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Deep Learning & Neuroscience: 
Still a Large Gap 
•  Backprop	and	the	ability	to	jointly	train	mulFple	layers	is	the	

workhorse	of	current	deep	learning	successes.	END-TO-END	
TRAINING	OF	DEEP	COMPUTATIONS	ROCKS.	Backprop	is	the	
building	block	behind	modern	unsupervised	(genera>ve)	
learning	and	RL.	But	has	been	deemed	not	biologically	plausible.	

•  how	to	propagate	gradients?	linear	neurons?	separate	net?	

•  what	is	the	role	of	feedback	connecFons?	lateral	connecFons?	

•  How	to	efficiently	train	a	stochasFc	conFnuous-Fme	
dynamical	system	wrt	a	global	objecFve?	
•  Random	perturba.on-based	methods	do	not	scale,	BP	does	beau.fully	
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Towards Key Principles of Backprop-
Like Learning in Brains:  
Neural Nets à Brain implementation 
•  Joint	training	of	many	areas	in	the	brain	is	sFll	a	mystery	
•  We	have	made	some	progress	in	bridging	the	gap	between	

backprop	and	the	brain	
•  Lee	et	al	(Difference	TargetProp)	ECML’2015	
•  Bengio	et	al	(STDP	–	CHL)	Neural	ComputaFon,	2017	
•  Bengio	&	Fischer	(Neural	inference)	arXiv	1510.02777	
•  Bengio	et	al	(feedforward	init	arXiv:1606.01651)	
•  Scellier	&	Bengio	arXiv	(Equilibrium	PropagaFon)	FronFers	in	
Neurosc.	2017		

•  Senn,	Binas,	Sacramento	&	Bengio	–	in	progress	(mirror	 	
	 	 			interneurons	for	linearized	feedback,	 	
	 	 			avoids	to	wait	for	convergence	to	update	W)	
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The STDP Connection 
•  InspiraFon	from	Hinton	2007	(talk	at	Deep	

Learning	Workshop	@	NISP);	see	also	April	
2016	talk	by	Hinton	@	Stanford,	“Can	the	
brain	do	back-propagaFon?”	

•  Bengio	et	al	2015	&	2017	“STDP-compa.ble	
approxima.on	of	backpropaga.on	in	an	energy-
based	model”	arXiv:1509.05936,	Neural	
Computa.on	2017	

•  shows	that	weight	updates	

	

•  replicates	the	STDP	experimental	
signature.	If	symmetry	is	added	we	get	
the	same	weight	update	as	Eq.Prop.	
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Nudge on output units propagates like 
backpropagated gradients 

VariaFon	on	the	output	y	is	propagated	into	a	variaFon	in	h1		
mediated	by	the	feedback	weights	WT	=		
transpose	of	feedforward	weights	W	
	
Then	the	variaFon	in	h1		is	transformed	
into	a	variaFon	in	h2	,	etc.	
	
And	we	show	that						proporFonal	to	direcFon																																																		
of	descent	for	the	cost	C		
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Neuroscience	
	

Hypothesis:	
Error	signals	

are	encoded	in	ds/dt.	
No	need	for	a	special	computaFonal	

path.	
	

This	idea	was	first	proposed	by	
Hinton	&	McClelland:	

“RecirculaFon	algorithm”	(1987)	

Deep	Learning	
	

BackpropagaFon:	
Requires	a	special	

computaFonal	path	for	the	
propagaFon	of	error	derivaFves	

backward	in	the	network.	

From Deep Learning to Neuroscience 
Propagation of Error Signals 

no	empirical	
evidence	yet	



•  ObjecFve	FuncFon	
(=	Cost	at	the	Fixed	Point)	

•  Extended	Energy	Func>on	

•  Energy	FuncFon	

Equilibrium Propaga/on

Con/nuous Hopfield Model Revisited


target	
output	

input	
clamped	

•  Cost	FuncFon	

clamping	factor	!≥0	

models	interac.ons	
in	the	network	

aTracts	h0	
towards	y	if	!>0		

fixed	point	
(local	minimum	of	E)	

output	
(=	predic.on)	



pushes	h0	towards	y	
if	!>0		

•  Extended	Energy	Func>on	

Equilibrium Propaga/on

Con/nuous Hopfield Model Revisited


input	
clamped	

clamping	factor	!≥0	

models	interac.ons	
in	the	network	

aTracts	h0	
towards	y	if	!>0		

output	
(=	predic.on)	

•  Neuronal	Dynamics	

follow	the	gradient	of	the	
Extended	Energy	

target	
output	



Second	Phase	
(Weakly	Clamped	Phase)	
-  clamped	inputs	
-  weakly	clamped	outputs	(!≳0)	
-	seek	for	a	minimum	of	
	
Dynamics	
	
Weakly	Clamped	Fixed	Point	

First	Phase	
(Free	Phase)	
-  clamped	inputs	
-  free	outputs	(!=0)	
-	seek	for	a	minimum	of	
	
Dynamics	
	
Free	Fixed	Point	

update	rule	
decrease	energy	 increase	energy	

has	lower	cost	value	than	sº	

Equilibrium Propaga/on

Con/nuous Hopfield Model Revisited




Forward Pass
-read prediction at the outputs

Backward Pass
-compare prediction/target
-compute error derivatives

Free Phase
-network relaxes to fixed point
-read prediction at the outputs

Weakly Clamped Phase
-nudge outputs towards targets
-error signals (back)propagate
-network relaxes to new nearby fixed 
point

Backpropaga/on

Equilibrium

Propaga/on


(Scellier & Bengio 2017,

Fron5ers in Neuroscience)


requires:
-special computational circuit
-special kind of computation



Simula/on Results


Link to Recurrent Back-Propagation. The method proposed by Pineda (1987); Almeida (1987)260

is to solve Eq. 19 (Appendix C) in �

⇤ by a fixed point iteration in a linearized form of the recurrent261

network.262
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where I denotes the identity matrix in the space of the states s.263

Link to Contrastive Divergence. The proposed algorithm also presents similarities with the CD264

algorithm (Contrastive Divergence) for RBMs (Restricted Boltzmann Machines). In the CD al-265

gorithm, one starts from a positive equilibrium sample (one is immediately at equilibrium after266

clamping the input and sampling the hidden layer) and then one runs a short negative phase to get267

the (approximate) gradients on the weights. By contrast, in the model studied here, one starts from268

a negative fixed point (which requires a very long negative phase relaxation) and then one runs a269

short positive phase to get the gradients on the weights. In other words, we start from the point that270

corresponds to the prediction and drive it towards the correct target.271
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Figure 1: Left. Illustration of the kind of multi-layer architectures on which simulations were
run (with different depths), with input x, output y and hidden layers h

k

, and connections only
between successive layers. Right Training curve on MNIST. After 20 epochs, 0% training error
is reached and the network overfits at 10 epochs with 2% validation error.

5 Summary of Experimental Results272

The appendix (supplementary material) presents evidence that the proposed model can be trained.273

Experiments are performed with architectures such as illustrated in Figure 1 (left) on supervised274

classification of MNIST digits, and 0% training error is reached with a neural network having 1, 2275

or 3 hidden layers. Generalization error varied between 2% and 3% depending on the architecture.276

The number of training epochs to convergence is comparable to that needed for ordinary feedforward277

networks (see example of training curve in Figure 1), right.278

6 Conclusion279

We have shown how the positive phase relaxation normally needed for training non-temporal re-280

current networks could be considerably reduced by clamping the outputs to a value that is slightly281

better (in terms of prediction error) than the predicted output. This makes it possible to implement282

back-propagation using the same neural hardware as used to implement the prediction.283

See the Future Work section in appendix B. Many open problems remain towards building a bio-284

logical back-propagation, such as getting rid of the requirement of having symmetric weights and285

also getting rid of a lengthy relaxation for the negative phase (during the prediction, when just the286

input is clamped). Those results also need to be generalized to the stochastic case (relaxation to a287

stationary distribution rather than to a fixed point) and to unsupervised learning.288
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Ok	but	only	if	we	wait	for	lengthy	convergence	near	f.p.	



Implicit Feedback &  
Feedforward Energy Function 
•  The	experiments	lead	to	unrealisFcally	long	convergence	Fme	to	

fixed	point,	and	an	update	which	does	not	work	well	unless	we	
are	not	close	enough	to	the	fixed	point	

•  The	feedback	connecFons	in	the	Hopfield	energy	funcFon	may	
not	be	necessary,	because	feedforward	energy	terms	give	rise	to	
symmetric	update	terms	

•  Purely	feedforward	energy	funcFon	à	one-pass	convergence	
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E=0 in prediction phase means that 
there is no need for two distinct phases 
•  The	feedforward	energy	has	another	amazing	side-effect,	

besides	one-pass	convergence	at	predicFon	Fme:	
•  only	one	of	the	two	phases	of	Equilibrium-Prop	is	necessary,	
the	nudging	phase,	because	the																term	of	the	weight	
update	vanishes	

•  =	0	at	the	the															fixed	point	because	it	has		

•  The	brain	may	be	conFnuously	‘chasing’	a	target,	being	
slightly	nudged	towards	it	
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Feedforward Energy Functionà BP 
•  The	fixed	point	soluFon	in	the	nudging	phase													can	also	be	

done	in	a	single	(feedback)	pass,	which	is	exactly	backprop:	

•  Seqng																		,		hidden	layers	should	somehow	compute	

	 	 	 	 				where	
	
•  =	backprop	equaFons	à	but	linear	neurons,	symmetric	weights,	

which	neurons	compute	e?	isn’t	it	biologically	implausible?			
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Mirror Interneurons Solve 
the Linear Feedback Puzzle 
•  Many	arempts	at	biological	implementaFons	of	backprop	end	up	

with	the	same	problem:	linear	computaFon	in	backprop	phase	
•  But	neural	computaFon	is	non-linear,	and	where	would	these	

errors	be	computed?	Many	unsaFsfactory	soluFons	have	been	
proposed...	

•  NEW	SOLUTION:		
•  each	pyramidal	cell	(main	neuron,	computes	sk)	is	associated	
with	a	mirror	neuron	gk	which	imitates	the	feedforward	
component	of	sk	(obtained	with	no	nudging),	because	gk	does	
not	receive	the	top-down	feedback	weights	

•  error	signal	e	=	bo$om-up		– 	top-down		inputs	to	main	neuron	
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with	Walter	Senn	&	Joao	Sacramento	
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mirror	
Interneuron	
(MarFnoq	
cell?)	

Mirror Interneurons Solve 
the Linear Feedback Puzzle 

with	Walter	Senn	&	Joao	Sacramento	Building	on	Urbanczik	&	Senn	2014	

lateral	
inhibory	

•  Mirror	interneurons	imitates	feedforward	path,	their	lateral	
projecFons	are	trained	to	cancel	top-down	feedback	

Basal	dendrites:	borom-up	
	
Apical	dendrites:	top-down	
feedback	minus	mirror	unit’s	
cancellaFon.	
	
With	no	nudging,	cancellaFon	
is	perfect	because	next	layer	
is	predictable.	
	
With	nudging,	difference	=	
backprop	error	signal.	

See	also	Dec.	5	Elife	”	Towards	deep	learning	with	segregated	dendrites”,	Guerguiev	et	al		
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Figure 3: Learning to classify real-world, structured stimuli with a multilayer network. A. A 784-
500-500-10 network of pyramidal neurons learns to recognize and classify handwritten digits from the
MNIST data set. The network is fully connected; only a subset of connections is shown to enhance
clarity. B. Competitive accuracy (< 3%, an empiral signature of error-driven learning) is achieved on
the standard benchmark test set. The reference performance of a shallow learner and of an optimized
artificial neural network trained with backprop are shown for comparison.

3

MNIST Experiments with  
Mirror Interneurons 

DifferenFal	equaFons	to	simulate	rate-based	pyramidal	and	
mirror	neurons	
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with	Walter	Senn	&	Joao	Sacramento	



Mirror Interneurons and Hinton’s 
Temporal Derivative for Biological BP 
•  Theorem:	if	mirror	paths	are	well	trained	(to	cancel	the	feedback	

signals)	and	if	feedback	weights	are	symmetric	and	if	the	
“errors”	are	small	compared	to	the	neuron’s	dynamic	range,	
then	

•  		

• Weight	update	

follows	the	error	gradient	
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Simulation Results with 
Mirror Interneurons 

•  Mirror	units	trained	to	
match	their	
corresponding	
pyramidal	cell	

•  ConFnuous	updates	of	
V	weights	in	predicFon	
phase,	of	W	weights	in	
nudging	phase	
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Simulation Results with 
Mirror Interneurons 
•  During	the	nudging	

phase,	the	mirror	units	
g	do	not	match	
perfectly	the	feedback	
from	the	pyramidal	
units	s	downstream,	
leading	to	weight	
changes	in	W	
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Simulation with Mirror 
Interneurons 
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2 Algorithm

initialization
while not done do

Sample batch from the training set
for k in range prediction_steps do
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Algorithm 1: Bio BP, with e = (a, b) the error with a corresponding to the hidden
layers and b the output layer
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Simulation Results with 
Mirror Interneurons 
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•  MNIST	results	
with	1	and	2	
hidden	layers	

•  Mirror	
interneurons	
track	correctly	

	



Weight Symmetry: maybe not a big deal 
•  The	Feedback	Alignment	papers	(Lillicrap	et	al	

2014)	show	that	weights	used	in	backprop	do	not	
need	to	match	perfectly	the	feedforward	ones	

•  Arora	et	al	2015	show	that	under	sparsity	and	
randomness	assumpFons,	with	recFfying	non-
linearity,	the	feedback	weights	which	minimize	
one-layer	reconstrucFon	error	are	the	symmetric	
weights	

•  Empirical	results	pre-confirmed	this	with	
denoising	autoencoders,	Vincent	et	al	2010.	
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Getting rid of symmetry 
requirements 

BS TM AG JB 

●  Equilibrium propagation and related models are typically based on energy functions 
defined for systems with symmetric interactions, wij = wji . 

●  Such exact symmetry is unlikely to exist in biological systems. 

 

●  Recent results: equilibrium propagation can be extended to more general vector-
field dynamics, without requiring an explicit energy function. 

Energy-based model represented by an 
undirected graph (e.g. Hopfield net) 

The generalized dynamics can be 
based on a directed graph. 



Energy-based model Generalized vectorfield model 

Experimental results  

MNIST 

784-512-512-512-10 MLP 

200/100 iterations (1st/
2nd phase) 

●  Initial experiments indicate that the generalized model learns faster than the energy-
based one; this could be due to a greater number of free parameters (2x compared to 
a network with tied weights.) 



Avoiding lengthy convergence: 
continuous update of the weights 

•  Make	the	energy	fn	of	both	state					and	velocity	
																																						can	be	saFsfied	all	the	Fme	
	
•  Hence	we	can	make	updates	all	the	Fme,	with	the	network	

constantly	being	nudged	towards	a	berer	output,	no	need	for	
phases	or	waiFng	for	lengthy	convergence	

26	

s ṡ

With	W.	Senn,	J.	Binas,	J.	Sacramento	

@E(s, ṡ)
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●  Rather than deriving dynamics from energy-descent, define dynamics based on 
Lagrangian mechanics (stationarity of a functional, rather than minimization), 

●  At the same time, gradient descent on the system energy leads to an update rule compatible 
with a system composed of interneuron-based microcircuits, 
 

The dynamics is constrained to 
a manifold, but does not need 
to converge to a point attractor. 

Avoiding lengthy convergence: 
continuous update of the weights 

With	W.	Senn,	J.	Binas,	J.	Sacramento	



Example model: classifying input 
patterns in continuous time 

Input pattern 
switched 

MLP: 392-512-512-10 
Synthetic random data 

Clamped input 

Nudged output 

Free-running output 

Time (ms) 

|d
W

/d
t| 

Continuous weight change 

Epoch 

M
S

E
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os
s 



Testing these Theories on real Brains 

•  Key	neuron	acFvity	should	‘improve’	at	next	trial	(gradient	
descent)	

•  Key	neuron	acFvity	should	‘improve’	100ms	ater	surprise	(back-
propagaFon	à	nudging)	

•  Feedback	and	lateral	connecFons’	effects	cancel	each	other	on	
the	apical	dendrite	(mirror	interneurons)	
•  No	surprise	à	no	contribuFon	from	apical	dendrite	
•  Extra	sFmulaFon	of	mirror	interneurons	à	less	LTP	while	
reducing	the	acFvity	of	the	mirror	interneurons	à	more	LTP	

•  �	
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Need	to	test	on	non-toy	tasks,	which	involve	‘deep’	computa.on	



Conclusions 
•  Backprop	is	the	workhorse	of	the	amazing	successes	of	deep	

learning	
•  A	funcFonally	equivalent	implementaFon	of	backprop	in	the	brain	

would	help	understand	its	ability	to	jointly	learn	in	many	areas	
•  No	need	for	a	separate	net	for	backpropagated	errors,	can	handle	

recurrent	dynamics	and	linearity	of	backprop	thanks	to	mirror	
interneurons,	and	no	need	for	2	separate	phases	

•  Extended	to	conFnuous	learning	with	no	need	to	wait	for	f.p.	
•  Need	extensions	to	unsupervised	learning,	models	of	joint	distr.	
•  Generalize	to	other	energy	fns,	lateral	connecFons,	memory,	etc.	
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