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Deep Learning Jobs in Montreal
• Faculty	positions	at	all	levels	at	U.	Montreal	
• Researcher	positions	at	Element	AI	and	Google	Brain	Montreal	
• Researcher	positions	at	U.	Montreal	(IVADO	data	science	center)	
• Studentships	at	all	levels	at	U.	Montreal
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Central Issue in Deep Learning:  
Credit Assignment à 
Necessary to Jointly Coordinate 
Learning in a Large Network 

•  i.e.,	what	should	hidden	layers	do	to	be	useful	to	other	hidden	
layers	and	larger	objecGves	of	the	network?	

•  Established	approaches:	
•  BackpropagaGon	
•  StochasGc	relaxaGon	in	Boltzmann	machines	
•  REINFORCE	

•  Are	these	related?	
•  How	does	the	brain	do	it?		

Variance	scales	linearly	with	number	
of	neurons	geTng	the	credit,	so	
REINFORCE,	alone,	cannot	cut	it	



Biologically Plausible Backprop 
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•  Train	an	auto-encoder	without	backprop,	with	difference	target	propagaGon	
•  Lee	et	al,	2014,	ECML	2015,	arXiv:1412.7525	

•  Showed	that	a	rate-based	update	emulates	STDP	
•  Bengio	et	al,	2015,	arXiv:1509.05936	

•  Showed	that	propagaGon	of	perturbaGons	at	fixed-point	of	a	symmetrically	
connected	recurrent	net	propagates	gradients	
•  Bengio	&	Fischer,	2015,	arXiv:1510.02777	

•  Showed	that	the	rate-based	STDP	update	a[er	propagaGon	of	perturbaGons	
corresponds	to	SGD	on	predicGon	error	and	introduced	novel	ML	framework	
for	”fixed-point	propagaGon”	or	”equilibrium	propagaGon”	
•  Scellier	&	Bengio,	2016,	1602.05179	

•  New	theory	for	gradient	esGmaGon	in	recurrently	connected	nets,	showed	
fixed-point	recurrent	net	can	be	trained	on	MNIST	to	0%	training	error		
•  Scellier	&	Bengio,	2016,	1602.05179	

•  Local	reconstrucGon	cost	yields	fast	feedforward	inference	
•  Bengio,	Scellier,	Bilaniuk,	Sacramento	&	Senn,	arXiv:1606.01651	



Variant of the energy function of the 
 continuous Hopfield Net 
•  Energy	(or	Lyapunov)	funcGon	

•  Has	derivaGve	

•  Where	

•  So																																																			is	gradient	descent	on	the	energy	
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Different:	s	returns	to	0	
when	s	goes	outside	of	
the	(0,1)	interval	

@E(s)

@s
= s�R(s)

R(s) = ⇢0(s) � (b+W⇢(s))

ṡ = ✏(R(s)� s) = �✏
@E

@s



Neural Computation as Inference 

•  Langevin	MCMC	(and	most	MCMC)	=	small	steps	going	down	
the	energy,	plus	injecAng	randomness	

•  inference	to	move	towards	good	configuraGons	of	h	that	explain	
x,	given	current	synapGc	weights.		
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The need for symmetry 

•  If	we	want	

•  and																																																											

•  then,	we	need	symmetry	because	otherwise	we	have	
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The factor ⇢

0
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) would suggest that when a neuron is saturated (either being shut off or firing at the maximal rate), the
external inputs have no impact on its state. In this case, the dynamics of s

i

becomes dsi
dt
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⌧

, driving s

i

towards 0 and
bringing it out of the saturation region and back into a regime where the neuron is sensitive to the outside feedback, so long
as ⇢(0) is not a saturated value.

2.3 Early inference recovers backpropagation
In Bengio and Fischer (2015), it is shown how iterative inference can also backpropagate error signals in a multi-layer network.
In this subsection we revisit this result and adapt it to neural networks with a general architecture where the units are split
in visible and hidden units, i.e. s = (v, h). Like in previous work inspired by the Boltzmann machine, we will use the
terminology of “positive phase” and “negative phase” to distinguish two phases of training, the positive phase being with v

fully observed (or clamped) and the negative phase with v partially or fully unobserved. They actually correspond to the
network following the gradient of the energy function, but with or without a term that drives some or all of the visible units
towards the value of external signals (inputs and target outputs of the network).

For this purpose, we introduce a new term to the energy function that drives the neuron, a term that corresponds to
prediction error and that can push visible units towards observed values for any subset of the visible units:
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and the state s of the network evolves according to
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We may see F as an energy function for "generalized phases". The case � = 0 corresponds to the negative phase where
all the units evolve freely according to the dynamics of the network, i.e. ds
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Happy Coincidence 

Autoencoders	without	forced	symmetry	
end	up	with	symmetric	weights	
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Experimentally	found:	(Vincent	et	al	2011)	

WHY?	 (Arora	et	al	2015,	arXiv	1511.05653)	 h ⇡ rect(W rect(WTh))



Exact Symmetry is Not Needed for 
Backprop to Work 

Feedback	Alignment:	(Lillicrap	et	al	2014)	
	
But	it	would	be	good	if	the	learning	
algorithms	tended	to	something	
equivalent.	
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How to perform fast inference in 
negative phase (sample from posterior) 

•  Sufficient	condiGons	for	feedforward	computaGon	to	
correspond	to	fixed	point	of	recurrent	relaxaGon:	
•  Each	pair	of	successive	layers	forms	a	good	auto-encoder	
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We call the above condition (in any form) the good mutual prediction condition because it means201

that each dendritic branch is outputting a value which agrees with the values produced by the other202

branches.203

In the case where there are two dendritic branches, one for bottom-up, feedforward connections and204

one for top-down, feedback connections, this condition corresponds to having consecutive layers205

forming a good auto-encoder, as we show below. Let d1,k(hk+1) = gk+1(hk+1) represent the206

contribution of the feedback connections from layer k + 1 into layer k. Then Eq. 18 means that207

bottom-up contributions fk(hk�1) agree with top-down contributions gk+1(hk+1):208

hk = fk(hk�1) = gk+1(hk+1) (20)

and thus209

hk = fk(hk�1) = gk+1(fk+1(hk)) (21)
i.e., the feedforward and feedback connections of consecutive layers form a good auto-encoder: in210

the case of feedforward and feedback dendrites, the good mutual prediction condition is equivalent211

to a good auto-encoder condition.212

The consequence of the above analysis is that if the good mutual prediction condition (or the good213

auto-encoder condition) is satified, then initializing the network by the result of a pure feedforward214

computation sets it very close to the fixed point of the 0-temperature network dynamics when the215

inputs are clamped to the observed value. In the stochastic case (non-zero temperature), the feedfor-216

ward initialization would initialize the inference near a mode of the conditional distribution P (h|v)217

associated with the inference task, which is very convenient.218

4 Synaptic Learning Rules Giving Rise to the Good Mutual Prediction219

Condition220

Now, why would consecutive layers form a good one-layer auto-encoder? That clearly depends on221

the particulars of the training framework, but several elements of existing learning algorithms for222

such networks conspire to make successive layers good auto-encoders. For example, in the case of223

restricted Boltzmann machines (Hinton et al., 2006) trained with CD-1 (contrastive divergence with224

1 step), the weight update is 0 if the feedback weights perfectly reconstruct the input.225

A related idea was discussed by Geoff Hinton in a recent talk (Hinton, 2016) (minute 44 of the226

video) in the context of a biologically plausible implementation of back-propagation in multi-layer227

networks. By having each pair of consecutive layers form a good auto-encoder, the feedback weights228

would not perturb the activations computed in the feedforward pass, except to the extent that they229

would carry the perturbations on the upper layer due to their having changed (from their feedforward230

value) in the direction opposite to the error gradient.231

See the recirculation algorithm (Hinton and McClelland, 1988) and backprop-free auto-encoders232

by difference target-propagation (Lee and Bengio, 2014; Lee et al., 2015) for related ways to train233

consecutive pairs of layers so that they form a good auto-encoder, without requiring explicit back-234

propagation into the encoder through the decoder.235

The analysis in this paper suggests that in order to obtain the desirable fast inference, the training236

framework should guarantee, either automatically as a side effect of its objective, or via an additional237

term in the training objective, that consecutive layers should form a good auto-encoder, or more238

generally that different dendritic branches are trained to predict each other (or equivalently, to predict239

the somatic voltage). This could be achieved with a local objective function (for each dendritic240

branch b of neuron i) of the form241

Cb,i = (si � db,i(s))
2 (22)

that is minimized when Eq. 19 is satisfied. If db,i follows the usual affine form of Eq. 15, then the242

gradient of Cb,i with respect to Wb,i,j contains a term corresponding to updates of the form243

�Wb,i,j / (si � db,i(s))⇢(sj) (23)

where si (the somatic voltage) acts like a target of a linear regression with predictor db,i(s), with244

inputs ⇢(sj). This corresponds to a biological form of the classical error-correcting rule (Widrow,245

1962). However, Eq. 23 does not take into account the possible indirect effect of Wb,i,j on Cb,i via246

the offect of Wb,i,j on the fixed point of sj , so future work should investigate that.247
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age. Due to the near-Poisson spiking of in vivo cortical neurons (Shadlen and Newsome, 1998),253

the instantaneous rate of action potentials provides an unbiased estimate of the underlying somatic254

voltage si. There is in fact experimental evidence that plasticity depends on the postsynaptic volt-255

age (Artola et al., 1990; Sjöström et al., 2001) and bAPs (Markram et al., 1997), see (Clopath et al.,256

2010) for a phenomenological model. Classical spike-timing dependent plasticity (STDP, Markram257

et al. (1997)) is reproduced by a spiking version of rule (23) in a 1-compartment neuron (Brea et al.,258

2013).259

Figure 1: Convergence of the inference relaxation, with randomly set weights vs weights obtained
by minimizing layerwise reconstruction error (auto-encoder). Left: magnitude of the update
steps in the space of the vector of all hidden layers state, after each update, vs number of updates.
Right: same in log-scale.

5 Simulation Results260

We have measured the convergence of relaxation to a fixed point in a recurrent network obeying a261

direct version of Eq. 14, where odd layers or even layers are updated at each time step, according to262

Eq. 16 (seen as a fixed point equation). It means that the bottom-up and top-down contributions are263

averaged, except for the top hidden layer, which only has a bottom-up input. The experiments are264

performed on the MNIST dataset and they compare different settings of the weights.265

Fig. 1 (left) shows that convergence is almost instanteneous when the consecutive layers form a266

good auto-encoder, while the right of the figure shows that not only does it start closer to the fixed267

point but it approaches it exponentially at a faster rate. That experiment compares randomly ini-268

tialized weights where the feedback weights equal the transpose of the feedforward weights with269

weights obtained by training a stack of ordinary auto-encoders (with the piecewise-linear non-270

linearity ⇢(s) = max(0,min(1, s))). The neural network has 784 inputs and 3 hidden layers and we271

tried different hidden layer sizes 500 and 1000, with the same results obtained.272

6 Conclusion273

We have proposed conditions under which a recurrent stochastic network would perform fast ap-274

proximate inference that is equivalent to running only a feedforward pass from inputs into deep275

hidden layers and shortcuts the biological relaxation process. These conditions would avoid the276

need for a lengthy iterative inference to either reach a fixed point or a stationary distribution associ-277

ated with the conditional distribution of hidden layers given a visible layer. This could be useful both278

to speed-up training and using of such models, as well as a biologically plausible way to achieve279

fast inference that matches well with recent successes obtained with feedforward neural networks280

trained with back-propagation. The main ingredient of these assumptions is that different dendritic281

branches predict the average of their mutual prediction, or in the case where there are only bottom-up282

and top-down branches, each pair of successive layers forms a good auto-encoder. Because a fixed283

point of this recurrent bottom-up top-down circuitry can be explicitly calculate (approximately to the284
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•  Fast	convergence	to	fixed	point	when	the	
						successive	layers	form	a	good	autoencoder	
•  StochasGc	version:	iniGalized	near	a	mode	
						of	the	distribuGon.	



Propagation of errors = propagation 
of surprises = getting back in harmony 

VariaGon	on	the	output	y	is	propagated	into	a	variaGon	in	h1		
mediated	by	the	feedback	weights	WT	=		
transpose	of	feedforward	weights	W	
	
Then	the	variaGon	in	h1		is	transformed	
into	a	variaGon	in	h2	,	etc.	
	
And	we	show	that					proporGonal	to		
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Bengio	&	Fischer,	2015,	arXiv:1510.02777	
	



Propagation of errors =  
Incremental Target Prop 

•  If	temporal	derivaGves	=	error	gradients	

•  Feedback	paths	compute	“incremental	targets”	
					for	the	feedforward	paths,	moving	the	
					hidden	acGvaGons	in	the	right	direcGon	
	
•  The	top-down	perturbaGons	which	are	
					propagated	represent	the	“surprise”	signal	
					while	the	feedback	paths	compute	targets	
					towards	which	the	feedforward	acGvaGons	
					are	moved	
	
•  No	structural	difference	between	forward-prop	
					and	back-propagaAons	(except	for	clamping	of	visible)	
13	
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Equilibrium	PropagaAon	
	

Bridging	the	Gap	Between	Energy-Based	
Models	and	BackpropagaAon	

Benjamin	Scellier	&	Yoshua	Bengio	
Montreal Institute for Learning Algorithms 

arXiv:1602.0519	
	

Now	mostly	material	from:	



How could we train a physical system 
that performs computations? 

•  Consider	a	physical	system	that	performs	potenGally	useful	
computaGons	through	its	determinisGc	or	stochasGc	dynamics	

•  It	has	parameters						that	could	be	tuned	

•  Tractable	cost	funcGon	C	can	measure	how	good	are	its	answers	

•  The	relaGonship	between	parameters	and	objecGve	J	(cost	at	
equilibrium	of	the	dynamics)	is	implicit	(via	the	dynamics)	

•  How	to	esGmate	the	gradient	of	the	loss	wrt	parameters?	
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Equilibria of the Dynamics 

•  DeterminisGc	case:	dynamics	converge	to	fixed	points	which	are	
minima	of	an	GENERALLY	UNKNOWN	energy	funcGon	F		

•  StochasGc	case:	dynamics	converge	in	probability	to	the	
Boltzmann	distribuGon	associated	with	F		

16	
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1.   Almeida-Pineda	consider	the	same	objecGve	funcGon	as	ours	but	
propose	another	algorithm	to	compute	the	gradient,	Recurrent	
BackpropagaAon,	which	requires	a	different	dynamics	in	the	second	
phase.	

2.   ContrasAve	Hebbian	Learning	(CHL)	has	theoreTcal	issues:	the	update	
may	be	inconsistent	if	the	two	phases	land	in	different	modes	of	the	
energy	funcGon.	

3.   Boltzmann	Machine	Learning	requires	two	independent	phases,	
making	an	analogy	with	backpropagaGon	less	obvious.	

4.   ContrasAve	Divergence	(CD)	has	theoreTcal	issues	too:	it	does	not	
opGmize	any	objecGve	funcGon.	

5.   Xie-Seung	show	the	equivalence	between	CHL	and	backprop	but	
require	weak	feedback	weights	and	different	learning	rates.	

Two Phases: Previous Work


Equilibrium	PropagaAon	solves	all	these	issues	at	once,	at	
least	in	theory,	if	not	in	pracGce.	



State:	
External	World:	
Learned	Parameter:				θ	
Influence	Parameter:	

Influence Parameter

CHL	and	Boltzmann	Machine	Learning	have	two	modes:	
-	one	mode	with	clamped	outputs	
-	one	mode	with	free	outputs.	
	
Here	we	introduce	an	influence	parameter	β	which	controls	
the	level	of	influence	of	the	external	world	on	the	input	and	
output	units.	
Example: Supervised Con?nuous Hopfield Net




Example: Supervised Con?nuous 
Hopfield Net

•  Total	Energy:	

•  Internal	PotenGal	Energy	

•  External	PotenGal	Energy	



Solving issues of Contras?ve Hebbian 
Learning

ContrasGve	Hebbian	Learning	Rule:	
	
	
	
	
s0	:	fixed	point	with	free	outputs,	
s∞	:	fixed	point	with	fully	clamped	outputs.	

Equilibrium	PropagaGon	Update	Rule:	
	
	
	
	
s0	:	fixed	point	with	free	outputs,	
sξ	:	fixed	point	with	weakly	clamped	outputs.	

The	second	phase	
corresponds	to	nudging	the	
fixed	point	s0	towards	the	
fixed	point	sξ,	which	has	
lower	cost	value.	

TheoreGcal	problem	of	CHL:	no	meaningful	objecGve	(difference	in	energies	could	be	<0)	



Equilibrium-Prop	works	for	any	architecture,	even	a	
fully	connected	network,	or	one	with	lateral	
connecGons.	The	connecGon	with	Backprop	is	more	
obvious	when	the	network	has	a	layered	
architecture.	
	

More General SeIng




Main Theorem


• Gradient	on	the	objecGve	funcGon	(cost	at	
equilibrium)	can	be	esGmaed	by	a	ONE-
DIMENSIONAL	finite-difference	
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The first condition (Eq. 58) gives
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Thus s⇤ is the 0-phase fixed point. Injecting this into the second condition (Eq. 59) we get
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Comparing Eq. 62 and Eq. 21, we conclude that
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which is the directional derivative of the fixed point (as a function of �) at the point � in the direction �. Finally, injecting the
values of s⇤ and �

⇤ in Eq. 60, we get
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B/ Stochastic Framework

Rather than the deterministic dynamical system Eq. 37, a more likely dynamics would include some form of noise. As
suggested by Bengio and Fischer (2015), injecting Gaussian noise in the gradient system Eq. 37 leads to a Langevin dynamics,
which we write as the following stochastic differential equation:

ds = �@F

@s

(✓,�, s, v)dt+ �dB(t), (66)

where B(t) is a standard Brownian motion of dimension dim(s). In addition to the force � @F

@s

(✓,�, s, v)dt, the Brownian
term �dB(t) models some form of noise in the network. For fixed ✓, � and v, the Langevin dynamics Eq. 66 is known to
converge to the Boltzmann distribution (consequence of the Fokker-Planck equation).

Let us denote by p
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✓,v

the Boltzmann distribution corresponding to the energy function F . It is characterized by
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where Z
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is the partition function
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Let us write E�
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the expectation over s ⇠ p
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(s). Similarly to the deterministic case, we define the objective function as
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As for the gradient on the cost function, the learning rule takes the form
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as a consequence of Theorem 3 below, which generalizes Theorem 1 to the stochastic framework.
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StochasGc	version:	



The STDP Connection 
•  InspiraGon	from	Hinton	2007	(talk	at	Deep	

Learning	Workshop	@	NISP);	see	also	April	
2016	talk	by	Hinton	@	Stanford,	“Can	the	
brain	do	back-propagaGon?”	

•  Bengio	et	al	2015	“STDP	as	presynapTc	
acTvity	Tmes	rate	of	change	of	
postsynapTc	acTvity”	arXiv:1509.05936	
•  shows	that	weight	updates	

	

•  replicates	the	STDP	experimental	
signature.	If	symmetry	is	added	we	get	
the	same	weight	update	as	Eq.Prop.	

23	
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Equilibrium Propagation Yields STDP – 
A Differential Contrastive Hebbian 
Update 
With	energy	funcGon	
	
	
	
The	SGD	update	is		
	
	
while	in	the	posiGve	phase	(and	no	change	in	the	neg.	phase)	
Note	the	symmetry	constraint.	As	shown	in	Bengio	et	al	2015,	this	
matches	the	ordinary	STDP	profile	of	Bi	&	Poo	2001.		
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Experimental Results


Link to Recurrent Back-Propagation. The method proposed by Pineda (1987); Almeida (1987)260

is to solve Eq. 19 (Appendix C) in �

⇤ by a fixed point iteration in a linearized form of the recurrent261

network.262
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where I denotes the identity matrix in the space of the states s.263

Link to Contrastive Divergence. The proposed algorithm also presents similarities with the CD264

algorithm (Contrastive Divergence) for RBMs (Restricted Boltzmann Machines). In the CD al-265

gorithm, one starts from a positive equilibrium sample (one is immediately at equilibrium after266

clamping the input and sampling the hidden layer) and then one runs a short negative phase to get267

the (approximate) gradients on the weights. By contrast, in the model studied here, one starts from268

a negative fixed point (which requires a very long negative phase relaxation) and then one runs a269

short positive phase to get the gradients on the weights. In other words, we start from the point that270

corresponds to the prediction and drive it towards the correct target.271

x

h1

h2

y

W1 W1
T

W2 W2
T

W3 W3
T

Figure 1: Left. Illustration of the kind of multi-layer architectures on which simulations were
run (with different depths), with input x, output y and hidden layers h

k

, and connections only
between successive layers. Right Training curve on MNIST. After 20 epochs, 0% training error
is reached and the network overfits at 10 epochs with 2% validation error.

5 Summary of Experimental Results272

The appendix (supplementary material) presents evidence that the proposed model can be trained.273

Experiments are performed with architectures such as illustrated in Figure 1 (left) on supervised274

classification of MNIST digits, and 0% training error is reached with a neural network having 1, 2275

or 3 hidden layers. Generalization error varied between 2% and 3% depending on the architecture.276

The number of training epochs to convergence is comparable to that needed for ordinary feedforward277

networks (see example of training curve in Figure 1), right.278

6 Conclusion279

We have shown how the positive phase relaxation normally needed for training non-temporal re-280

current networks could be considerably reduced by clamping the outputs to a value that is slightly281

better (in terms of prediction error) than the predicted output. This makes it possible to implement282

back-propagation using the same neural hardware as used to implement the prediction.283

See the Future Work section in appendix B. Many open problems remain towards building a bio-284

logical back-propagation, such as getting rid of the requirement of having symmetric weights and285

also getting rid of a lengthy relaxation for the negative phase (during the prediction, when just the286

input is clamped). Those results also need to be generalized to the stochastic case (relaxation to a287

stationary distribution rather than to a fixed point) and to unsupervised learning.288
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A B

Figure 1: Neuron model and network architecture. A Traces of the relevant quantities for a
target neuron. The synaptic weights are updated according to �w

ij

= ⌘(r

+
i

r

+
j

� r

�
i

r

�
j

), where
r

+
i

= r

i

(1200ms) and r

�
i

= r

i

(600ms), which can be implemented online by decreasing the
weights appropriately at 600 ms and increase them at 1200 ms. B Network architecture. Arrows
indicate all-to-all connectivity.

1. Select a data sample ŝ and relax the system to the lowest energy state with �

y

= 0 to obtain
y

⇤ (Forward phase).
2. Subtract ⌘⇢(s⇤

i

)⇢(s

⇤
j

) from the weights.

3. Set �
y

= � > 0 and let the system evolve for some time (Backward phase).1

4. Add ⌘⇢(s

�

i

)⇢(s

�

j

) to the weights.

3 Implementation with leaky integrate-and-fire neurons

To replace rate-based neurons with leaky integrate-and-fire neurons we introduce the somatic mem-
brane potential u

i

of neuron i that evolves below a threshold ✓ as

⌧ u̇

i

(t) = �u

i

(t) + u0 +
�
1� �

i

(t)

�X

j

w

ij

s
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(t) + �
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(t)RI

i

(t) (17)

with time constant ⌧ , resting potential u0, post-synaptic response s

j

given by the dynamics ⌧
s

ṡ

j

=

�s

j

+u

psp

x

j

, with presynaptic spike trains x
j

(t) =

P
t

(f)
j

�(t� t

(f)
j

), where t(f)
j

are the spike times
of neuron j, membrane resistance R and additional current input I

i

(t), used in the backward phase to
nudge the firing rate of the neuron in direction of the target firing rate. The nudging factor

�

i

(t) =

RI

i

(t)

RI

i

(t) +

P
j

w

ij

s

j

(t)

, (18)

is important at the end of learning, when the predictions by the network match almost the target
inputs and additive instead of convex combination of network input and target input would lead
to run-away dynamics. The nudging factor can be motivated with divisive normalization [12] or
an argument involving conductance-based synapses [11]. The neuron spikes when its membrane
potential reaches threshold ✓. The membrane potential is then set to a reset value u

r

and kept at this
value for a refractory period �. Afterwards the dynamics in Eq. 17 determines again the membrane
potential.

To implement the contrastive Hebbian learning rule in Equation 16, the pre- and postsynaptic firing
rates are estimated in each synapse with hypothesized processes r

i

that low-pass filter the spike trains
with a large time constant ⌧

r

, i.e.

⌧

r

ṙ

i

(t) = �r

i

(t) + s

i

(t) . (19)
1Scellier and Bengio [5] observe that relaxation to the fixed-point is not necessary in this second phase.

4

Results with Spikes 
(Mesnard, Gerstner, Brea 2016)

•  ‘Towards	deep	learning	with	spiking	neurons	in	
energy	based	models	with	contrasTve	Hebbian	
plasTcity’,	presented	this	morning	in	the	NIPS	2016	
workshop	on	‘CompuGng	with	spikes’	



Inherits Properties of Backprop 

•  Unlike	finite-difference	methods	in	parameter	space,	backprop	
is	equivalent	to	finite	difference	IN	A	SINGLE	DIRECTION,	THE	
DIRECTION	OF	THE	COST	GRADIENT.	Same	here.	

•  In	the	case	where	the	network	has	a	mulG-layer	structure,	we	
can	show	that	the	propagaGon	of	perturbaGons	(nudges)	
corresponds	to	back-propagaGon	of	gradients	
•  First	shot	at	showing	this	in		
•  Bengio	&	Fischer,	Early	Inference	in	Energy-Based	Models	
Approximates	Back-PropagaTon,	arXiv:1510.02777	
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Propagation of errors =  
Incremental Target Prop 

•  When	nudging	(perturbaGon)	is	propagated,	temporal	derivaGves	
=	error	gradients	wrt	hidden	acGvaGons	of	neg.	phase	

•  Feedback	paths	compute	“incremental	targets”	
					for	the	feedforward	paths,	moving	the	
					hidden	acGvaGons	in	the	right	direcGon	
•  The	top-down	perturbaGons	which	are	
					propagated	represent	the	“surprise”	signal	
					while	the	feedback	paths	compute	targets	
					towards	which	the	feedforward	acGvaGons	
					are	moved	
	
•  No	structural	difference	between	forward-prop	
					and	back-propagaAons	(except	for	nudging	of	outputs)	
28	

(see	Hinton’s	talk	at	Stanford,	27	April	2016,	Can	the	brain	do	back-propagaTon)	



Equilibrium Propagation Includes 
Ordinary Backprop for 
Feedforward Nets as Special Case 

•  Consider	the	internal	energy	funcGon	

With	layered	architecture,						=	l-th	layer	of	acGvaGons,		
						=	parametrized	computaGon	at	l-th	layer.	
•  E	has	a	global	minimum	at	
•  It	is	also	a	mode	associated	with	staGonary	distribuGon.		
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Equilibrium Propagation Includes 
Ordinary Backprop for 
Feedforward Nets as Special Case 

•  With	this	feedforward-compaGble	energy-funcGon		

•  NegaGve	phase	is	EQUIVALENT	to	feedforward	prop.	
•  PosiGve	phase:	nudge	outputs,	nudges	propagated	backwards	
•  Equilibrium-propagaGon	esGmates	the	same	gradient	as	

backprop	in	a	feedforward	net,	but	using	a	physical	(analog)	
dynamical	system	which	implements	the	above	energy	funcGon,	
with	no	need	for	a	separate	circuit	for	backpropagaGon.	
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Open Problems 

•  Get	rid	of	local	minima	of	energy	formulaGon	and	generalize	to	
system	defined	by	its	dynamics,	learn	the	transiGon	operator,	
thus	avoiding	the	weight	symmetry	constraint	

•  Generalize	these	ideas	to	unsupervised	learning	(ongoing)	

•  What	about	backprop	through	Gme?	
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STDP vs reverse-STDP: Dreams? 

•  Equilibrium-propagaGon	gives	rise	to	STDP-like	updates,	where	a	
future	state	is	considered	“bejer”	than	the	previous	state,	
closer	to	the	observed	data.	

•  This	works	because	we	start	from	acGon/predicGon	and	then	
get	a	feedback	from	the	outside	world	=	target.	

•  This	is	not	so	meaningful	if	the	output	variable	is	mulGmodal.	
•  Then	it	seems	to	make	more	sense	to	start	from	the	data	and	

move	towards	where	the	model	wants	to	go,	like	in	CD	and	
minimizing	reconstrucGon	error	in	genral.		

•  However,	this	gives	rise	to	reverse-STDP	(the	past	is	the	target),	
i.e.,	STDP	with	opposite	sign.	Makes	sense	for	DREAMS?	
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Variational Walkback 
Goyal. Ke. Lamb, Bengio,  
submitted to ICLR 2017 

•  Sample	a	data	point	(dream	of	the	seed)	
•  Start	running	the	Markov	Chain	of	the	

brain’s	transiGon	operator	
•  Gradually	increase	temperature	(more	

noise)	
•  At	each	step,	update	parameters	to	make	

previous	state	more	likely	than	next	state	
(a	kind	of	reconstrucGon	error)	

•  This	makes	the	model	FORGET	the	states	
it	visits	in	this	noisy	dream-like	simulaGon	

33	

Under review as a conference paper at ICLR 2017

RAISE is a reverse AIS, as it starts from a data point and then increases the temperature. In this
way it is similar to the Q-chain in variational walkback. The advantage of RAISE over AIS is that
it yields an estimator of the log-likelihood that tends to be pessimistic rather than optimistic, which
makes it better as an evaluation criteria.

Like AIS, RAISE estimates the log-likelihood using a form of importance sampling, based on a
product (over the chain) of the ratios of consecutive probabilities (not conditional probabilities from
the model). Variational walkback does not work with estimates of the model’s unconditional proba-
bility, and instead works directly with a conditional probability defined by the transition operator. It
is for this reason that variational walkback does not need to have an explicit energy function).

6 EXPERIMENTS

We evaluated the variational walkback on three datasets: MNIST, CIFAR (Krizhevsky & Hinton,
2009), and CelebA (Liu et al., 2015). The MNIST and CIFAR datasets were used as is, but the
aligned and cropped version of the CelebA dataset was scaled from 218 x 178 pixels to 78 x 64
pixels and center-cropped at 64 x 64 pixels (Liu et al., 2015). For all of our experiments we used
the Adam optimizer (Kingma & Ba, 2014) and the Theano framework (Al-Rfou et al., 2016). The
training procedure and architecture are detailed in appendix A.

Figure 1: Samples on MNIST using a Bernoulli likelihood in the transition operator, 8 walkback
steps during training, and 13 walkback steps during sampling. On right. Diffusion process for
sampling MNIST digits starting from bernoiulli noise. This shows how the variational walkback
iteratively generates images starting from a noise prior. For intermediate steps we display samples
and for the final step (right) we display the transition operator’s mean.

Figure 2: Variational Walkback Inpainting MNIST the left half of digits conditioned on the right
half. The goal is to fill in the left half of an MNIST digit given an observed right half of an image
(drawn from validation set).
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Brain Implementations of GANs and 
Actor-Critic: Questioning the Single 
Objective Optimization Dogma 

•  A	GAN-like	discriminaGve	objecGve	or	the	criGc	in	an	actor-criGc	
setup	could	be	used	to	train	a	predictor	or	actor	resp.,	using	
Equilibrium-propagaGon.	

•  Issues:	
•  The	weight	updates	in	the	actor/predictor	are	controlled	
separately	from	the	updates	in	the	discriminator/criGc.	

•  A	very	deep	actor/predictor	and	discriminator/criGc	raises	
the	quesGon	of	plausibility	of	the	Gming	constraint	(Gme	to	
go	back-and-forth	several	Gmes	across	a	very	deep	net?)	
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