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"Deep Leariiing Jobs th Mowntreal

Faculty positions at all levels at U. Montreal
o Researcher positions at Element Al and Google Brain Montreal
e Researcher positions at U. Montreal (IVADO data science center)

Studentships at all levels at U. Montreal

Something BIG

is happening in Montreal
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Central Issue in Deep Learning:
Credit Assigument >

Necessary to Jointly Coordinate
Learning in a Large Networlk

e j.e., what should hidden layers do to be useful to other hidden
layers and larger objectives of the network?

e Established approaches:
e Backpropagation
* Stochastic relaxation in Boltzmann machines

x Variance scales linearly with number

of neurons getting the credit, so
REINFORCE, alone, cannot cut it

e Are these related?
e How does the brain do it?



Biologically Plousible Backprop

e Train an auto-encoder without backprop, with difference target propagation
e J|eeetal 2014, ECML 2015, arXiv:1412.7525

e Showed that a rate-based update emulates STDP
e Bengio et al, 2015, arXiv:1509.05936

e Showed that propagation of perturbations at fixed-point of a symmetrically
connected recurrent net propagates gradients

e Bengio & Fischer, 2015, arXiv:1510.02777

e Showed that the rate-based STDP update after propagation of perturbations
corresponds to SGD on prediction error and introduced novel ML framework
for "fixed-point propagation” or “equilibrium propagation”

e Scellier & Bengio, 2016, 1602.05179

e New theory for gradient estimation in recurrently connected nets, showed
fixed-point recurrent net can be trained on MNIST to 0% training error

e Scellier & Bengio, 2016, 1602.05179
* Local reconstruction cost yields fast feedforward inference
* Bengio, Scellier, Bilaniuk, Sacramento & Senn, arXiv:1606.01651



Variant of the energy function of the
continuous Hopfield Net

e Energy (or Lyapunov) function

B(s) = 30 5 — 5 3" Wign(s:)p(s;) — Y bin(s)
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aE S Different: s returnsto 0
e Has derivative ( ) — S — R(S) when s goes outside of
aS the (0,1) interval
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Neural Computation as Inference

e Langevin MCMC (and most MCMC) = small steps going down
the energy, plus injecting randomness

0'2 8E(Zt)
2 5’zt

e inference to move towards good configurations of h that explain
X, given current synaptic weights.

Zia1 = 2t - o GaussianNoise



The need for symmelry
e If we want Rz XX Z Wi,jp(sj)

J
OF(s)
882'

e then, we need symmetry because otherwise we have

- and R, — s; X

Ri(s) = p'(si) (Z %(st,j + Wi.i)p(s;) + bz‘)



Happj . Coincidence

Autoencoders without forced symmetry
end up with symmetric weights

Experimentally found: (Vincent et al 2011)

WHY?  (Arora et al 2015, arXiv 1511.05653)  h, & rect(Wrect (WT h))



Exact Symmetry is Not Needed for
Backprop to Worle

Feedback Alignment: (Lillicrap et al 2014)

But it would be good if the learning
algorithms tended to something
equivalent.



How to perform fast inference in
neqative Ekase (sample from posterior)

Bengio, Scellier, Bilaniuk, Sacramento & Senn, arXiv:1606.01651
Feedforward Initialization for Fast Inference of Deep Generative Networks is biologically plausible

e Sufficient conditions for feedforward computation to
correspond to fixed point of recurrent relaxation:

* Each pair of successive layers forms a good auto-encoder

hiq

hi = fr(hg-1) = gr+1(Rr+1)
fk+1tlgk+1
hi = fe(hr—1) = gkt1 (fr41(hi)) h
fﬁ" 1
hi_1
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Feedforward Initialization for Fast

Inference of

Bengio, Scellier, Bilaniuk, Sacramento & Senn, arXiv:1606.01651

Deep Grenerative
Networks is biologically plausible

e Bottom-up input = basal dendrite; top-down input = apical dendrite
e Mutual prediction criterion = auto-encoder reconstruction criterion

hii1

fk+1tlgk+1
hj
fkt 1
hi—1
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Propagation of errors = propagation

of surprises = getting back n harmony
Bengio & Fischer, 2015, arXiv:1510.02777

Variation on the output y is propagated into a variation in h,
mediated by the feedback weights W' =

transpose of feedforward weights W y O O O O
-
Then the variation in h, is transformed
. C e hy O O O O
into a variation in h,, etc. I
- , oC
And we show that /i proportionalto ———  h O O O O

oh I
z O 0O OO
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Propagation of errors =
Incremental Target Prop

e If temporal derivatives = error gradients

e Feedback paths compute “incremental targets” vy OO0 0O O
for the feedforward paths, moving the
hidden activations in the right direction I

 The top-down perturbations which are hi O O O O
propagated represent the “surprise” signal I
while the feedback paths compute targets
towards which the feedforward activations he O O O O

are moved I

 No structural difference between forward-prop = O O O O

and back-propagations (except for clamping of visible)
13



%o
Now mostly material from: ¢

Equilibrium Propagation

Bridging the Gap Between Energy-Based

Models and Backpropagation
arXiv:1602.0519

Benjamin Scellier & Yoshua Bengio
Montreal Institute for Learning Algorithms



How could we Erain a kasicai. Sjs!:em
that performs computations?

e Consider a physical system that performs potentially useful
computations through its deterministic or stochastic dynamics

e It has parameters 6 that could be tuned
e Tractable cost function C can measure how good are its answers

* The relationship between parameters and objective J (cost at
equilibrium of the dynamics) is implicit (via the dynamics)

e How to estimate the gradient of the loss wrt parameters?

15



Equilibria of the Dynamics

e Deterministic case: dynamics converge to fixed points which are
minima of an GENERALLY UNKNOWN energy function F

OF

0s

e Stochastic case: dynamics converge in probability to the
Boltzmann distribution associated with F

s~ P(s) xx e ')

=0+ s=0

16



Two Phases: Previous Work

1. Almeida-Pineda consider the same objective function as ours but
propose another algorithm to compute the gradient, Recurrent
Backpropagation, which requires a different dynamics in the second

phase.
2. Contrastive Hebbian Learning (CHL) has theoretical issues: the update

may be inconsistent if the two phases land in different modes of the
energy function.

3. Boltzmann Machine Learning requires two independent phases,
making an analogy with backpropagation less obvious.

4. Contrastive Divergence (CD) has theoretical issues too: it does not
optimize any objective function.

5. Xie-Seung show the equivalence between CHL and backprop but
require weak feedback weights and different learning rates.

Equilibrium Propagation solves all these issues at once, at
least in theory, if not in practice.



Influence Parameter

CHL and Boltzmann Machine Learning have two modes:
- one mode with clamped outputs
- one mode with free outputs.

Here we introduce an influence parameter B which controls
the level of influence of the external world on the input and
output units.

Example: Supervised Continuous

State: s={x,y,h}
External World: v=1{xv}
Learned Parameter: ©
Influence Parameter:3 = {5, 5y}

opfield Net

External World



Example: Supervised Continuous
Hopfield Net

* Total Energy:
F(9 »‘83 S? V) — E(H- S) + A(B- 8; V)

* Internal Potential Energy
Zs ——ZU ip(si)p(s; pr

e External Potential Energy

I

A(B,s,v) = SBill =X+ 2 WJ—\H b
Lo x

External World



Solving issues of Contrastive Hebbian
Learning

Contrastive Hebbian Learning Rule:

Af o — (dE(e x)—a—E(es)>

") o
s : fixed point with free outputs, o X
- £ o

: fixed point with fully clamped outputs.

External World

Theoretical problem of CHL: no meaningful objective (difference in energies could be <0)

Equilibrium Propagation Update Rule: The second phase

) oF corresponds to nudging the
Af lim - 0. ¢ ——(f. ixed point s® towards the
X — §1_11)1)6( 0,5°) 69( S)) fixed point s towards th

s0: fixed point with free outputs, (=
s¢: fixed point with weakly clamped outputs. T _‘ ‘J

fixed point s¢, which has
lower cost value. 1




More General Setting

Equilibrium-Prop works for any architecture, even a
fully connected network, or one with lateral
connections. The connection with Backprop is more
obvious when the network has a layered

architecture.

V1 !
External External World
World

@ X




Main Theorem

* Gradient on the objective function (cost at
equilibrium) can be estimaed by a ONE-
DIMENSIONAL finite-difference

(—IJ((H\) g(dF(a geds, ) o (@ 3,55 ))

Small Sufficient #atistic Sufficient statistic
nudging after nudging before nudging

Stochastic version:

d 1 OF OF
55 (0,v) = lim (Eg;@ [ae (0,846, s v)] —Ej, [ae 6,8, s, V)D



The STDP Connection

e Inspiration from Hinton 2007 (talk at Deep
Learning Workshop @ NISP); see also April | .. . o o o
2016 talk by Hinton @ Stanford, “Can the

brain do back-propagation?”

200 -150 -100 -50 0 50

e Bengio et al 2015 “STDP as presynaptic Pre/post spike interval (ms)
activity times rate of change of

postsynaptic activity” arXiv:1509.05936
* shows that weight updates

dp(si)

AW, i 7 p(s5) M“\\/\

* replicates the STDP experimental
signature. If symmetry is added we get |

the same weight update as Eq.Prop.

23



Ec‘g.i.tibri.um Propagation Yields STDP -
A Differentiol Contrastive Hebbian
Update

With energy function

sz 1

E(s) = Z 9 " 9 Z Wiip(si)p(sj) — Z bip(si)
i i#] i

The SGD update is

d
AW o< Splsi)p(s;)

while in the positive phase (and no change in the neg. phase)

Note the symmetry constraint. As shown in Bengio et al 2015, this
matches the ordinary STDP profile of Bi & Poo 2001.

24



error rate (in %)

error rate (in %)
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Results with Spikes
(Mesnard, Gerstner, Brea 2016)

* ‘Towards deep learning with spiking neurons in
energy based models with contrastive Hebbian
plasticity’, presented this morning in the NIPS 2016

workshop on ‘Computing with spikes’
B

[Input current|

Bias

Input
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Output
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Inherits ‘F’rope.ﬂ:ies of Backprop

e Unlike finite-difference methods in parameter space, backprop
is equivalent to finite difference IN A SINGLE DIRECTION, THE
DIRECTION OF THE COST GRADIENT. Same here.

* |n the case where the network has a multi-layer structure, we
can show that the propagation of perturbations (nudges)
corresponds to back-propagation of gradients

* First shot at showing this in

* Bengio & Fischer, Early Inference in Energy-Based Models
Approximates Back-Propagation, arXiv:1510.02777

27



Propagation of errors =
Incremental Target Prop

(see Hinton’s talk at Stanford, 27 April 2016, Can the brain do back-propagation)

e When nudging (perturbation) is propagated, temporal derivatives
= error gradients wrt hidden activations of neg. phase

e Feedback paths compute “incremental targets” ¥ O O O O

for the feedforward paths, moving the I
hidden activations in the right direction

e The top-down perturbations which are hi O O O O
propagated represent the “surprise” signal I
while the feedback paths compute targets
towards which the feedforward activations he O O O O

are moved I

* No structural difference between forward-prop * O O O O

and back-propagations (except for nudging of outputs)
28



Equf.tibrium Propagation Includes
Ordinary Backprop for
Feedforward Nets as Special Case

e Consider the internal energy function

E=> |lh— filhi-1)]?
[

With layered architecture,hl = [-th layer of activations, ho =
fl = parametrized computation at /-th layer.

e E has a global minimum at hl — fl (hl—l)
e |tis alsoa mode associated with stationary distribution.

29



Equilibrium Propagation Includes
Ordinary Backprop for

Feedforward Nets as Special Case
y O O O O

|

With this feedforward-compatible energy-function
hh O O O O

E=> - f)l*> |
[

he O O O O

e Negative phase is EQUIVALENT to feedforward prop. : O QIQ o

e Positive phase: nudge outputs, nudges propagated backwards

e Equilibrium-propagation estimates the same gradient as
backprop in a feedforward net, but using a physical (analog)
dynamical system which implements the above energy function,

with no need for a separate circuit for backpropagation.
30



Open Problems

e Getrid of local minima of energy formulation and generalize to
system defined by its dynamics, learn the transition operator,
thus avoiding the weight symmetry constraint

e Generalize these ideas to unsupervised learning (ongoing)

e What about backprop through time?

31



STDY vs reverse=STD?Y: Dreams?

e Equilibrium-propagation gives rise to STDP-like updates, where a
future state is considered “better” than the previous state,
closer to the observed data.

e This works because we start from action/prediction and then
get a feedback from the outside world = target.

e This is not so meaningful if the output variable is multimodal.

e Then it seems to make more sense to start from the data and
move towards where the model wants to go, like in CD and
minimizing reconstruction error in genral.

e However, this gives rise to reverse-STDP (the past is the target),
i.e., STDP with opposite sign. Makes sense for DREAMS?

32



Variaktional Walkbaclke

Goyal, Ke, Lamb, Bengio,
submitted to ICLR 2017

33

Generate

Start running the Markov Chain of the
brain’s transition operator

Gradually increase temperature (more
noise)

previous state more likely than next state 53 &' &5 B8 s Py
(a kind of reconstruction error) s e gosie e
This makes the model FORGET the states @ 0 Z

it visits in this noisy dream-like simulation %

Dream




Brain Implementations of GANs and
Actor-Critic: Questioning the Single
Ob jective Optimization Dogma

A GAN-like discriminative objective or the critic in an actor-critic
setup could be used to train a predictor or actor resp., using
Equilibrium-propagation.

e |ssues:

* The weight updates in the actor/predictor are controlled
separately from the updates in the discriminator/critic.

* A very deep actor/predictor and discriminator/critic raises
the question of plausibility of the timing constraint (time to
go back-and-forth several times across a very deep net?)

34
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