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Recurrent Neural Nebworles

e Canread or produce an output at each time step: unfolding the
graph tells us how to back-prop through time.
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Recurrent Neural Nebworles

e Selectively summarize an input sequence in a fixed-size state
vector via a recursive update

St = Fe(St 1,2t)

St—1 St+1
unfold .<T> .? &
z shared ovelr tlme
Lt—1 Lt+1
St — Gt(xta Lt—19y Lt—229 « 4 L2, 331)

, "2 Generalizes naturally to new lengths not seen during training



CGreneraktive RNNs

e An RNN can represent a fully-connected directed generative
model: every variable predicted from all previous ones.

T
P(x) = P(z1,...z7) = | | P(ztlze—1, 242, ... 21)
t=1

Lt—l—l

Ly = —log P(x¢|xt—1,Tt—2,...21)

Lt4+1 t+2



Conditional Distributions G
e Sequence to vector (oD G i ()
e Sequence to sequence of the RO

same length, aligned

* Vector to sequence

Tt—1 th *iBH—l Qﬂjt+2
* Seqguence to sequence




Maximum Likelihood = .

. | Test-time
TQQCke.r ~ QTCLV\S J: ~ P(y, | h}) path

O & T >

* During training, past y - Training-

in input is from training Pl i) time path

data

* At generation time,
past y in input is
generated

e Mismatch can cause
”compounding error”

(x¢,y:) @ next input/output training pair



Ideas to reduce the train/generate
mismatch in teacher forcing

e Scheduled sampling (S. Bengio et al, NIPS 2015)

™~ »~ | Relatedto
SEARN (Daumé et al 2009)

n +——— h® | DAGGER (Ross et al 2010)

Gradually increase the

probability of using

the model’s samples

vs the ground truth

as input.

e Backprop through open-loop sampling recurrence & minimize long-term cost
(but which one? GAN would be most natural = Professor Forcing, NIPS’2016)

sampled y(t-2) true y(t-2)




Increasing the Expressi.ve Power of
K NNs wu&k more De F

e |CLR 2014, How to construct deep recurrent neural networks

+ deep hid-to-out Y
+ deep hid-to-hid
+deep in-to-hid

Y

Kt

+ skip connections for
8 creating shorter paths



Bidirectional RNNs, Recursive Nets,
Multidimensional RNNs, etc,

e The unfolded architecture needs not be a straight chain
Bidirectional RNNs (Schuster and Paliwal, 1997)

Recursive (tree-structured)
yNeuraI Nets:

FORWARD
STATES

Frasconi et al 97
ocher et al 2011 ERCKRARD

”15'- R . o

X, X, X X, | See Alex Graves’s work, e.g., 2012

input layer <i,i>L (Multidimensional RNNs, Graves et al 2007)
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Mutlzipti.cauve. Interactions

(Wu et al, 2016, arXiv:1606.06630)

e Multiplicative Integration RNNs: o e
* Replace 27 E:JlE”mR:ZN"Z'e.
d(Wx + Uz +b) £7%
° B 2,
" J(WzoUz+b) '

(0]

* Or more general:

5 10 15 20 25
number of epochs

PlaOWxoUz+ 631 0Uz+ 80 Wax +b)
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Multiscale or Hierarchical RNNs

L (Bengio & Elhihi, NIPS 1995)
e Motivation :

o Gradients can propagate over longer spans through slow time-scale paths
e Approach:

o Introduce a network architecture that update the states of its hidden layers
with different speeds in order to capture multiscale representation of
sequences.




Learning Long-Term
‘Depem&emcies wikh
Crradient Descenkt is

Y. Bengio, P. Simard & P. Frsconi,EEE Trans. Neural Nets, 1994




How !!O S!!OTQ 1 bﬂ!? Dyhamics wikh mul.l:trte
basins of attraction in some dimensions

e Some subspace of the state can store 1 or more bits of
information if the dynamical system has multiple basins of
attraction in some dimensions

W>1

Flip-flop
neuron

3 Note: gradients MUST be high near the boundary



Robustly storing 1 bit in the presence
of bounded noise

e With spectral radius > 1, noise can kick state out of attractor

UNSTABLE

CONTRACTIVE

- STABLE
e Stable with radius<1
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Storing Reliably

e Reliably storing bits of information requires spectral radius<1

e The product of T matrices whose spectral radius is < 1 is a matrix
whose spectral radius converges to O at exponential ratein T

I = L(ST(ST_l( - - St—|—1(3t7 .- >>))
oL oL 8ST a31;—}—1

Os;  Osp Os1_1 = Osy

e |f spectral radius of Jacobian is < 1 =» propagated gradients vanish
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Vanishing or Exploding Gradients

e Hochreiter’s 1991 MSc thesis (in German) had independently
discovered that backpropagated gradients in RNNs tend to either
vanish orexplode as sequence length increases

1991: SEPP HOCHREITER’S ANALYSIS OF TH
FUNDAMENTAL DEEP LEARNING PROBLEM

de(t de(t-q)
de(t)

= IIHWF (Net(t —m))|

m=]

< (I W llmax ,, {ll F'(Net)l})?
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Why it hurts gradient-based Learning

e Long-term dependencies get a weight that is exponentially
smaller (in T) compared to short-term dependencies

801; L 8075 8@7— o 8015 60',13 8@7—
ow TZS:?: da.,. OW Z Ja; Oa- OW

7<%

Becomes exponentially smaller
for longer time differences,
when spectral radius < 1
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Vanishing Gradients in Deep Neks are
Different from the Case i RNNs

i

-

—-—
A

e |f it was just a case of vanishing gradients in deep nets,
we could just rescale the per-layer learning rate, but
that does not really fix the training difficulties. oy

St—1 t+1 N
W’C,T? ’(T:W 7=

* Can’t do that with RNNs because the weights are =

shared, & total true gradient = sum over different
“depths” 86} oC, Oa. oC, da; Oa.

- Z * Ja, OW - ZS:t Ja; Oa, OW
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To store information robustly the
dynamics must be conkractive

19

The RNN gradient is a product of Jacobian matrices, each
associated with a step in the forward computation. To store

information robustly in a finite-dimensional state, the dynamics
must be contractive [Bengio et al 1994].

L = L(sT(s7—1(---5t+1(5¢,---))))

oL _ OL Osr o 9st41 Storing bits
OS¢ OstT Os1_1 OS¢ robustly requires
Problems: e-values<1

» e-values of Jacobians > 1 = gradients explode gy Gl'fad_ie"t
clipping
* or e-values < 1 - gradients shrink & vanish

e or random -2 variance grows exponentially



Dealing with Gradient Explosion by
Gradient Norm Clipping

(Mikolov thesis 2012;
Pascanu, Mikolov, Bengio, ICML 2013)

oerror

g < 50
if ||g|| = threshold then
A threiholdg

g < &l
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error
>4 —22 —20
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RNN Tricks

(Pascanu, Mikolov, Bengio, ICML 2013; Bengio, Boulanger & Pascanu, ICASSP 2013)

e Clipping gradients (avoid exploding gradients)

e Skip connections & leaky integration (propagate further)

e Multiple time scales / hierarchy (propagate further)

e Momentum (cheap 2" order)

e |nitialization (start in right ballpark avoids exploding/vanishing)
e Sparse Gradients (symmetry breaking)

e Gradient propagation regularizer (avoid vanishing gradient)

e Gated self-loops (LSTM & GRU, reduces vanishing gradient)

21



Delays & Hierarchies to Reach Farther

* Delays and multiple time scales, E/hihi & Bengio NIPS 1995

Ot—1

Koutnik et al ICML 2014 ?

e How to do this right? CKZ ’%{Wl
unfold

e How to automatically

4%
—1
1

———————————————— =

A
Hierarchical RNNs (words / sentences): g % - NS _[Q) decose
Sordoni et al CIKM 2015, Serban et al Q ureran e > S encoder
AAAl 2016 8 ,—»’—»,—» ,_’,_’,_’
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wow , i keep on bumping into you . i hope your mango



Multi-Scale: Chung, Cho & Bengio ACL’2016

Hand-crafted segmentation Learned segmentation
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soft segmentation:
can be trained by backprop




Hierarchical Multiscale RNNs

Ahn & Bengio ICLR’2017

Boundary detectors have binary states!

Text8
Model BPC
td-1L.STM (Zhang et al., 2016) 1.63 . .
HF-MRNN (Mikolov et al., 2012) 1.54 Gradient signal:
MI-RNN (Wu et al., 2016) 1.52 :
Skipping-RNN (Pachitariu & Sahani, 2013)  1.48 - straight-through
MI-LSTM (Wu et al., 2016) 1.44 )

BatchNorm LSTM (Cooijmans et al., 2016) 1.36 R El N FORC E

HM-LSTM 132

LayerNorm HM-LSTM 1.29




Fighting the vanishing gradient:
LSTM & GRU

(Hochreiter 1991); first version of LSTM: (Hochreiter & Schmidhuber 1997)
the LSTM, called Neural Long-

Term Storgge with self-loop
e Create a pat th where

gradients can flow for
longer with a self-loop

e Corresponds to an
eigenvalue of Jacobian
slightly less than 1

e LSTM is now heavily used
(Hochreiter & Schmidhuber 1997) i ' : rget g output gate

e GRU light-weight version
(Cho et al 2014)

output
new state =~ old state + update

Onew state

~ I
Oold state




Grating for Atktention-Based Neural
Machine Translation

Related to earlier Graves 2013 for generating handwriting
e (Bahdanau, Cho & Bengio, arXiv sept. 2014, ICLR 2015)

e (Jean, Cho, Memisevic & Bengio, arXiv dec. 2014, ACL 2015)

eA(Zi , hj ) JS= (La, croissance, économique, s'est, ralentie, ces, dernieres, années, .)
a ., — 2 %« u
’ > eA(zihr) =2
g o Z;
]’L £ 3
r=2_ajh;
Read = We|ghted average of E e s e :O
attended contents tgh o = = = )
<=2 O O— OO OO0~ >0

=

e = (Economic, growth, has, slowed, down, in, recent, years, .)
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Grating for Attention-Based Neural
Machine Translation

e Incorporating the idea of attention, using GATING units, has
unlocked a breakthrough in machine translation:

) ) (ICLR’2015)
Neural Machine Translation

Softmax over lower
locations conditioned
on context at lower an
higher locations

QOO0 @) Q00000 OO Lower-level

current
n-gram neural net human
translation : translation
: ! trans!atlon ! s Human
evaluation

. Now in Google Translate



Gmpk Attention Nelworles
Velickovic et al, ICLR 201%

e Handle variable-size neighborhood of each node using the same
neural net by using an attention mechanism to aggregate
information from the neighbors

e Use multiple attention heads to collect different kinds of
information

concat/avg @
3> h/
1

28



Attention Mechanisms for Memory Access

e Neural Turing Machines (Graves et al 2014)
e and Memory Networks (Weston et al 2014)

e Use a content-based attention mechanism
(Bahdanau et al 2014) to control the read

and write access into a memory

e The attention mechanism outputs a softmax
over memory locations

Read = weighted average of

59 attended contents .
(2




From Memorv to Svs&em 2

e Attention has also opened the door to neural nets which can write to and read
from a memory

* 2 systems:
e Cortex-like (state controller and representations)
e System 1, intuition, fast heuristic answer
(what current DL does quite well)
e Hippocampus-like (memory) + prefrontal cortex writ
* System 2, slow, logical, sequential

read

e Memory-augmented networks gave rise to

e Systems which reason

e Sequentially combining several selected pieces of
information (from the memory) in order to obtain a

conclusion

e Systems which answer questions

30 e Accessing relevant facts and combining them



Large Memory Networks: Sparse Access
Memory for Long-Term Dependencies

e Memory = part of the state
e Memory-based networks are special RNNs

e A mental state stored in an external memory can stay for arbitrarily long
durations, until it is overwritten (partially or not)

e Forgetting = vanishing gradient.
e Memory = higher-dimensional state, avoiding or reducing the need for
forgetting/vanishing .

R N NOPASSIVECOPL N oY
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Pointing the Unlanown Words

Gulcehre, Ahn, Nallapati, Zhou & Bengio ACL 2016
Based on ‘Pointer Networks’, Vinyals et al 2015

The next Word generated French: Guillaume Jet|[Cesar|ont une voiture bleue a .
f FomAcony

can either come from English: Guillaume]and[Cesar]| have a blue car in
vocabulary or is copied

. Vocabulary softmax
from the input sequence. r

Point & copy

V< /—)R
Pointer distribution (¢,)

Table 5: Europarl Dataset (EN-FR)

] BLEU-4
Machine NMT 20.19 S RERNEE D N
Tra nslatlon NMT + PS 23.76 \\E_—l’l @ ... @
BiRNN
Table 3: Results on Gigaword Corpus for model- ° ° c oo @
ing UNK’s with pointers in terms of recall.
Target Sequence Source Sequence

Rouge-1 Rouge-2 Rouge-L
NMT + Ivt 36.45 17.41 33.90
NMT + Ivt+ PS  37.29 17.75 34.70

32

Text summarization




Variational Hierarchical RNNs for
Dialogue Generation (Serban et al 2016)

e Lower level = words of an utterance (turn of speech)
e Upper level = state of the dialogue

N3 . w31 ... w3 N3
prediction

e Inject high-level choices

decoder initial hidden state

latent variable

prior parameterization

encoder hidden state

13
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Multi-Head Attenkion

..................................

: Scaled Dot-Product

Attention
We can run multiple t
attention mechanisms | L=
in parallel to focus on Soﬁ:/'ax
different aspects of the e
data ' S’
cale
. _ QK" :
Attention(Q,K,V) = softmax( \/d_k )V e
11
head; = Attention(QWl.Q, K WiK , VWiV), P Q K V

MultiHeadAttention(Q, K, V) = Concat(head,, ... , heady)W°

34
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Fig: Michal Chromiak’s blog



Self-Attention & Transformers

From: Jakob Uszkoreit, Google Al Blog, 2017

35

Parallelize encoder

Encode location of each
item, no need for RNN
Transform each location
based on attention from
all others

See also Sparse Attentive

Backtracking, Ke et al Arxiv:

1711.02326

Vaswani et al Arxiv:1706.03762



Using an Associative Memory to Bridge
Large Time Spans and Avoid BPTT

Self-Attentive Backtracking, Ke et al Arxiv: 1711.02326
e Associate past and [\ concas

[“ti(—&—.—ﬁ.m—‘:.ﬂ%—z‘—l)]
present events USing a U Broadcast L/ﬁ
prediCtor, WhiCh acts O Affine Transformation 0

like a trainable /\ spersitior [\
attentive Skip @ RNN Cell ~(t

connection between '
associated events A ‘ 0-O-

e Sparse attention to

May be a way for brains to avoid
select few such events implausible BPTT

36



Still Far from Human-Level Al

* [ndustrial successes mostly based on supervised learning

Adversarial
example

* Learning superficial clues, not generalizing well outside of
training contexts, easy to fool trained networks:
— Current models cheat by picking on surface regularities

* Need to climb the ladder of higher-level abstractions
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How ko Discover Good

Disentangled Representations

How to discover abstractions?

What is a good representation? (Bengio et al 2013)
Need clues (= priors) to help disentangle the underlying factors, e.g.

e Spatial & temporal scales
* Marginal independence

* Simple dependencies between factors
* (Consciousness prior

e Causal / mechanism independence
e Controllable factors

:- -i TN — é ~ :




Acting to Guide
Representation Learning
& Disemtangling

(E. Bengio et al, 2017; V. Thomas et al, 2017)

e Some factors (e.g. objects) correspond to ‘independently
controllable’ aspects of the world

e Can only be discovered by acting in the world

e Control linked to notion of objects & agents

* Causal but agent-specific & subjective: affordances




Abstraction Challenge for Unsupervised
Learhing

e Why is modeling P(acoustics) so much worse than modeling
P(acoustics | phonemes) P(phonemes)?

e Wrong level of abstraction?

e many more entropy bits in acoustic details then linguistic
content

- predict the future in in abstract space instead: non-trivial



The Cownsciousness Prior
Bengio 2017, arXiv:

e Conscious thoughts are very low-dimensional objects compared
to the full state of the (unconscious) brain

e Yet they have unexpected predictive value or usefulness
—> strong constraint or prior on the und

* Thought: composition of few selected factors / concepts
(key/value) at the highest level of abstraction of our brain

* Richer than but closely associated with short verbal
expression such as a sentence or phrase, a rule or fact

(link to classical symbolic Al & knowledge representation)
41




How to select a few
relevant abstract
cov\czﬁ s malking a

thought?

Conkenk-based
Abkenktion



On the Relakion betweewn Abstraction
and Attention

e Attention allows to focus on a few elements out of a large set

e Soft-attention allows this process to be trainable with gradient-
based optimization and backprop

. Top-down
Attention focuses on a few attention
appropriate abstract or concrete
elements of mental
representation

Bottom-up

attention
b%e(a
74 Vo 2 <
e
§  occipital
1o 3
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The Cownsciousness Prior
Bengio 2017, arXiv:1709.0556%

e 2 levels of representation:

* High-dimensional abstract representation space (all known
concepts and factors) h

* Low-dimensional conscious thought c,
cw’scious'state r; Q

attentiorr»

unconscious state h >

1

input x
44



Disentangling up to Linear Projection

45

My old view of disentangling: each dimension of the representation = one
‘nameable’ (semantic) factor

Potential problem: the number of ‘nameable’ factors is limited by the number
of units, and brains don’t use a completely localized representation for
named things

My current view of disentangling: it is enough that a linear projection exist to
‘classify’ or ‘predict’ any of the factors

The ‘number’ of potential ‘nameable’ factors is now exponentially larger (e.g.
subsets of dimensions, weights of these projections)



The Cownsciousness Prior
Bengio 2017, arXiv:1709.0556%

e Conscious prediction over attended variables A (soft attention)

V _— — w A logP(ht,A — a’lct—]-)
Predicted Earlier conscious
Attention weights  Factor redicte state
value
name

cw’scious'state c>

attentiorr»
unconscious state h >

1

46 input x



consciois state c, ; — consciois state c, ;

What Training
ObJQC!:i,VE‘_? unconscious state h,_ , ™= unconscious state h,
| 1

. . . . Xt-l Xt-l
e How to train the attention mechanism which

selects which variables to predict?
* Representation learning without reconstruction:
* Maximize entropy of code
e Maximize mutual information between past and future

e Objective function completely in abstract space, higher-level parameters
model dependencies in abstract space

e Usefulness of thoughts: as conditioning information for action, i.e., a
particular form of planning for RL, i.e., the estimated gradient of rewards
47 could also be used to drive learning of abstract representations






