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Main Theory 
•  Optimization difficulty for deeper nets, more 

abstract concepts 
•  Humans manage to bypass this difficulty 

thanks to culture, guidance from other humans 
•  The evolution of memes & culture is an 

effective way to explore the space of brain 
configurations, by divide-and-conquer 



Hypothesis 1 
•  When the brain of a single biological agent learns, 

it performs an approximate optimization with 
respect to some endogenous objective. 
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Almost all modern ML training procedures are justified by 
approximately optimizing some training objective. 



Hypothesis 2 
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•  When the brain of a single biological agent learns, it relies on 
approximate local descent in order to gradually improve itself. 

Most ML training procedures proceed by gradual changes, and 
humans appear on the surface to generally change only a little at a 
time. 



Hypothesis 3 
•  Higher-level abstractions in brains are represented by 

deeper computations (going through more areas or more 
computational steps in sequence over the same areas). 
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Theoretical and experimental results on deep learning suggest: 

Deep net = composition of functions. 
 
Examples:  
•  Gulcehre & Bengio ICLR’2013, learning a composition of functions 
•  Current SOTA in object recognition on ImageNet requires deeper nets (8 layers) than 

SOTA on MNIST (digit recognition, 3 layers) 
•  Parts-based visual hierarchies are deeper for more abstract and complex objects. 
 



Effective Local Minima 
•  It is not clear that actual local minima are a 

real issue in training deep nets  
– But initial conditions can sometimes matter a lot! 
– see evidence suggesting instead that saddle points 

create plateaus that act as obstacles: 
Pascanu et al, On the saddle point problem for non-
convex optimization, arXiv 2014 
 

• An optimizer like the one in brains may get 
stuck à effective local minima 
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Effect of Initial Conditions in 
Deep Nets 

•  (Erhan et al 2009, JMLR) 
•  Supervised deep net with vs w/o  
  unsupervised pre-training èvery different minima 

Neural net trajectories in  
function space, visualized by 
t-SNE 

No two training trajectories 
end up in the same place à 
huge number of effective 
local minima 

w/o unsupervised pre-training 

with unsupervised pre-training 
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In spite of seeing contradictory evidence, 
humans sometimes stick to wrong beliefs…   

Hypothesis 4 
•  Learning of a single human learner is 

limited by effective local minima. 



Hypothesis 5 

•  A single human learner is unlikely to discover high-
level abstractions by chance because these are 
represented by a deep sub-network in the brain. 
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-  ML methods do not fare as well when trying to learn more abstract 
higher-level concepts. 

-  Deeper neural networks are more difficult to train (often faring 
worse than sufficiently deep but shallower ones)  



Experimental Evidence ���
from Deep Learning Research 

•  In (Gulcehre & Bengio ICLR’2013) we set up a task 
that seems almost impossible to learn by shallow nets, 
deep nets, SVMs, trees, boosting etc 

CHANCE 
PREDICTIONS 



The composed task: Pentominoes 
•  Input = 64x64 binary pixels with 3 shapes (rotated, 

scaled, translated) from 10 categories 

•  Target = are the 3 shapes of the same category? 
NO YES 



So… how do humans manage to 
learn high-level abstractions? 



Hints about intermediate concepts 
•  Training a deep net from end-to-end is a 

difficult optimization problem 
•  But it gets much easier if some training signal 

can be used to guide the training of 
intermediate layers 

… 

… 

… 

… 

inputs 

Targets 
specify what 
the outputs 
should do  

Hint about what these guys 
should do: helps training 



Curriculum Learning 
•  Start with easier examples and build new 

concepts on top of previously acquired ones 
•  (Bengio et al, ICML 2009) 
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Curriculum Learning as a Continuation 
Method to Defeat Effective Local Minima 

Track local minima 

 

Final solution 

 

Easy to find minimum 

 



Guided learning: How is one brain 
transferring abstractions to another 

brain? From synapses to synapses? No! 
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…

…

…
…
… …

…

…

…
…
……

Shared input X 

Linguistic exchange 
= tiny / noisy channel 

Linguistic 
representation 

Linguistic 
representation 

How is one brain transferring 
abstractions to another brain? 

Two individuals sharing a similar visual input, the 
teacher gives hints to the student about high-level 
abstractions 

The linguistic output of one 
individual is modeled by the 
other one, jointly with X. 



What it says about 
language 

•  Each individual has a different ‘language’, a 2-way map 
between internal representations and linguistic symbols 

•  We learn language by trying to predict other humans’ language 
output (in some context) 

•  Individual languages tend to converge to collective conventions 
shared by many individuals for expressing thoughts (but never 
perfectly, there is still a lot of miscommunication) 

•  Different languages = different attractors 



Hypothesis 6 

•  A human brain can learn high-level abstractions if 
guided by the signals produced by other humans, 
which act as hints or indirect supervision for these 
high-level abstractions. 
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How do we escape effective local minima? 
•  linguistic inputs à virtual examples (stories told by 

other humans), summarize knowledge  
–  teacher/student roles can change 
–  credibility of teacher (and how well its theories match 

data) matter in how much weight the student gives it 

•  criterion landscape becomes easier to optimize   
   e.g. via curriculum learning 

•  turn difficult unsupervised learning into easy 
supervised learning of intermediate abstractions 
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Guided Training, Intermediate Concepts 
•  In (Gulcehre & Bengio ICLR’2013) we set up a task 

that seems almost impossible to learn by shallow 
nets, deep nets, SVMs, trees, boosting, etc. 

•  Yet, sucessful learning is possible… 

21 
PERFECT 
PREDICTIONS 



Guided Training, Intermediate Concepts 

•  Breaking the problem in two sub-problems and 
pre-training each module separately, then fine-
tuning, nails it 

•  Need prior knowledge to decompose the task 
•  Guided pre-training allows to find much better 

solutions, escape effective local minima 

22 HINTS 

inputs outputs 
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Where did the knowledge used to guide 
a learner come from in the first place?���

���
How could language/education/culture 
possibly help humanity find the better 

synaptic configurations associated 
with more useful abstractions?���
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Hypothesis 7 
•  Language and meme recombination provide an efficient 

evolutionary operator, allowing rapid search in the space of 
memes, that helps humans build up better high-level internal 
representations of their world. 

More than random search:  
Potentially an exponential speed-up by divide-and-conquer 
 
Combinatorial advantage: can combine solutions to independently solved 
sub-problems 



From Genes to Memes: a Revolution 
in Search Efficiency 

2 principles combined: 
-  Noisy copy of meme:  

= teaching by example 
-  Recombination of sub-solutions 

= creativity 



Selective Pressure on Memes 
•  Better ideas dominate by being shown to be useful 

•  Diffusion of information (about ideas, and about their 
value), crucial for efficiency of this process 

•  Premium given to novelty and diversity: to promote and 
evaluate potentially good novel ideas, avoid losing them 

•  Credibility can be assigned to an idea and not just to its 
author, making the selective pressure more efficient than 
in the genetic case. 



From where do new ideas emerge? 
3 time scales: 
 
•  Seconds: inference (novel explanations for current x) 

•  Minutes, hours: learning (local descent, like current DL) 

•  Years, centuries: cultural evolution (global optimization, 
recombination of ideas from other humans) 
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Consequences of the Theory 
More efficient cultural evolution with 
 
•  Better exploration of new ideas 

–  Scientific research 
–  Spreading the investment across many high-risk explorations 
–  Encouraging diversity 
 

•  Better rate of spread of good ideas 
–  Open & free access to information & open research 
–  Education for the whole planet 
–  Open Internet where everyone can publish 
–  Multiple non-centralized rating systems 



Conclusions 
•  Deep learning research suggests that cultural evolution 

helps to collectively deal with a difficult optimization 
problem that single humans could not solve 

•  Social and political implications for organizing our societies 
towards maximum efficiency of growth of cultural wealth: 
brains that better understand the world around us 

•  Implications for AI research:  
–  Collections of learning agents building on each other’s 

discoveries to build up towards higher-level abstractions 
–  Guiding computers just like we guide children 



Reference papers 
•  Yoshua Bengio, Evolving culture vs local minima, 

ArXiv 1203.2990, chapter in ‘Growing Adaptive 
Machines’. 2013. 

•  Caglar Gulcehre and Yoshua Bengio, Knowledge 
matters: importance of prior information for 
optimization. ICLR’2013. 



+Bonus���
���

 How the brain could do credit 
assignment without back-prop 

Yoshua Bengio 
 

July 23rd, 2014 

An immature but very exciting theory! 



Preliminaries 
•  Regularized auto-encoders implicitly learn a 

distribution P(x) that estimates the data 
generating distribution (ICLR’2013, 
NIPS’2013, ICML’2014), from which one can 
sample by MCMC (encode/decode/add noise) 



Denoising Auto-Encoders Learn a Small 
Move Towards Higher Probability 

•  Reconstruction     points in direction of higher 
probability 

•  Trained with input/target pair = 
   (corrupted    à clean data   ) 

x̂� x / @ logP (x)

@x

x̂

x̂

x̃

x̃

x

x

gradient 



Reconstruction = how to change 
some activations so as to be more 

consistent with the others 
•  Consider two ‘parts’ x1 and x2, and the reconstruction on 

x1, given (x1,x2): 

•  Thus reconstruction tells a unit how it should 
change to agree more with the others 

@ logP (x1, x2)

@x1
=

@ logP (x1|x2)

@x1



Training Objective 
•  Two distributions:  

– data Q(x) ! h ~ Q(h|x): Q(x,h) 
– model P(h) × P(x|h): P(x,h) 

•  Objective to provide a signal 
at any layer h 
 
can be decomposed into: 

 - reconstruction error of x through h~Q 
 - log-likelihood of h~Q according to P(h) 
 - entropy of Q(h|x)  

Trained approximate 
inference 

latent 

P Q 

generated 
sample 

observed 
example 

h 

KL(Q(X,H)||P (X|H))min x 

P(h) 

P(x|h) 
Q(h|x) 



Why Q(h|x) and P(x|h) should be 
information preserving 

•  Most other deep generative models have the 
property that Q(h|x) and/or P(x|h) are « noisy » 

•  Injecting "noise" at low levels when generating 
downward creates high-frequency iid noise in 
generated images our sounds, unlike real data 

è Noise must be added only at the high levels 



Beyond Learning an Invertible 
Mapping 

•  There is an infinite number of 
invertible mappings that would 
minimize reconstruction error 

•  We want one that maps a 
complicated distribution Q(x) into 
a simpler one Q(h) that can be 
modeled by P(h) 

P(h) Q(h) 

generated 
Sample   
~ P(x) 

observed 
example   
~ Q(x) 



Gradual Transformation of a 
Twisted Distribution into a Flat One 

•  What the successive layers do (going up 
from x) is to transform their input 
distribution into one that is less twisted, 
and more disentangled (where the 
features are more nearly independent, 
with a flat or factorial joint marginal) 

•  The top auto-encoder wants Q(hL-1) to 
match what a shallow auto-encoder can 
capture in its implicity P(hL-1): Gaussian 
(in the linear case) or more generally, 
factorizable. 

P(hL-1) Q(hL-1) 

generated 
Sample   
~ P(x) 

observed 
example   
~ Q(x) 



Space-Filling in Representation-Space 
•  Deeper representations ! abstractions ! disentangling 
•  Manifolds are expanded and flattened 

Linear interpolation at layer 2 

Linear interpolation at layer 1 

3’s manifold 

9’s manifold 

Linear interpolation in pixel space 

Pixel space 

9’s manifold 3’s manifold 

Representation space 

9’s manifold 3’s manifold 

X-space 

H-space 



•  Each layer tries to be a good 
denoising auto-encoder while 
transforming the lower-level data 
into a form h easier to model by 
higher levels: higher P(h) 

•  This basically makes the long-
path reconstructions (going all 
the way up) a target     for the 
original h, and vice-versa, while 
the long-path auto-encoder is 
trained with h as data  

^ 

Purely Local Training Signals 
Trained approximate 
inference 

latent 

P Q 

generated 
sample 

observed 
example 

target 

target 

target 

h h ^ 

h 

P(h) 



How to avoid back-prop altogether 

•  If each layer of a deep auto-encoder has small 
reconstruction error and is contractive, so is the 
deep auto-encoder, i.e., it is a good denoising 
auto-encoder. 



How to avoid back-prop altogether 

•  Long paths provide top-down signal for 
encoders to produce easy-to-model distributions 

•  How do we make layer-wise encoders and 
decoders good inverses of each other on data? 

•  Auto-encoding BOTH ways + future-matches-
past (reconstruction) principle: 
– encode/decode/update decoder 
– decode/encode/update encoder 

target for g 

h h ^ 

f: encodes g: decodes 



How to avoid back-prop altogether 

•  Long paths provide top-down signal for 
encoders to produce easy-to-model distributions 

•  How do we make layer-wise encoders and 
decoders good inverses of each other on data? 

•  Auto-encoding BOTH ways + future-matches-
past (reconstruction) principle: 
– encode/decode/update decoder 
– decode/encode/update encoder 

target for f 
h h ^ 

f: encodes g: decodes 

" Similar to the Recirculation algorithm (Hinton & McClelland 1988)  



Supervised Learning by Target 
Propagation 

•  Simple classification: same 
principle except that the 
top-level auto-encoder 
models the joint of h and y 

•      - h  is now indicating 
  
•  A discriminant version 

compares the 
reconstruction with and 
without y clamped, and 
computes  

h ^ 
@ logP (h, y)

@h P Q 

generated 
sample 

observed 
example 

target 

target 

target 

h h ^ y y ̂ 

@ logP (y|h(x))
@h(x)



Multi-Modal / Structured Output 
•  y is complex and needs its 

own P(y) (modeled by it’s 
own stack of auto-
encoders) and non-trivial 
P(y|x). Model joint of hx(x) 
and hy(y) with another 
stack on top. 

•  Inference (MAP or 
MCMC) is done with the 
top stack, then projected 
back in the x or y space.  

observed x 

hx 

observed y 

hy 

generated 
or predicted y 

^ 

generated or 
predicted x 
 

hx hy 
^ 



How the Brain Might Learn 
•  Two principles: 

– The past tries to match the future: prediction 
– The future tries to match the past: reconstruction 
Not clear if these should be on same or different units. 

•  Plus: observations being clamped (not always) 

•  Does not depend on the form of activation 
function, tied symmetric weights, differentiability 
of anything, using rates vs spikes, etc. 

 

target 

ht ht+Δ target 

No need to store past 
activations: just 
average pre-synaptic 
contributions with a 
temporal kernel 

Different loops = 
Different lengths = 
Different Δ 



Automatic Buildup of Higher-Level 
Representations 

•  Imagine an initial empty slate with small random 
weights: intermediate layers are happy outputting 
0, but the neurons h1 projecting into the clamped 
sensory x get a signal that trains them to predict x, 
given whatever they get. 

•  When the senses are unclamped, this makes the x-
to-h1 fibers learn to invert the h1-to-x fibers. 

•  h1 becomes a boundary condition for h2, etc. 
•  Layers above h1 now model it and provide a 

signal for the x-to-h1 fibers to learn a mapping 
that is easy to reconstruct by upper layers, etc. 



The Maths of Denoising Auto-
Encoders Extend to Stochastic 

Recurrent Networks 
•  Bengio et al, ICML 2014, on Deep Generative Stochastic 

Networks (GSNs) 
•  Same criterion but now the reconstruction can be obtained 

through an arbitrary noise recurrent network 
•  Running the net = MCMC sampling from the model. If 

clamped: conditional sampling. 

1"

x0"

h3"

h2"

h1" W1" W1"W1"
T" W1"

W2" W2"
T"

W3"

W1"
T" W1"

T"

W2" W2"
T" W2"

W3"
T" W3" W3"
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sample"x1" sample"x2" sample"x3"target" target" target"

noise 

noise 



(Conditional) Sampling & MAP 
•  Two things we want from our models: 

–  Probabilistic inference: 
•  Sample some variables given others (or none) 

–  MAP inference: 
•  Choose likely values for some variables given others 

•  Both can be done here: 
–  Unconditional sampling by ancestral sampling from P 
–  Conditional sampling by GSN-like MCMC, clamping the 

given variables and resampling others: 
•  Iteratively encode/decode with noise injected (top level stack) 

–  Local ascent for approximate MAP: 
•  Iteratively encode/decode with no noise injected (top level stack) 



Issues with Boltzmann Machines 
•  Sampling from the MCMC of the model is required in the 

inner loop of training 
•  As the model gets sharper, mixing between well-separated 

modes stalls 

51 

Training updates 

Mixing 
vicious circle 



Issues with Back-Prop 
•  Over very deep nets or recurrent nets with 

many steps, non-linearities compose and yield 
sharp non-linearity à gradients vanish or 
explode 

•  Training deeper nets: harder optimization 
•  In the extreme of non-linearity: discrete 

functions, can’t use back-prop 

¢ = ¢ … 


