in fk and not in any other features. We think of fk and ⇡k as a feature-policy pair.

1

1 Introduction

Whether in static or dynamic environments, decision making for real world problems is often confronted with the hard challenge of
finding a “good” representation of the problem. In the context of supervised or semi-supervised learning, it has been argued (Bengio,
2009) that good representations separate out underlying explanatory factors, which may be causes of the observed data. In such
problems, feature learning often involves mechanisms such as autoencoders (Hinton & Salakhutdinov, 2006), which find latent
features that explain the observed data. In interactive environments, the temporal dependency between successive observations
creates a new opportunity to notice structure in data which may not be apparent using only observational studies. The need to
experiment in order to discover causal structures has already been well explored in psychology (e.g. Gopnik & Wellman (in press)).
In reinforcement learning, several approaches explore mechanisms that push the internal representations of learned models to be
“good” in the sense that they provide better control (see Sec. 4).

We propose and explore a more direct mechanism, which explicitly links an agent’s control over its environment with its internal
feature representations. Specifically, we hypothesize that some of the factors explaining variations in the data correspond to aspects
of the world which can be controlled by the agent. For example, an object could be pushed around or picked up independently of
others. In such a case, our approach aims to extract object features from the raw data while learning a policy that controls precisely
these features of the data. In Sec. 2 we explain this mechanism and show experimental results in its simplest instantiation. In Sec. 3
we discuss how this principle could be applied more generally, and what are the research challenges that emerge.

2 Independently controllable features

To make the above intuitions concrete, assume that there are factors of variation underlying the observations coming from an inter-
active environment that are “independently controllable”. That is, for each of these factors of variation, there exists a policy which
will modify that factor only, and not the others. For example, the object behind a set of pixels could be acted on independently from
other objects, which would explain variations in its pose and scale when we move it around. The object in this case is a “factor of
variation”. What makes discovering and mapping such factors into features tricky is that the factors are not explicitly observed. Our
goal is to learn these factors, which we call independently controllable features, along with policies that control them. While these
may seem strong assumptions about the nature of the environment, our point of view is that they are similar to regularizers meant to
make a difficult learning problem better constrained.

There are many possible ways to express the desire to learn independently controllable features as an objective. Section 2.2 proposes
such an objective for a simple scenario. Section 2.3 illustrates the effect of this objective when all the features of the environment are
simple and controllable by the agent. Section 2.4 explores a slightly harder scenario in which there is redundancy and policies are
learned through a reinforcement learning algorithm.

2.1 Autoencoders

Our approach builds on the familiar framework of autoencoders (Hinton & Salakhutdinov, 2006), which are defined as a pair of
function approximators f, g with parameters ✓ such that f : X ! H maps the input space to some latent space H , and g : H ! X
maps back to the input space X ⇢ Rd. Autoencoders are trained to minimize the discrepancy between x and g(f(x)), a.k.a. the
reconstruction error, e.g.,:

min

✓

1
2kx� g(f(x))k22

We call f(x) = h 2 H ⇢ Rn the latent feature representation of x, with n features.

It is common to assume that n ⌧ d. This causes f and g to perform dimensionality reduction of X , i.e. compression, since there
is a dimension bottleneck through which information about the input data must pass. Often, this bottleneck forces the optimization
procedure to uncover principal factors of variation of the data on which they are trained. However, this does not necessarily imply that
the different dimensions of h = f(x) are individually meaningful. In fact, note that for any bijective function r, we could obtain the
same reconstruction error by replacing f by r � f and g by r�1 � g, so we should not expect any form of disentangling of the factors
of variation unless some additional constraints or penalties are imposed on h. This motivates the approach we are about to present.
Specifically, we will look for policies which can separately influence one of the dimensions of h, and we will prefer representations
which make such policies possible.

2.2 Policy Selectivity

Consider the following simple scenario: we train an autoencoder f, g producing n latent features, fk, k = 1, . . . n. In tandem with
these features we train n policies, denoted ⇡k. Autoencoders can learn relatively arbitrary feature representations, but we would like
these features to correspond to controllable factors in the learner’s environment. Specifically, we would like policy ⇡k to cause a
change only in fk and not in any other features. We think of fk and ⇡k as a feature-policy pair.

1

1 Introduction

Whether in static or dynamic environments, decision making for real world problems is often confronted with the hard challenge of
finding a “good” representation of the problem. In the context of supervised or semi-supervised learning, it has been argued (Bengio,
2009) that good representations separate out underlying explanatory factors, which may be causes of the observed data. In such
problems, feature learning often involves mechanisms such as autoencoders (Hinton & Salakhutdinov, 2006), which find latent
features that explain the observed data. In interactive environments, the temporal dependency between successive observations
creates a new opportunity to notice structure in data which may not be apparent using only observational studies. The need to
experiment in order to discover causal structures has already been well explored in psychology (e.g. Gopnik & Wellman (in press)).
In reinforcement learning, several approaches explore mechanisms that push the internal representations of learned models to be
“good” in the sense that they provide better control (see Sec. 4).

We propose and explore a more direct mechanism, which explicitly links an agent’s control over its environment with its internal
feature representations. Specifically, we hypothesize that some of the factors explaining variations in the data correspond to aspects
of the world which can be controlled by the agent. For example, an object could be pushed around or picked up independently of
others. In such a case, our approach aims to extract object features from the raw data while learning a policy that controls precisely
these features of the data. In Sec. 2 we explain this mechanism and show experimental results in its simplest instantiation. In Sec. 3
we discuss how this principle could be applied more generally, and what are the research challenges that emerge.

2 Independently controllable features

To make the above intuitions concrete, assume that there are factors of variation underlying the observations coming from an inter-
active environment that are “independently controllable”. That is, for each of these factors of variation, there exists a policy which
will modify that factor only, and not the others. For example, the object behind a set of pixels could be acted on independently from
other objects, which would explain variations in its pose and scale when we move it around. The object in this case is a “factor of
variation”. What makes discovering and mapping such factors into features tricky is that the factors are not explicitly observed. Our
goal is to learn these factors, which we call independently controllable features, along with policies that control them. While these
may seem strong assumptions about the nature of the environment, our point of view is that they are similar to regularizers meant to
make a difficult learning problem better constrained.

There are many possible ways to express the desire to learn independently controllable features as an objective. Section 2.2 proposes
such an objective for a simple scenario. Section 2.3 illustrates the effect of this objective when all the features of the environment are
simple and controllable by the agent. Section 2.4 explores a slightly harder scenario in which there is redundancy and policies are
learned through a reinforcement learning algorithm.

2.1 Autoencoders

Our approach builds on the familiar framework of autoencoders (Hinton & Salakhutdinov, 2006), which are defined as a pair of
function approximators f, g with parameters ✓ such that f : X ! H maps the input space to some latent space H , and g : H ! X
maps back to the input space X ⇢ Rd. Autoencoders are trained to minimize the discrepancy between x and g(f(x)), a.k.a. the
reconstruction error, e.g.,:

min

✓

1
2kx� g(f(x))k22

We call f(x) = h 2 H ⇢ Rn the latent feature representation of x, with n features.

It is common to assume that n ⌧ d. This causes f and g to perform dimensionality reduction of X , i.e. compression, since there
is a dimension bottleneck through which information about the input data must pass. Often, this bottleneck forces the optimization
procedure to uncover principal factors of variation of the data on which they are trained. However, this does not necessarily imply that
the different dimensions of h = f(x) are individually meaningful. In fact, note that for any bijective function r, we could obtain the
same reconstruction error by replacing f by r � f and g by r�1 � g, so we should not expect any form of disentangling of the factors
of variation unless some additional constraints or penalties are imposed on h. This motivates the approach we are about to present.
Specifically, we will look for policies which can separately influence one of the dimensions of h, and we will prefer representations
which make such policies possible.

2.2 Policy Selectivity

Consider the following simple scenario: we train an autoencoder f, g producing n latent features, fk, k = 1, . . . n. In tandem with
these features we train n policies, denoted ⇡k. Autoencoders can learn relatively arbitrary feature representations, but we would like
these features to correspond to controllable factors in the learner’s environment. Specifically, we would like policy ⇡k to cause a
change only in fk and not in any other features. We think of fk and ⇡k as a feature-policy pair.

1

14/17

Independently Controllable Features

Predict e↵ect of a cause

h|{z}
(0.4, 13.1)

ĥ

0|{z}
(�4.6, �1.9)

= h + dh

right| {z }
(5, �5)

+2 · dh
down| {z }

(�10, �10)

Encoder Decoder

E. Bengio, J. Pondard, M. Sarfati, V. Thomas et al. Independently Controllable Features

Predict the effect of actions in
attribute space
Given	ini@al	state	and	set	of	ac@ons,	predict	new	aWribute	values	
and	the	corresponding	reconstructed	images	

15	

Given two states, recover the causal
actions leading from one to the other

16	

15/17

Independently Controllable Features

Recover the cause

h

1|{z}
(0.4, 13.1)

h

2|{z}
(5.9, �11.6)

dh = (5.5, �24.8) ⇡ 2 · dh
down

+ 3 · dh
right

Encoder Encoder

E. Bengio, J. Pondard, M. Sarfati, V. Thomas et al. Independently Controllable Features

Continuous Set of Attributes: Attribute
Embeddings = variable name

17	
9/17

Independently Controllable Features

From discrete to continuous

Principle

We map controllable factors to embeddings � instead of
coordinates k (one policy network). Discovers by itself the
relevant number of features.

� = G (h, z) 2 Rn is now generated from h = f (s), z ⇠ N (0, 1):

E
(s

t

,a
t

,s
t+1

)

E
�

2

6664
⇡�(at |st)

A

�
f (s

t+1

)� f (s
t

),�
�

E
�0
=G(h

t

,z 0)


|A
�
f (s

t+1

)� f (s
t

),�0
�
|
�

3

7775

How much the value of property � changed relatively to other
properties.

E. Bengio, J. Pondard, M. Sarfati, V. Thomas et al. Independently Controllable Features

Continuous Attributes Model:
Computational Graph

Total	objec@ve	=	autoencoder	loss	+	selec@vity	loss	

18	

10/17

Independently Controllable Features

Computation graph

s

t

h

t

ŝ

t

g

f

env

s

t+1

h

t+1

⇡�(·|st)

�

z

t

⇠ U

A(h
t+1

� h

t

,�)

a

t

env

L
ae

L
sel

O↵-policy A2C/PG method on a batch of �

E. Bengio, J. Pondard, M. Sarfati, V. Thomas et al. Independently Controllable Features

What’s Wrong with
our Unsupervised

Training Objectives?

Abstraction Challenge for Unsupervised
Learning

•  Why	is	modeling	P(acous@cs)	so	much	worse	than	modeling	
P(acous@cs	|	phonemes)	P(phonemes)?	

•  Why	are	our	current	models	not	able	to	figure	out	phonemes	
AND	model	their	distribu@on	separately?	

•  May	have	to	do	with	the	different	@me	scales	and	objec@ve	
func@on	at	the	wrong	level	of	abstrac@on:		
•  log-likelihood	focuses	most	of	its	value	on	the	vast	majority	of	bits	

characterizing	the	acous4c	details	(instead	of	the	higher-level	linguis4c	

structure)	

•  it	would	be	good	to	just	predict	the	future	in	in	abstract	space	rather	
than	in	the	pixel	space	

The Consciousness Prior
Bengio 2017, arXiv:1709.08568
•  Conscious	thoughts	are	very	low-dimensional	objects	compared	

to	the	full	state	of	the	(unconscious)	brain	
•  Yet	they	have	unexpected	predic@ve	value	or	usefulness	

à	strong	constraint	or	prior	on	the	underlying	representa@on	

21	

•  Thought:	composi@on	of	few	selected	factors	/	concepts	
at	the	highest	level	of	abstrac@on	of	our	brain	

•  Richer	than	but	closely	associated	with	short	verbal	
expression	such	as	a	sentence	or	phrase,	a	rule	or	fact	
(link	to	classical	symbolic	AI	&	knowledge	representa@on)	

How to select a few
relevant abstract

concepts in a
thought?

On the Relation between Abstraction
and Attention

•  AWen@on	allows	to	focus	on	a	few	elements	out	of	a	large	set	
•  Sok-aWen@on	allows	this	process	to	be	trainable	with	gradient-

based	op@miza@on	and	backprop	

23	

AWen@on	focuses	on	a	few	
appropriate	abstract	or	concrete	
elements	of	mental	
representa@on		

The Attention Revolution in Deep Learning

•  AKen4on	mechanisms	exploit	GATING	units,	have	unlocked	a	
breakthrough	in	machine	transla@on:		

	 	Neural	Machine	Transla@on	
	
	
	
	
	
	
	
	

•  Now	in	Google	Translate:		

24	

Lower-level	

Higher-level	
Sokmax	over	lower		
loca@ons	condi@oned	
on	context	at	lower	and	
higher	loca@ons		

Human	
evalua@on	

human	
transla@on	

n-gram	
transla@on	

current	
neural	net	
transla@on	

(ICLR’2015)	

The Consciousness Prior
Bengio 2017, arXiv:1709.08568
•  2	levels	of	representa@on:		

•  High-dimensional	abstract	representa@on	space	(all	known	
concepts	and	factors)	h	

•  Low-dimensional	conscious	thought	c,	extracted	from	h	

25	

•  Example:	c	is	a	predic@on	about	some	future	event,	
involves	current	variables	and	their	values,	and	a	
predic@on	about	a	future	variable	

•  Predictor	needs	to	refer	to	a	predicted	variable	by	NAME	

(e.g.	embedding)	so	as	to	be	able	to	separate	the	name	
from	the	value	and	recover	the	predic@on	when	a	future	
event	makes	the	variable	observed	(at	a	different	value).	

The Consciousness Prior
Bengio 2017, arXiv:1709.08568
•  Conscious	predic@on	over	aWended	variables	A	(sok	aWen@on)	

	
•  How	to	train	the	aWen@on	mechanism	which	
				selects	which	variables	to	predict?	
•  (predicted	variables,	condi@oning	variables)	=	rule	
					Connec@on	to	classical	symbolic	AI	

26	

AWen@on	weights	
Earlier	conscious	
state	Predicted	value	

Representing Agents, Objects, Policies

The	controllable	factors	idea	works	on	a	small	scale:	ongoing	work	
to	expand	this	to	more	complex	environments	
	
•  Expand	to	sequences	of	ac@ons	and	use	them	to	define	op@ons	
•  No@on	of	objects	and	aWributes	naturally	falls	out	
•  Extension	to	non-sta@c	set	of	objects:	types	&	instances	
•  Objects	are	groups	of	controllable	features:	by	whom?	Agents	

•  Factors	controlled	by	other	agents;	mirror	neurons	
•  Because	the	set	of	objects	may	be	unbounded,	we	need	to	learn	

to	represent	policies	themselves,	and	the	defini@on	of	an	object	
is	bound	to	the	policies	associated	with	it	(for	using	it	and	
changing	its	aWributes)	

27	

Research Program Towards Higher-
Level Deep Learning

•  Build	a	series	of	gradually	more	complex	environments	

•  Design	training	frameworks	for	learning	agents	to	discover	the	
no@on	of	objects,	aWributes,	types,	other	agents,	rela@ons,	the	
combinatorial	space	of	policies,	etc�	

•  Associate	all	these	concepts	to	linguis@c	construc@ons:	learn	
seman@cally	grounded	linguis@c	expressions.	
• Words	are	clues	of	higher-level	abstrac@ons	
•  Language	is	an	input/output	modality	

28	

Ongoing Research:
DL for AI
neural nets à cognition
•  Learn	more	abstract	representa@ons	which	capture	causality	
•  Independently	controllable	factors:	some	abstract	factors	are	

controllable	aspects	of	the	environment,	disentangled	
•  Jointly	learn	condi4onal	exploratory	policies	with	intrinsic	

rewards	+	associated	factors	

•  Naturally	gives	rise	to	the	no@on	of		
	objects,	aKributes	&	agents	

•  Natural	language	&	consciousness	prior:	other	
					clue	about	abstract	representa@ons	
•  Unsupervised	RL	research,	performed	in	simulated	environments	

29	

The Future of Deep AI

•  Scien@fic	progress	is	slow	and	con@nuous,	but	social	and	
economic	impact	can	be	disrup@ve	

•  Many	fundamental	research	ques@ons	are	in	front	of	us,	with	
much	uncertainty	about	when	we	will	crack	them,	but	we	will	

•  Importance	of	con@nued	investment	in	basic	&	exploratory	AI	
research,	for	both	prac@cal	(recruitment)	short-term	and	long-
term	reasons		

•  Let	us	con@nue	to	keep	the	field	open	and	fluid,	be	mindful	of	
social	impacts,	and	make	sure	AI	will	bloom	for	the	benefit	of	all	

30	

Montreal	Ins4tute	for	

Learning	Algorithms	

