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‘De.e.{ Learning & Neuroscience:
Skil

a Large Gap

Backprop and the ability to jointly train multiple layers is the
workhorse of current deep learning successes. END-TO-END
TRAINING OF DEEP COMPUTATIONS ROCKS. Backprop is the
building block behind modern unsupervised (generative)
learning and RL. But has been deemed not biologically plausible.

* how to propagate gradients? linear neurons? separate net?
* what is the role of feedback connections? lateral connections?

* How to efficiently train a stochastic continuous-time
dynamical system wrt a global objective?

e Random perturbation-based methods do not scale, BP does beautifully



Towards Key Principles of Backprop-
Like Learning in Brains:
Neural Nets > Brain implementation

e Joint training of many areas in the brain is still a mystery
e We have made some progress in bridging the gap between
backprop and the brain

Lee et al (Difference TargetProp) ECML’2015 %

4\

-

Bengio et al (STDP — CHL) Neural Computation, 2017 |

* Bengio & Fischer (Neural inference) arXiv 1510.0277Z .

Bengio et al (feedforward init arXiv:1606.01651) &

 Scellier & Bengio arXiv (Equilibrium Propagation) Froners in
Neurosc. 2017

* Senn, Binas, Sacramento & Bengio — in progress (mirror

interneurons for linearized feedback,
avoids to wait for convergence to update W)




The STDP Connection

e Inspiration from Hinton 2007 (talk at Deep :
Learning Workshop @ NISP); see also April | _ . o o
2016 talk by Hinton @ Stanford, “Can the 5
brain do back-propagation?”

e Bengio etal 2015 & 2017 “STDP-compatible 200 I;‘rée‘/’po;s"’sike i':tl‘;rval (is) 50
approximation of backpropagation in an energy-

based model” arXiv:1509.05936, Neural
Computation 2017

* shows that weight up(dat)es
dp(s;

* replicates the STDP experimental

signature. If symmetry is added we get !
the same weight update as Eq.Prop.



Nudge o oulpul units propagates Lilke
backpropag&&ed gradients

Bengio & Fischer, 2015, arXiv:1510.02777 s‘
Variation on the output y is propagated into a variation in h,

: : T
mediated by the feedback weights W' = vy OO0 OO
transpose of feedforward weights W I
W WT

Then the variation in h, is transformed hi O O O O
into a variation in h,, etc. I

. he O O O O
And we show that /y proportional to direction
of descent for the cost C I

z O 0O 0O



~From ‘Dee.p Leariing to Neuroscience

Propagation of Error Sighals
Deep Learning Neuroscience
. . no empirical
Backl?ropagatlo.n. Hypothesis: «. _ ... .c yet
Requires a special Error signals
computational path for the are encoded in ds/dt.
propagation of error derivatives No need for a special computational
backward in the network. path.

This idea was first proposed by
Hinton & McClelland:
“Recirculation algorithm” (1987)



Equilibrium Propagation
Continuous Hopfield Model Revisited

* Energy Function

E = % (|Rall* + [[2a]|* + [|Ro|*) = (p() Wazp(h2) + p(ha) Waip(h1) + p(h1) Wigp(ho))

* Cost Function

) target
C =5 lho — v||? output
* Objective Function output
(= Cost at the Fixed Point) (= prediction)
J:=C (50) fixed point
(local minimum of E)
* Extended Energy Function
F= 2D o+ é’c_’/ clamping factor 20
‘internal potential”  external potential’
models interactions attracts ho
' towards y if B>0
in the network yif B input

clamped



Equilibrium Propagation
Continuous Hopfield Model Revisited

* Neuronal Dynamics —5£ — B(y — hy) pushes hotowards y
Ohg ,
ds_ 0P _ 0B _C oc B
dt 0s \\Q;S/ | .(98 _Ba_h =0
leaky integration ’external influence’
target
output
follow the gradient of the output
Extended Energy (= prediction)
* Extended Energy Function
F= 2D o+ ég/ clamping factor 20
‘internal potential’  external potential’
models interactions attracts ho
' towards y if >0
in the network yifp input

clamped



Equilibrium Propagation
Continuous Hopfield Model Revisited

First Phase Second Phase

(Free Phase) (Weakly Clamped Phase)

- clamped inputs - clamped inputs

- free outputs (=0) - weakly clamped outputs (=0)

- seek for a minimum of E -seek for aminimumof  F + 5C
ds oL ds oFr oC

Dynamics — = — Dynamics —5,; — — (&7~ M &
dt — 0Os YRS at  9s 7 0s

Free Fixed Point Weakly Clamped Fixed Point

E oF oC
sV st (?93 ( ) =0 57 st 5 (35) +5g (35) =0

has lower cost value than s°
iy i 5 (o (57) () =0 () ()

decrease energy increase energy

update rule



Equilibrium
Propagation
(Scellier & Bengio 2017,
Frontiers in Neurosc/ence)

Free Phase
-network relaxes to fixed point
-read prediction at the outputs

Weakly Clamped Phase
-nudge outputs towards targets
-error signals (back)propagate
-network relaxes to new nearby fixed
point

Backpropagation

Forward Pass

-read prediction at the outputs

Backward Pass

-compare prediction/target
-compute error derivatives



error rate (in %)

error rate (in %)

Simulation Results

netl

Ok but only if we wait for lengthy convergence near f.p.
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Implicit Feedbaclke &
Feedforward Energy Function

 The experiments lead to unrealistically long convergence time to
fixed point, and an update which does not work well unless we
are not close enough to the fixed point

e The feedback connections in the Hopfield energy function may
not be necessary, because feedforward energy terms give rise to
symmetric update terms

1
E= zk: sk — Wip(sk—1)]]°

T
= (sk — Wip(sk-1)) + Wii10'(sk) © (Sk+1 — Wit10(sk))
feedforward paths feedback paths
Purely feedforward energy function = one-pass convergence

oF
aSk

(see also Whittington & Bogacz, Neural Comp. 2017)
12



£E=0 in pre_dic&i.on phase means that
there is ho need for two distinct phases

e The feedforward energy has another amazing side-effect,
besides one-pass convergence at prediction time:

* only one of the two phases of Equilibrium-Prop is necessary,
the nudging phase, because the ﬁ — () term of the weight
update vanishes

OF

oWy,

e =0 at the the ﬁ — () fixed point because it has
sk = Wip(sk—1)

* The brain may be continuously ‘chasing’ a target, being
slightly nudged towards it

= (sp — Wip(sp-1))" 0 (sk-1) © p(8p—1)

13



Feedforward Energy Function

(see also Whittington & Bogacz, Neural Comp. 2017)

e The fixed point solution in the nudging phase 8 > 0 can also be

done in a single (feedback) pass, which is exactly backprop:
OF Firing ra T oC
Far = (s = Wip(50)) = Wikp!(s5) © (st = Wipap(sn) + B

ék €'k+1 nudging
. OF :
e Setting B = 0, hidden layers should somehow compute
Sk
T / oC
e = Wi 10 (Sk) © €k+1  where e = —f3
| Linearfeeéback ' 8’0(8k)
pathway

e =backprop equations = but linear neurons, symmetric weights,
which neurons compute e? isn’t it biologically implausible?

14



Mirror Interneurons Solve
the Linear Feedback Puzzle

with Walter Senn & Joao Sacramento

e Many attempts at biological implementations of backprop end up
with the same problem: linear computation in backprop phase

e But neural computation is non-linear, and where would these
errors be computed? Many unsatisfactory solutions have been
proposed...

e NEW SOLUTION:

* each pyramidal cell (main neuron, computes s,) is associated
with a mirror neuron g, which imitates the feedforward
component of s, (obtained with no nudging), because g, does
not receive the top-down feedback weights

* error signal e = bottom-up — top-down inputs to main neuron

15



Mirror Interneurons Solve
the Linear Feedback Puzzle

Building on Urbanczik & Senn 2014 with Walter Senn & Joao Sacramento

* Mirror interneurons imitates feedforward path, their lateral
projections are trained to cancel top-down feedback

new input
P .
P ta Basal dendrites: bottom-up
2 L
I' II
, / + . .
g \; ! Apical dendrites: top-down
/ P ..' Vay error feedback minus mirror unit’s
mirror '/ﬂ' At - .
Interneuron.l wiy g " cancellation.
Marti A 2 lateral
( ”z;]?r)tmoth " vs1inhibory With no nudging, cancellation
cells ’

is perfect because next layer
ij uf is predictable.
Wiy Wiy
With nudging, difference =
/\ [\ /\ \ backprop error signal.

16 See also Dec. 5 Elife ” Towards deep learning with segregated dendrites”, Guerguiev et al



MNIST Experiments with
Mirror Interneurons

with Walter Senn & Joao Sacramento

Differential equations to simulate rate-based pyramidal and
mirror neurons

9
10 5
\_/. t
p o
® [
—e
J 500
l/
- Z N ----- single-layer
.’ 500+500+10 pyramidal neurons
————— 500+300+softmax backprop
J 500

j U
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Mirror Interneurons and Hinkton’s
Temporal Derivative for Biological BP

e Theorem: if mirror paths are well trained (to cancel the feedback
signals) and if feedback weights are symmetric and if the
“errors” are small compared to the neuron’s dynamic range,

then
L gx B OC
~odt ™~ Op(sk)
oC
» Weight update AW, €i,0/(372):0(3 ) 5
J J 8W7;j

follows the error gradient f \

Postsynaptic rate of change if active Presynaptic spikes

18



Sinmulation Results with
Mirror Interneurons

Thomas Gaétan
Mesnard Vignoud

e Mirror units trained to

match their VL VL

corresponding .8 l ;

pyramidal cell ‘ g
W V

* Continuous updates of
V weights in prediction 5@
phase, of W weights in
nudging phase

Input Input

19



Sinmulation Results with
Mirror Interneurons

20

During the nudging
phase, the mirror units
g do not match
perfectly the feedback
from the pyramidal
units s downstream,
leading to weight
changesin W

Activity of a given neuron

Thomas Gaétan
Mesnard Vignoud
Example 1 Example 2
> < »
_5 By e e —————— - s
T
_6 -
_7 .
Prediction Nudging Prediction Nudging
phase phase phase phase
_8 -
_9 -
_10 4 1 ‘\/
0 400 800 1200

Iteration




Simulabtion with Mirror
Interneurons

while not done do
Sample batch from the training set

for k in range prediction_steps do

(Z Wip(s;) — Viiplg )0)

JES

S; — 8; + 7(—51 Z Jp S +el)

jePR;

gigi+ % (gi + Z V;;P(Sj))

JEP;

ViV dt((si - gi)ﬂ(sj)>
‘/i?' «— V;? + v dt(ejp(gi)>

end
for k in range nudging_steps do

_ b (s — VP olas oC
_(Zwijp( i) = Vijp(g;), — ap(s)> V_b

JES; Z]
8’L<—S’L+ﬁ(82+z J/) 3])"‘61)
jeP; S :
gz<_gz+dt —gi + Z 3])
JjePR;
W« W +mw dt <€ipl(3i)p(3j))
b f
Wi < Wji
end

21

end



Simulation Resullks wikth
Mirror Interneurons

0 20 40 60 80 100
Epochs
22

Thomas

Gaetan
Mesnard Vignoud

MNIST results
with 1 and 2
hidden layers

Mirror
interneurons
track correctly



Weight Symmetry: maybe not a big deal

e The Feedback Alignment papers (Lillicrap et al
2014) show that weights used in backprop do not
need to match perfectly the feedforward ones

e Arora et al 2015 show that under sparsity and
randomness assumptions, with rectifying non-
linearity, the feedback weights which minimize
one-layer reconstruction error are the symmetric
weights

e Empirical results pre-confirmed this with
denoising autoencoders, Vincent et al 2010.

23



Getting rid of symmetry
requirements

e Equilibrium propagation and related models are typically based on energy functions
defined for systems with symmetric interactions, w; = w;; .

e Such exact symmetry is unlikely to exist in biological systems.

e Recent results: equilibrium propagation can be extended to more general vector-
field dynamics, without requiring an explicit energy function.

. S2
Wiz 0
I Wa3
U s >
’ Wis 183 )
Wis Wig ~ Wis
:‘ S — J S5 ‘:
4 Was o

Energy-based model represented by an
undirected graph (e.g. Hopfield net)

W \
| 7 \Was
’ W32
[ s1 ). \
M e mme G,
W1 Ws4, 'Ws3
| y I W45 ' . S5 1
| (1S5, » Wil
Ws4

The generalized dynamics can be
based on a directed graph.



Energy-based model Generalized vectorfield model

ds oE ds
T = oW s) = = (W, s)
dt Js dt
0 OF ou
dW X ——-ds dW x —— - ds
oW 0Os oW
Classification error Loss
7. ——— Training T‘ ——— Training
7.5 A “" ——— Validation 0.015 “ —— Validation Experimental results
% | & 0.010 | MNIST
= = 784-512-512-512-10 MLP
0.005 A
200/100 iterations (1st/
0.000 - 2nd phase)

0 20 40 60
Epoch

e Initial experiments indicate that the generalized model learns faster than the energy-
based one; this could be due to a greater number of free parameters (2x compared to

a network with tied weights.)



Avoiding Lengthy convergence:
continuous update of the weights

With W. Senn, J. Binas, J. Sacramento

e Make the energy fn of both state s and velocity S

0E(s,5) _, can be satisfied all the time
d(s, s)

e Hence we can make updates all the time, with the network

constantly being nudged towards a better output, no need for
phases or waiting for lengthy convergence

10
0.8 1 —— train <
- 5 -
07 test

Input
neuro

0
. 0.6 A
S 4_JmlO
o >
0 0.5 - £8 s5-
.5 8 © L ———————
© 0.4 4 0
Y
=
v 0.3 A 20
© =l
© 0.2 A - 10 -

©
=

o
o
1

12.5 4

T 10.0 A

T T T T T T T T T — 7.54
0.0 2.5 5.0 7.5 10.0 12,5 15.0 17.5 20.0 T T T T T

26 Epoch 0 50 100 150 200 250 300 350 400
Time (ms)




Avolding lengthy convergence:
continuous update of the weights

With W. Senn, J. Binas, J. Sacramento

e Rather than deriving dynamics from energy-descent, define dynamics based on
Lagrangian mechanics (stationarity of a functional, rather than minimization),

0L(q(t),q(t),t)  d dL(q(t),q(t),?)
0q; dt dg;

e At the same time, gradient descent on the system energy leads to an update rule compatible
with a system composed of interneuron-based microcircuits,

or

=0fori=1,...,n

W= -

The dynamics is constrained to
a manifold, but does not need
to converge to a point attractor.




MSE Loss

IdW/dt]

Example model: classifying input
patterns in continuous time

MLP: 392-512-512-10
Synthetic random data

0.10 1
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Testing these Theories ol real Brains

Need to test on non-toy tasks, which involve ‘deep’ computation

e Key neuron activity should ‘improve’ at next trial (gradient
descent)

e Key neuron activity should ‘improve’ 100ms after surprise (back-
propagation =2 nudging)
e Feedback and lateral connections’ effects cancel each other on
the apical dendrite (mirror interneurons)
e No surprise = no contribution from apical dendrite

* Extra stimulation of mirror interneurons = less LTP while
reducing the activity of the mirror interneurons - more LTP

29



Cownclusions

e Backprop is the workhorse of the amazing successes of deep
learning

e A functionally equivalent implementation of backprop in the brain
would help understand its ability to jointly learn in many areas

e No need for a separate net for backpropagated errors, can handle
recurrent dynamics and linearity of backprop thanks to mirror
interneurons, and no need for 2 separate phases

e Extended to continuous learning with no need to wait for f.p.
* Need extensions to unsupervised learning, models of joint distr.

e Generalize to other energy fns, lateral connections, memory, etc.

30
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