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OLkimate Groals
o Al

Needs knowledge
Needs Iearning

Needs generalization

Needs ways to fight the curse of dimensionality

Needs disentangling the underlying explanatory factors




Representation Learning

e Good features essential for successful ML: 90% of effort

raw represented MACHINE
input > by téreserd ml | | EARNING
data features

 Handcrafting features vs learning them

e Good representation?

* guesses
the features / factors / causes
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Different object types represented in the
same space
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Learn ®(+) and 9,-) to optimize precision@k.



DEQF Represehka&i.oh Learning

Learn multiple levels of representation

of increasing complexity/abstraction i
* theory: exponential gain Ny e—
X

* brains are deep
e cognition is compositional
e Better mixing (Bengio et al, ICML 2013)

e They work! SOTA on industrial-scale Al tasks
(object recognition, speech recognition,
language modeling, music modeling)



Learning mut&ipte levels BN
0{ TQPTQSQV\EQ&I:OV\ (Lee, Largman, Pham & Ng, NS 209)

) (Lee, Grosse, Ranganath & Ng, ICML 2009)
Successive model layers learn deeper intermediate representations

High-level
g Layer 3 linguistic representations

Parts combine
to form objects

A LA TNALY P
{\\ SEAR I L A | Layer 1

Prior: underlying factors & concepts compactly expressed w/ multiple levels of abstraction




subroutine1 includes gybroutine? includes
subsub1 code and  sybsub2 code and
subsub2 code and  sybsub3 code and

subsubsub1 code subsubsub3 code and ...

\\ /

main

“Shallow” computer program
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bsubsub] subsubsub?

subsubsu //////////fBbS“bSUbs
subsub1 subsub2 subsub3

sub //jgbZ sub3
\ . /

“Deep” computer program



'Dee.p Architectures are Mo»re
Expre.sswe.

Theoretical arguments:

=

Logic gates

2 layers of = Formal neurons = universal opproximo‘ror
RBF units

RBMs & ou’ro encoders = universal approximat;
Theorems on advantage of depth:

(Hastad et al 86 & 91, Bengio et al 2007, Bengio &

Delalleau 2011, Braverman 2011)

Some functions compactly
represented with k layers may
require exponential size with 2
layers
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Ability to train deep architectures by
using layer-wise unsupervised
learning, whereas previous purely
supervised attempts had failed

Unsupervised feature learners:
* RBMs

e  Auto-encoder variants

Sparse coding variants
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Stacking Single-Layer Learners

e One of the big ideas from 2006: layer-wise unsupervised feature

learning : OOOOO00) by,

! RBM '
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©000000 * ! GO0 x OO00000) x

RBM for x RBM for hy RBM for y and hy

Stacking Restricted Boltzmann Machines (RBM) - Deep Belief Network (DBN)

Stacking regularized auto-encoders - deep neural nets
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Deep Learning in the News

Che New Pork Cin

: m I m E m Monday, June 25,2012  Last Update: 11:50 PMET
Researcher Dreams Up Machines
That Learn Without Humans

06.27.13 ING i DIRECT Folow Us [ :
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Scientists See Promise 1n

Deep-Learning Programs
John Markoff
November 23%2012
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Google taps U
of T professor

Yoshua Bengio. /Image: C

to teach
context to
computers ™ The Man Behind the Google Brain: Andrew Ng o JOMNATKOFE 12 s s
03.11.13 A Google research team, led by Andrew Y. Ng, above, and Jeff
and he Ql]eS OI' he NeW Al Dean, created a neural network of 16,000 processors that
12 reflected human obsession with Internet felines.
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The dramatic impact of Dee

Learhing o Speech Recognition

Word error rate on Switchboard
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Some Applications of DL

Language Modeling (Speech Recognition, Machine Translation)
Acoustic Modeling (speech recognition, music modeling)

NLP syntactic/semantic tagging (Part-Of-Speech, chunking,
Named Entity Recognition, Semantic Role Labeling, Parsing)

NLP applications: sentiment analysis, paraphrasing, question-
answering, Word-Sense Disambiguation

Object recognition in images: photo search and image search:
handwriting recognition, document analysis, handwriting
synthesis, superhuman traffic sign classification, street view
house numbers, emotion detection from faaal images roads
from satellites. ] '
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‘Dee.p Supervised Neural Nets

e Now train them even without
unsupervised pre-training:
better initialization and non-
linearities (rectifiers, maxout),
generalize well with large labeled
sets and dropout.

 Unsupervised pre-training:
rare classes, transfer, smaller

labeled sets, or as extra
regularizer.
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How do humans generalize
from very few examples?

They transfer knowledge from previous learning:
* Abstract (i.e. deep) representations

Explanatory factors
Previous learning from: unlabeled data

+ labels for other tasks
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Unsupervised and Transfer Learning
Challenge + Transfer Learning

Raw data

ICML’2011
workshop on

Unsup. &

Transfer Learning:™”|
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Undirected Models:

the Restricted Il Boltzmann Machine
[Hinton et al 2006] 42

e Latent (hidden) variables h model high-order

. h] h2 h3
dependencies

e No easy way to compute normalization &

gradient, but MCMC approximations are used

e See Bengio (2009) detailed monograph/review: ﬂ

“Learning Deep Architectures for Al”.
e See Hinton (2010)
“A practical guide to training Restricted Boltzmann Machines”



Restricted Boltzmann Machine

(RBM)
P(l’, h) — %ebTh-i-cTa:-l—hTWx _ %62"' bihi‘*‘zj cjxj+zi,j h'i,Wli,jxj

Needs to sample

examples generated ) n hidden
by the model during AR AR

training to estimate
gradient through Z,

using MCMC

x Observed



Denoising Auto-Encoder

(Vincent et al 2008)

e Alternative building-block
e Corrupt the input
e Try to reconstruct the uncorrupted input

Hidden code (representation) KL(reconstruction | raw input)

[C0O0 L.
EOROO)-— (00000 (00000
Corrupted input Raw input reconstruction

* Novel probabilistic interpretations: score matching (Vincent 2011,

Alain & Bengio ICLR 2013) or as the transition kernel of a Markov chain
(Bengio et al, NIPS 2013)



anifold Assumption

e Data concentrate near lower dimensional manifold

e many Al tasks where uniformly random configurations of inputs
are unlike real data

. fshrinking
transformation

4 “
|

raw input vector space ;
&
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Putting Probability Mass where
Structure is Plausible

e Empirical distribution: mass at
training examples

e Smoothness: spread mass around
e |nsufficient

e Guess some ‘structure’ and
generalize accordingly
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Regularized Auto-Ewncoders Learn
Salient Variations, Like non-Linear
PCA with shared parameters

..0 .(

* Minimizing reconstruction error forces to

keep variations along manifold. ®
* Regularizer wants to throw away all

variations. 9
e With both: keep ONLY sensitivity to

variations ON the manifold.
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Input Point x Tangents: locally sensitive directions (dh,/dx of active units h))

MNIST

25



ularized Auto-Encoders Learn a

9
Vector Field or a Markov Chain

Transition Diskribution

e (Bengio, Vincent & Courville, TPAMI 2013) review paper
(Alain & Bengio ICLR 2013; Bengio et al, arxiv 2013)
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Stochastic Neurons as Regqularizer:
Improving neural networks by preventing co-adaptation of

feature detectors (Hinkown ek al 2012, arXiv)

e Dropouts trick: during training multiply neuron output by
random bit (p=0.5), during test by 0.5

e Generalize denoising auto-encoders, by corrupting every layer

e \Works better with rectifiers, even better with maxout
(Goodfellow et al. ICML 2013)

e Equivalent to averaging over exponentially many architectures
* Used by Krizhevsky et al to break through ImageNet SOTA
* Also improves SOTA on CIFAR-10 (18—2>16% err)
* Knowledge-free MNIST with DBMs (.95->.79% err)
e TIMIT phoneme classification (22.7219.7% err)
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Temporal & Spatial Inputs:
Convolutional & Recurrent Nets

e Local connectivity across time/space
e Sharing weights across time/space (translation equivariance)

e Pooling (translation invariance, cross-channel pooling for learned invariances)
Input layer (S1) 4 feature maps

(Cl) 4 feature maps (S2) 6 feature maps

(C2) 6 feature maps

l sub-sampling layer l convolution layer l sub-sampling layer | fully connected MLP |

><1048 dense ‘ ‘ ‘
Xt Xt Xt

dense|

Il Recurrent nets (RNNs) can summarize
information from the past

Bidirectional RNNs also summarize
)8 information from the future



Deep / Recurrent Nets for Modeling
Sequences in Music & Language

* (Boulanger, Bengio & Vincent, ICML 2012)

Yy
* Recurrent nets + RBMs
* Acoustics = musical score h
 (Bengio, Boulanger & Pascanu, ICASSP 2013) -
* Optimization techniques for recurrent nets
X

* Symbolic sequences (music, language)
e (Pascanu, Mikolov & Bengio, ICML 2013)
* Handling longer-term dependencies

* Symbolic sequences (music, language)
29



What differences with
Neural Nets of the 90's?

e QOther kinds of hierarchies are possible (e.g. A. Yuille, D. McAllester )
e Bigger models

* Better training

e Initialization: information flow (Jacobians e-values closer to 1)
* Symmetry breaking: initialization, sparsity regularization and non-
linearities (rectifier, maxout, etc.)
e Unsupervised and multi-task learning = better transfer learning
e Larger labeled sets: the advantage increases!

e Better regularizers (dropout, injected noise, temporal coherence)
30



Deep Learning Tricks of the Trade

e Y.Bengio (2013), “Practical Recommendations for Gradient-Based
Training of Deep Architectures”

(arXiv paper or chapter of Tricks of the Trade 2013 book)
* Unsupervised pre-training
* Stochastic gradient descent and setting learning rates

* Hyper-parameters
Learning rate schedule
Early stopping
Minibatches

Parameter initialization
Number of hidden units
L1 and L2 weight decay
e Sparsity regularization

* Debugging

" How to efficiently search for hyper-parameter configurations



beeﬁ Learning Challenges
(Benglo, arxiv 1305.04-45 Deep Learning
of representations: Looking forward)

e Computational Scaling

e Optimization & Underfitting
 Approximate Inference & Sampling

e Disentangling Factors of Variation

e Reasoning & One-Shot Learning of Facts

32



Inference & Sampling

e Currently needed for unsupervised & structured output
probabilistic models, for gradient and inference

e P(h|x) intractable because of many important modes
e MAP, Variational, MCMC

* |limited to 1 or few major modes
'YV

e Approximate inference can hurt learning

(Kulesza & Pereira NIPS’2007)

e Mode mixing harder as training progresses Training updates

(Bengio et al ICML 2013) Gicious circ/b
Mixing
33



Poor Mixing: Depth to the Rescue

e Deeper representations =2 abstractions = disentangling

e E.g.reverse video bit, class bits in learned representations: easy
to Gibbs sample between modes at abstract level

e Hypotheses successfully tested:

* more abstract/disentangled representations unfold manifolds
and fill more the space

A Ppixel space A Representation space

9’s ifold 3’s manifold * 9sy B fold

> >
e can be exploited for better mixing between modes
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Space-Filling in Representation-Space

e High-probability samples fill more the convex set between them
when viewed in the learned representation-space, making the
empirical distribution more uniform and unfolding manifolds

Linear interpolation at layer 2

ﬂ

3’s manifold

9’s manifold
Linear interpolation at layer 1
o

Linear mterpolatlon in pixel space

\

9 |




Potentially HU,SQ Number of
Modes in ‘Posl:e.rmr Plh]x)

e Foreign speech utterance example, y=answer to question:
* 10 word segments

100 plausible candidates per word

10° possible segmentations
* Most configurations (999999/1000000) implausible
=» 10%° high-probability modes

e All known approximate inference scheme may break down if
the posterior has a huge number of modes

36



Denoising Auto-Encoder Marikov Chain

* P(X): true data-generating distribution
« C(X|X): corruption process

e Py, (X|X)i denoising auto-encoder trained with n examples X, X
from C(X|X)P(X) , probabilistically “inverts” corruption

o I : Markov chain over X alternating X ~ C(X|X), X ~Py, (X|X)

corrupt

C(X|X)

<2

t+2

Xt X t+1 X t+2
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Learning wikth a si.mpl.er normalization
constant, a nearly unimodal
conditional diskra)u&ioh instead of a
compiica&ed multimodal one
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Leariing with a simpl.er normalization
constant, a nearly unimodal
conditional distribution instead of a
complicated multimodal one

Thanks:
Jason Yosinski
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Leariing with a simpl.er normalization
constant, a nearly unimodal
conditional distribution instead of a
complicated multimodal one

Thanks:
Jason Yosinski
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Learning Computational Graphs

e Deep Stochastic Generative Networks (GSNs) trainable by
backprop (Bengio & Laufer, arxiv 1306.1091)

e Avoid any explicit latent variables whose marginalization is
intractable, instead train a stochastic computational graph that
generates the right {conditional} distribution.

h, noise

WW%J\
W \WE

sample x;

3 to 5 steps

41



New Theoretical Results

42

A replacement for maximum likelihood training that does not
require dealing with a problematic marginalization /
normalization constant: instead learn the transition operator of
a Markov chain, which is more local, easier

The denoising criterion yields a consistent estimator of the
data-generating distribution (estimated as stationary
distribution of the Markov chain).

corrupted
data data

N\ N
Making Py (X|X) match P(X|X) makes 7, (X) match P(X)

/1

denoising distr truth stationary distr. truth



GSN Experiments: validating the theorem in
a continuous non-parametric setting
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Cownclusions

e Deep Learning has matured
e Int. Conf. on Learning Representation 2013 a huge success!

e Industrial applications (Google, Microsoft, Baidu, Facebook, ...)

e Room for improvement:
e Scaling computation
* Optimization
* Eliminate intractable inference (this talk!)
* more disentangled abstractions
* Reason from incrementally added facts
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