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What is Machine Learning? 

	
  
•  for	
  extrac?ng	
  what	
  is	
  GENERAL	
  

•  so	
  as	
  to	
  be	
  able	
  to	
  say	
  something	
  meaningful	
  about	
  new	
  cases	
  

•  to	
  iden?fy	
  which	
  configura?ons	
  of	
  variables	
  are	
  plausible	
  
•  to	
  generate	
  new	
  plausible	
  configura?ons	
  or	
  choose	
  best	
  ones	
  
•  to	
  learn	
  to	
  predict,	
  classify,	
  take	
  decisions	
  

Mathematical principles and computer algorithms exploiting data  
 



Generalization vs Training Error 
•  Minimizing	
  Training	
  Error	
  very	
  well	
  can	
  be	
  easy	
  	
  
	
   	
   	
   	
  à	
  learning	
  by	
  heart	
  

	
  	
  	
  à	
  Machine	
  Learning	
  ≠	
  Op?miza?on	
  

•  Real	
  objec6ve:	
  generalizing	
  to	
  new	
  examples	
  
	
  

	
  

	
  

	
  
•  Mathema?cal	
  guarantees	
  about	
  generaliza?on	
  if	
  training	
  

error	
  is	
  small	
  and	
  predictor	
  not	
  too	
  flexible	
  (by	
  defining	
  
priors	
  or	
  preferences)	
  



What is Generalizing? 

•  Capturing	
  dependencies	
  between	
  random	
  variables	
  

•  Spreading	
  out	
  the	
  probability	
  mass	
  from	
  the	
  empirical	
  
distribu?on.	
  Where???	
   	
   	
   	
   	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
=	
  making	
  good	
  guesses	
  away	
  from	
  the	
  training	
  examples.	
  

•  Discovering	
  underlying	
  abstrac?ons	
  /	
  explanatory	
  factors	
  	
  



Breakthrough for 
AI and ML 
• 	
  Deep	
  Learning:	
  machine	
  
learning	
  algorithms	
  based	
  on	
  
learning	
  mul6ple	
  levels	
  of	
  
representa6on	
  /	
  abstrac6on.	
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Amazing	
  improvements	
  in	
  error	
  rate	
  in	
  object	
  recogni?on,	
  object	
  
detec?on,	
  speech	
  recogni?on,	
  and	
  more	
  recently,	
  some	
  in	
  
machine	
  transla?on	
  



Montréal 
Toronto 

Bengio 

Hinton 
Le Cun 

Initial Breakthrough in 2006 

•  Ability	
  to	
  train	
  deep	
  architectures	
  by	
  
using	
  layer-­‐wise	
  unsupervised	
  
learning,	
  whereas	
  previous	
  purely	
  
supervised	
  a\empts	
  had	
  failed	
  

•  Unsupervised	
  feature	
  learners:	
  
•  RBMs	
  
•  Auto-­‐encoder	
  variants	
  
•  Sparse	
  coding	
  variants	
  

New York 
6	
  

Canadian	
  ini6a6ve:	
  CIFAR	
  



2010-2012: Breakthrough in speech 
recognition à in Androids by 2012 
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Deep	
  learning	
  

According	
  to	
  Microsod:	
  



Breakthrough in computer vision: 
2012-2015 

•  GPUs	
  +	
  10x	
  more	
  data	
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•  1000	
  object	
  categories,	
  	
  
•  Facebook:	
  millions	
  of	
  faces	
  

•  2015:	
  



Deep Learning in the News 
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Researcher Dreams Up Machines  
That Learn Without Humans 
06.27.13 

Scientists See Promise in 
Deep-Learning Programs 
John Markoff 
November 23, 2012 

Google	
  taps	
  U	
  
of	
  T	
  professor	
  
to	
  teach	
  
context	
  to	
  
computers	
  
03.11.13	
  



IT Companies are Racing into  
Deep Learning 



Ongoing breakthrough: 
natural language 
understanding 
Examples:	
  	
  machine	
  transla?on,	
  and	
  “transla?ng”	
  images	
  into	
  text	
  	
  

Xu	
  et	
  al,	
  to	
  appear	
  ICML’2015	
  



Why is Deep Learning 
Working so Well? 
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Ultimate Goals 

•  AI	
  
•  Needs	
  knowledge	
  
•  Needs	
  learning	
   	
   	
   	
   	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

(involves	
  priors	
  +	
  op#miza#on/search)	
  

•  Needs	
  generaliza6on	
   	
   	
   	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
(guessing	
  where	
  probability	
  mass	
  concentrates)	
  

•  Needs	
  ways	
  to	
  fight	
  the	
  curse	
  of	
  dimensionality	
  
(exponen?ally	
  many	
  configura?ons	
  of	
  the	
  variables	
  to	
  consider)	
  

•  Needs	
  disentangling	
  the	
  underlying	
  explanatory	
  factors	
  
(making	
  sense	
  of	
  the	
  data)	
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•  Good	
  features	
  essen?al	
  for	
  successful	
  ML:	
  90%	
  of	
  effort	
  

•  Handcrading	
  features	
  vs	
  learning	
  them	
  

•  Good	
  representa?on?	
  
•  guesses	
  
	
  	
  	
  	
  	
  the	
  features	
  /	
  factors	
  /	
  causes	
  

Representation Learning 
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raw	
  
input	
  
data	
  

represented	
  
by	
  chosen	
  
features	
  

MACHINE	
  
LEARNING	
  	
  

represented	
  
by	
  learned	
  
features	
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Visualizing and Understanding Convolutional Networks

(a) (b)

(c) (d) (e)

Figure 6. (a): 1st layer features without feature scale clipping. Note that one feature dominates. (b): 1st layer features
from (Krizhevsky et al., 2012). (c): Our 1st layer features. The smaller stride (2 vs 4) and filter size (7x7 vs 11x11)
results in more distinctive features and fewer “dead” features. (d): Visualizations of 2nd layer features from (Krizhevsky
et al., 2012). (e): Visualizations of our 2nd layer features. These are cleaner, with no aliasing artifacts that are visible in
(d).
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(a) Input Image (b) Layer 5, strongest feature map
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feature map projections

(d) Classifier, probability 
of correct class 
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True Label: Car Wheel

True Label: Afghan Hound

Figure 7. Three test examples where we systematically cover up di↵erent portions of the scene with a gray square (1st
column) and see how the top (layer 5) feature maps ((b) & (c)) and classifier output ((d) & (e)) changes. (b): for each
position of the gray scale, we record the total activation in one layer 5 feature map (the one with the strongest response
in the unoccluded image). (c): a visualization of this feature map projected down into the input image (black square),
along with visualizations of this map from other images. The first row example shows the strongest feature to be the
dog’s face. When this is covered-up the activity in the feature map decreases (blue area in (b)). (d): a map of correct
class probability, as a function of the position of the gray square. E.g. when the dog’s face is obscured, the probability
for “pomeranian” drops significantly. (e): the most probable label as a function of occluder position. E.g. in the 1st row,
for most locations it is “pomeranian”, but if the dog’s face is obscured but not the ball, then it predicts “tennis ball”. In
the 2nd example, text on the car is the strongest feature in layer 5, but the classifier is most sensitive to the wheel. The
3rd example contains multiple objects. The strongest feature in layer 5 picks out the faces, but the classifier is sensitive
to the dog (blue region in (d)), since it uses multiple feature maps.
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Visualizing and Understanding Convolutional Networks

Figure 2. Visualization of features in a fully trained model. For layers 2-5 we show the top 9 activations in a random subset
of feature maps across the validation data, projected down to pixel space using our deconvolutional network approach.
Our reconstructions are not samples from the model: they are reconstructed patterns from the validation set that cause
high activations in a given feature map. For each feature map we also show the corresponding image patches. Note:
(i) the the strong grouping within each feature map, (ii) greater invariance at higher layers and (iii) exaggeration of
discriminative parts of the image, e.g. eyes and noses of dogs (layer 4, row 1, cols 1). Best viewed in electronic form.
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Composing Features on Features 
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Higher-­‐level	
  features	
  

are	
  defined	
  in	
  terms	
  of	
  

lower-­‐level	
  

features	
  



Learning multiple levels of 
representation 
There	
  is	
  theore?cal	
  and	
  empirical	
  evidence	
  in	
  favor	
  of	
  
mul?ple	
  levels	
  of	
  representa?on	
  

	
  Exponen6al	
  gain	
  for	
  some	
  families	
  of	
  func6ons	
  

Biologically	
  inspired	
  learning	
  

Brain	
  has	
  a	
  deep	
  architecture	
  

Cortex	
  seems	
  to	
  have	
  a	
  	
  
generic	
  learning	
  algorithm	
  	
  

Humans	
  first	
  learn	
  simpler	
  	
  
concepts	
  and	
  compose	
  them	
  

It	
  works!	
  Speech	
  +	
  vision	
  +	
  NLP	
  breakthroughs	
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Machine Learning, AI 
& No Free Lunch 
•  Three	
  key	
  ingredients	
  for	
  ML	
  towards	
  AI	
  

1.  Lots	
  &	
  lots	
  of	
  data	
  

2.  Very	
  flexible	
  models	
  

3.  Powerful	
  priors	
  that	
  can	
  defeat	
  the	
  curse	
  of	
  
dimensionality	
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ML 101. What We Are Fighting Against:  
The Curse of Dimensionality 

	
  	
  	
  To	
  generalize	
  locally,	
  
need	
  representa?ve	
  
examples	
  for	
  all	
  
relevant	
  varia?ons!	
  

	
  
Classical	
  solu?on:	
  hope	
  

for	
  a	
  smooth	
  enough	
  
target	
  func?on,	
  or	
  
make	
  it	
  smooth	
  by	
  
handcrading	
  good	
  
features	
  /	
  kernel	
  



Not Dimensionality so much as 
Number of Variations 

•  Theorem:	
  Gaussian	
  kernel	
  machines	
  need	
  at	
  least	
  k	
  examples	
  
to	
  learn	
  a	
  func?on	
  that	
  has	
  2k	
  zero-­‐crossings	
  along	
  some	
  line	
  

	
  
	
  
	
  
	
  
	
  
•  Theorem:	
  For	
  a	
  Gaussian	
  kernel	
  machine	
  to	
  learn	
  some	
  

maximally	
  varying	
  func?ons	
  	
  over	
  d	
  inputs	
  requires	
  O(2d)	
  
examples	
  

	
  

(Bengio, Dellalleau & Le Roux 2007) 



Putting Probability Mass where 
Structure is Plausible 

•  Empirical	
  distribu?on:	
  mass	
  at	
  
training	
  examples	
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•  Smoothness:	
  spread	
  mass	
  around	
  
•  Insufficient	
  
•  Guess	
  some	
  ‘structure’	
  and	
  

generalize	
  accordingly	
  



Bypassing the curse of 
dimensionality 
Deep	
  learning	
  builds	
  composi?onality	
  into	
  ML	
  models	
  	
  

Just	
  as	
  human	
  languages	
  exploit	
  composi?onality	
  to	
  give	
  
representa?ons	
  and	
  meanings	
  to	
  complex	
  ideas	
  

Exploi?ng	
  composi?onality	
  gives	
  an	
  exponen?al	
  gain	
  in	
  
representa?onal	
  power	
  

Distributed	
  representa?ons	
  /	
  embeddings:	
  feature	
  learning	
  

Deep	
  architecture:	
  mul?ple	
  levels	
  of	
  feature	
  learning	
  

Prior:	
  composi?onality	
  is	
  useful	
  to	
  describe	
  the	
  
world	
  around	
  us	
  efficiently	
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•  Clustering,	
  n-­‐grams,	
  Nearest-­‐
Neighbors,	
  RBF	
  SVMs,	
  local	
  
non-­‐parametric	
  density	
  
es?ma?on	
  &	
  predic?on,	
  
decision	
  trees,	
  etc.	
  

•  Parameters	
  for	
  each	
  
dis?nguishable	
  region	
  

•  #	
  of	
  dis6nguishable	
  regions	
  
is	
  linear	
  in	
  #	
  of	
  parameters	
  

Non-distributed representations 

Clustering	
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à	
  No	
  non-­‐trivial	
  generaliza?on	
  to	
  regions	
  without	
  examples	
  



•  Factor	
  models,	
  PCA,	
  RBMs,	
  
Neural	
  Nets,	
  Sparse	
  Coding,	
  
Deep	
  Learning,	
  etc.	
  

•  Each	
  parameter	
  influences	
  
many	
  regions,	
  not	
  just	
  local	
  
neighbors	
  

•  #	
  of	
  dis6nguishable	
  regions	
  
grows	
  almost	
  exponen6ally	
  
with	
  #	
  of	
  parameters	
  

•  GENERALIZE	
  NON-­‐LOCALLY	
  
TO	
  NEVER-­‐SEEN	
  REGIONS	
  

The need for distributed 
representations 

Mul?-­‐	
  
Clustering	
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C1	
   C2	
   C3	
  

input	
  

Non-­‐mutually	
  
exclusive	
  features/
a\ributes	
  create	
  a	
  
combinatorially	
  large	
  
set	
  of	
  dis?nguiable	
  
configura?ons	
  



Classical Symbolic AI vs 
Representation Learning 

•  Two	
  symbols	
  are	
  equally	
  far	
  from	
  each	
  other	
  
•  Concepts	
  are	
  not	
  represented	
  by	
  symbols	
  in	
  our	
  

brain,	
  but	
  by	
  pa\erns	
  of	
  ac?va?on	
  	
  
	
  (Connec/onism,	
  1980’s)	
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cat	
  	
  
dog	
  	
  

person	
  	
  Input	
  
units	
  

Hidden	
  units	
  

Output	
  units	
  

Geoffrey	
  Hinton	
  

David	
  Rumelhart	
  



Neural Language Models: fighting one 
exponential by another one! 

•  (Bengio	
  et	
  al	
  NIPS’2000)	
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w1 w2 w3 w4 w5 w6

R(w6)R(w5)R(w4)R(w3)R(w2)R(w1)

output

input sequence

i−th output = P(w(t)  = i | context)

softmax

tanh

. . . . . .. . .

. . . . . .

. . . . . .

across words

most  computation here

index for w(t−n+1) index for w(t−2) index for w(t−1)

shared parameters

Matrix

in
look−up
Table C

C

C(w(t−2)) C(w(t−1))C(w(t−n+1))

. . .

Exponen?ally	
  large	
  set	
  of	
  
generaliza?ons:	
  seman?cally	
  close	
  
sequences	
  

Exponen?ally	
  large	
  set	
  of	
  possible	
  contexts	
  



Neural word embeddings – visualization 
Directions = Learned Attributes 
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Analogical Representations for Free 
(Mikolov et al, ICLR 2013) 

•  Seman?c	
  rela?ons	
  appear	
  as	
  linear	
  rela?onships	
  in	
  the	
  space	
  of	
  
learned	
  representa?ons	
  

•  King	
  –	
  Queen	
  ≈	
  	
  Man	
  –	
  Woman	
  
•  Paris	
  –	
  France	
  +	
  Italy	
  ≈	
  Rome	
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Paris	
  

France	
  
Italy	
  

Rome	
  



Google Image Search: 
Different object types represented in the 
same space 

Google:	
  
S.	
  Bengio,	
  J.	
  
Weston	
  &	
  N.	
  
Usunier	
  

(IJCAI	
  2011,	
  
NIPS’2010,	
  
JMLR	
  2010,	
  
MLJ	
  2010)	
  



Summary of New Theoretical Results 

•  Expressiveness	
  of	
  deep	
  networks	
  with	
  piecewise	
  linear	
  
ac?va?on	
  func?ons:	
  exponen?al	
  advantage	
  for	
  depth	
  

•  Theore?cal	
  and	
  empirical	
  evidence	
  against	
  bad	
  local	
  minima	
  

•  Manifold	
  &	
  probabilis?c	
  interpreta?ons	
  of	
  auto-­‐encoders	
  
•  Es?ma?ng	
  the	
  gradient	
  of	
  the	
  energy	
  func?on	
  
•  Sampling	
  via	
  Markov	
  chain	
  
•  Varia?onal	
  auto-­‐encoder	
  breakthrough	
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(Montufar	
  et	
  al	
  NIPS	
  2014)	
  

(Dauphin	
  et	
  al	
  NIPS	
  2014)	
  

(Alain	
  &	
  Bengio	
  ICLR	
  2013)	
  

(Bengio	
  et	
  al	
  NIPS	
  2013)	
  

(Gregor	
  et	
  al	
  arXiv	
  2015)	
  



The Depth Prior can be Exponentially  
Advantageous 
Theore?cal	
  arguments:	
  

…	
  
1	
   2	
   3	
   2n 

1	
   2	
   3	
  
…	
  

n	
  

= universal approximator 2 layers of 
Logic gates 
Formal neurons 
RBF units 

Theorems on advantage of depth: 
(Hastad et al 86 & 91, Bengio et al 2007, 
Bengio & Delalleau 2011, Braverman 2011, 
Pascanu et al 2014, Montufar et al NIPS 2014) 

Some functions compactly 
represented with k layers may 
require exponential size with 2 
layers 

RBMs & auto-encoders = universal approximator 



main 

subroutine1 includes 
subsub1 code and 
subsub2 code and 
subsubsub1 code 

“Shallow” computer program 

subroutine2 includes 
subsub2 code and 
subsub3 code and 
subsubsub3 code and … 



main 

sub1 sub2 sub3 

subsub1 subsub2 subsub3 

subsubsub1 subsubsub2 
subsubsub3 

“Deep” computer program 



Sharing Components in a Deep 
Architecture 

Sum-­‐product	
  
network	
  

Polynomial	
  expressed	
  with	
  shared	
  components:	
  advantage	
  of	
  
depth	
  may	
  grow	
  exponen?ally	
  	
  
	
  

Theorems	
  in	
  	
  
(Bengio	
  &	
  Delalleau,	
  ALT	
  2011;	
  
Delalleau	
  &	
  Bengio	
  NIPS	
  2011)	
  



New theoretical result: 
Expressiveness of deep nets with 
piecewise-linear activation fns 
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(Pascanu,	
  Montufar,	
  Cho	
  &	
  Bengio;	
  ICLR	
  2014)	
  

(Montufar,	
  Pascanu,	
  Cho	
  &	
  Bengio;	
  NIPS	
  2014)	
  

Deeper	
  nets	
  with	
  rec?fier/maxout	
  units	
  are	
  exponen?ally	
  more	
  
expressive	
  than	
  shallow	
  ones	
  (1	
  hidden	
  layer)	
  because	
  they	
  can	
  split	
  
the	
  input	
  space	
  in	
  many	
  more	
  (not-­‐independent)	
  linear	
  regions,	
  with	
  
constraints,	
  e.g.,	
  with	
  abs	
  units,	
  each	
  unit	
  creates	
  mirror	
  responses,	
  
folding	
  the	
  input	
  space:	
  	
  

	
  

	
  



A Myth is Being Debunked: Local 
Minima in Neural Nets  
à Convexity is not needed 
•  (Pascanu,	
  Dauphin,	
  Ganguli,	
  Bengio,	
  arXiv	
  May	
  2014):	
  On	
  the	
  

saddle	
  point	
  problem	
  for	
  non-­‐convex	
  op/miza/on	
  
•  (Dauphin,	
  Pascanu,	
  Gulcehre,	
  Cho,	
  Ganguli,	
  Bengio,	
  NIPS’	
  2014):	
  

Iden/fying	
  and	
  aWacking	
  the	
  saddle	
  point	
  problem	
  in	
  high-­‐
dimensional	
  non-­‐convex	
  op/miza/on	
  	
  

•  (Choromanska,	
  Henaff,	
  Mathieu,	
  Ben	
  Arous	
  &	
  LeCun	
  2014):	
  The	
  
Loss	
  Surface	
  of	
  Mul/layer	
  Nets	
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Saddle Points 

•  Local	
  minima	
  dominate	
  in	
  low-­‐D,	
  but	
  
saddle	
  points	
  dominate	
  in	
  high-­‐D	
  

•  Most	
  local	
  minima	
  are	
  close	
  to	
  the	
  
bo\om	
  (global	
  minimum	
  error)	
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Saddle Points During Training 

•  Oscilla?ng	
  between	
  two	
  behaviors:	
  
•  Slowly	
  approaching	
  a	
  saddle	
  point	
  
•  Escaping	
  it	
  

38	
  



Low Index Critical Points 

Choromanska	
  et	
  al	
  &	
  LeCun	
  2014,	
  ‘The	
  Loss	
  Surface	
  of	
  Mul/layer	
  Nets’	
  
Shows	
  that	
  deep	
  rec?fier	
  nets	
  are	
  analogous	
  to	
  spherical	
  spin-­‐glass	
  models	
  
The	
  low-­‐index	
  cri?cal	
  points	
  of	
  large	
  models	
  concentrate	
  in	
  a	
  band	
  just	
  
above	
  the	
  global	
  minimum	
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Saddle-Free Optimization  
(Pascanu, Dauphin, Ganguli, Bengio 2014) 

•  Saddle	
  points	
  are	
  ATTRACTIVE	
  for	
  Newton’s	
  method	
  
•  Replace	
  eigenvalues	
  λ	
  of	
  Hessian	
  by	
  |λ|	
  
•  Jus?fied	
  as	
  a	
  par?cular	
  trust	
  region	
  method	
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Advantage	
  increases	
  
with	
  dimensionality	
  



Curriculum Learning 

Guided learning helps training humans and animals  

 Shaping 

 

Start from simpler examples / easier tasks   (Piaget 1952, Skinner 1958) 

Education 

 



Order & Selection of Examples Matters 
(Bengio,	
  Louradour,	
  Collobert	
  &	
  Weston,	
  ICML’2009)	
  	
  	
  	
  A	
  

• Curriculum	
  learning	
  	
  
•  (Bengio	
  et	
  al	
  2009,	
  Krueger	
  &	
  Dayan	
  2009)	
  	
  	
  

•  Start	
  with	
  easier	
  examples	
  

•  Faster	
  convergence	
  to	
  a	
  be\er	
  local	
  
minimum	
  in	
  deep	
  architectures	
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Curriculum learning as a 
Continuation Method 

Track local minima 

 

Final solution 

 

Easy to find minimum 

 



How do humans generalize 
from very few examples? 
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•  They	
  transfer	
  knowledge	
  from	
  previous	
  learning:	
  
•  Representa?ons	
  

•  Explanatory	
  factors	
  

•  Previous	
  learning	
  from:	
  unlabeled	
  data	
  	
  

	
   	
   	
  	
  	
  	
  	
   	
  +	
  labels	
  for	
  other	
  tasks	
  

•  Prior:	
  shared	
  underlying	
  explanatory	
  factors,	
  in	
  
par6cular	
  between	
  P(x)	
  and	
  P(Y|x)	
  	
  

	
  



Multi-Task Learning 
•  Generalizing	
  be\er	
  to	
  new	
  tasks	
  

(tens	
  of	
  thousands!)	
  is	
  crucial	
  to	
  
approach	
  AI	
  

•  Deep	
  architectures	
  learn	
  good	
  
intermediate	
  representa?ons	
  that	
  
can	
  be	
  shared	
  across	
  tasks	
  

	
  	
  	
  	
  	
  (Collobert	
  &	
  Weston	
  ICML	
  2008,	
  
	
  	
  	
  	
  	
  Bengio	
  et	
  al	
  AISTATS	
  2011)	
  

•  Good	
  representa?ons	
  that	
  
disentangle	
  underlying	
  factors	
  of	
  
varia?on	
  make	
  sense	
  for	
  many	
  tasks	
  
because	
  each	
  task	
  concerns	
  a	
  
subset	
  of	
  the	
  factors	
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raw input x 

task 1  
output y1 

task 3  
output y3 

task 2 
output y2 

Task	
  A	
   Task	
  B	
   Task	
  C	
  

Prior:	
  shared	
  underlying	
  explanatory	
  factors	
  between	
  tasks	
  	
  
	
  

E.g.	
  dic?onary,	
  with	
  intermediate	
  
concepts	
  re-­‐used	
  across	
  many	
  defini?ons	
  



Sharing Statistical Strength by Semi-
Supervised Learning 

•  Hypothesis:	
  P(x)	
  shares	
  structure	
  with	
  P(y|x)	
  

purely	
  
supervised	
  

semi-­‐	
  
supervised	
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Raw	
  data	
  
1	
  layer	
   2	
  layers	
  

4	
  layers	
  
3	
  layers	
  

ICML’2011	
  
workshop	
  on	
  
Unsup.	
  &	
  
Transfer	
  Learning	
  

NIPS’2011	
  
Transfer	
  
Learning	
  
Challenge	
  	
  
Paper:	
  
ICML’2012	
  

Unsupervised and Transfer Learning 
Challenge + Transfer Learning 
Challenge: Deep Learning 1st Place 



The Next Challenge: 
Unsupervised Learning 

•  Recent	
  progress	
  mostly	
  in	
  supervised	
  DL	
  
•  Real	
  technical	
  challenges	
  for	
  unsupervised	
  DL	
  
•  Poten?al	
  benefits:	
  

•  Exploit	
  tons	
  of	
  unlabeled	
  data	
  
•  Answer	
  new	
  ques?ons	
  about	
  the	
  variables	
  observed	
  
•  Regularizer	
  –	
  transfer	
  learning	
  –	
  domain	
  adapta?on	
  
•  Easier	
  op?miza?on	
  (local	
  training	
  signal)	
  
•  Structured	
  outputs	
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Why Latent Factors & Unsupervised 
Representation Learning? Because of 
Causality. 

•  If	
  Ys	
  of	
  interest	
  are	
  among	
  the	
  causal	
  factors	
  of	
  X,	
  then	
  

is	
  ?ed	
  to	
  P(X)	
  and	
  P(X|Y),	
  and	
  P(X)	
  is	
  defined	
  in	
  terms	
  of	
  P(X|Y),	
  i.e.	
  
•  The	
  best	
  possible	
  model	
  of	
  X	
  (unsupervised	
  learning)	
  MUST	
  

involve	
  Y	
  as	
  a	
  latent	
  factor,	
  implicitly	
  or	
  explicitly.	
  
•  Representa?on	
  learning	
  SEEKS	
  the	
  latent	
  variables	
  H	
  that	
  

explain	
  the	
  varia?ons	
  of	
  X,	
  making	
  it	
  likely	
  to	
  also	
  uncover	
  Y.	
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P (Y |X) =
P (X|Y )P (Y )

P (X)



Manifold Learning =  
 Representation Learning 
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tangent directions

tangent plane

Data on a curved manifold



Non-Parametric Manifold Learning: 
hopeless without powerful enough priors 
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AI-­‐related	
  data	
  manifolds	
  have	
  too	
  many	
  
twists	
  and	
  turns,	
  not	
  enough	
  examples	
  
to	
  cover	
  all	
  the	
  ups	
  &	
  downs	
  &	
  twists	
  

Manifolds	
  es?mated	
  out	
  of	
  the	
  
neighborhood	
  graph:	
  	
  

	
  -­‐	
  node	
  =	
  example	
  
	
  -­‐	
  arc	
  =	
  near	
  neighbor	
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Auto-Encoders Learn Salient 
Variations, like a non-linear PCA 

•  Minimizing	
  reconstruc?on	
  error	
  forces	
  to	
  
keep	
  varia?ons	
  along	
  manifold.	
  

•  Regularizer	
  wants	
  to	
  throw	
  away	
  all	
  
varia?ons.	
  

•  With	
  both:	
  keep	
  ONLY	
  sensi?vity	
  to	
  
varia?ons	
  ON	
  the	
  manifold.	
  



Denoising Auto-Encoder 
•  Learns	
  a	
  vector	
  field	
  poin?ng	
  towards	
  

higher	
  probability	
  direc?on	
  (Alain	
  &	
  Bengio	
  2013)	
  

•  Some	
  DAEs	
  correspond	
  to	
  a	
  kind	
  of	
  
Gaussian	
  RBM	
  with	
  regularized	
  Score	
  
Matching	
  (Vincent	
  2011)	
  

	
  	
  	
  	
  	
  [equivalent	
  when	
  noiseà0]	
  

Corrupted input 

Corrupted input 

prior:	
  examples	
  
concentrate	
  near	
  a	
  
lower	
  dimensional	
  
“manifold”	
  	
  reconstruction(x)� x ! �

2 @ log p(x)

@x



Regularized Auto-Encoders Learn a 
Vector Field that Estimates a 
Gradient Field (Alain	
  &	
  Bengio	
  ICLR	
  2013)	
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Denoising Auto-Encoder Markov Chain 
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Xt	
  

Xt	
  
~	
   Xt+1	
  

~	
  

Xt+1	
   Xt+2	
  

Xt+2	
  
~	
  

corrupt	
  
denoise	
  



Denoising Auto-Encoders Learn a 
Markov Chain Transition Distribution 
(Bengio	
  et	
  al	
  NIPS	
  2013)	
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Space-Filling in Representation-Space 
•  Deeper	
  representa6ons	
  è	
  abstrac6ons	
  è	
  disentangling	
  
•  Manifolds	
  are	
  expanded	
  and	
  fla_ened	
  

Linear	
  interpola?on	
  at	
  layer	
  2	
  

Linear	
  interpola?on	
  at	
  layer	
  1	
  

3’s	
  manifold	
  

9’s	
  manifold	
  

Linear	
  interpola?on	
  in	
  pixel	
  space	
  

Pixel	
  space	
  

9’s	
  manifold	
   3’s	
  manifold	
  

Representa?on	
  space	
  

9’s	
  manifold	
   3’s	
  manifold	
  

X-­‐space	
  

H-­‐space	
  



Extracting Structure By Gradual 
Disentangling and Manifold Unfolding 
(Bengio 2014, arXiv 1407.7906)  
Each	
  level	
  transforms	
  the	
  
data	
  into	
  a	
  representa?on	
  in	
  
which	
  it	
  is	
  easier	
  to	
  model,	
  
unfolding	
  it	
  more,	
  
contrac?ng	
  the	
  noise	
  
dimensions	
  and	
  mapping	
  the	
  
signal	
  dimensions	
  to	
  a	
  
factorized	
  (uniform-­‐like)	
  
distribu?on.	
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Q(x)	
  

f1	
  
g1	
  

Q(h1)	
  
P(h1)	
  

fL	
   gL	
  

Q(hL)	
  
P(hL)	
  no

ise
	
  

signal	
  

…	
  

P(x|h1)	
  
Q(h1|x)	
  

Q(h2|h1)	
   f2	
   P(h2|h1)	
  g2	
  



DRAW: the latest variant of 
Variational Auto-Encoder 

•  Even	
  for	
  a	
  sta?c	
  input,	
  the	
  encoder	
  and	
  decoder	
  are	
  now	
  
recurrent	
  nets,	
  which	
  gradually	
  add	
  elements	
  to	
  the	
  answer,	
  
and	
  use	
  an	
  a\en?on	
  mechanism	
  to	
  choose	
  where	
  to	
  do	
  so.	
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(Gregor	
  et	
  al	
  of	
  Google	
  DeepMind,	
  arXiv	
  1502.04623,	
  2015)	
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Abstract
This paper introduces the Deep Recurrent Atten-

tive Writer (DRAW) neural network architecture
for image generation. DRAW networks combine
a novel spatial attention mechanism that mimics
the foveation of the human eye, with a sequential
variational auto-encoding framework that allows
for the iterative construction of complex images.
The system substantially improves on the state
of the art for generative models on MNIST, and,
when trained on the Street View House Numbers
dataset, it generates images that cannot be distin-
guished from real data with the naked eye.

1. Introduction
A person asked to draw, paint or otherwise recreate a visual
scene will naturally do so in a sequential, iterative fashion,
reassessing their handiwork after each modification. Rough
outlines are gradually replaced by precise forms, lines are
sharpened, darkened or erased, shapes are altered, and the
final picture emerges. Most approaches to automatic im-
age generation, however, aim to generate entire scenes at
once. In the context of generative neural networks, this typ-
ically means that all the pixels are conditioned on a single
latent distribution (Dayan et al., 1995; Hinton & Salakhut-
dinov, 2006; Larochelle & Murray, 2011). As well as pre-
cluding the possibility of iterative self-correction, the “one
shot” approach is fundamentally difficult to scale to large
images. The Deep Recurrent Attentive Writer (DRAW) ar-
chitecture represents a shift towards a more natural form of
image construction, in which parts of a scene are created
independently from others, and approximate sketches are
successively refined.

The core of the DRAW architecture is a pair of recurrent
neural networks: an encoder network that compresses the
real images presented during training, and a decoder that
reconstitutes images after receiving codes. The combined
system is trained end-to-end with stochastic gradient de-

Time

Figure 1. A trained DRAW network generating MNIST dig-
its. Each row shows successive stages in the generation of a sin-
gle digit. Note how the lines composing the digits appear to be
“drawn” by the network. The red rectangle delimits the area at-
tended to by the network at each time-step, with the focal preci-
sion indicated by the width of the rectangle border.

scent, where the loss function is a variational upper bound
on the log-likelihood of the data. It therefore belongs to the
family of variational auto-encoders, a recently emerged
hybrid of deep learning and variational inference that has
led to significant advances in generative modelling (Gre-
gor et al., 2014; Kingma & Welling, 2014; Rezende et al.,
2014; Mnih & Gregor, 2014; Salimans et al., 2014). Where
DRAW differs from its siblings is that, rather than generat-
ing images in a single pass, it iteratively constructs scenes
through an accumulation of modifications emitted by the
decoder, each of which is observed by the encoder.

An obvious correlate of generating images step by step is
the ability to selectively attend to parts of the scene while
ignoring others. A wealth of results in the past few years
suggest that visual structure can be better captured by a se-
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quence of partial glimpses, or foveations, than by a sin-
gle sweep through the entire image (Larochelle & Hinton,
2010; Denil et al., 2012; Tang et al., 2013; Ranzato, 2014;
Zheng et al., 2014; Mnih et al., 2014; Ba et al., 2014; Ser-
manet et al., 2014). The main challenge faced by sequential
attention models is learning where to look, which can be
addressed with reinforcement learning techniques such as
policy gradients (Mnih et al., 2014). The attention model in
DRAW, however, is fully differentiable, making it possible
to train with standard backpropagation. In this sense it re-
sembles the selective read and write operations developed
for the Neural Turing Machine (Graves et al., 2014).

The following section defines the DRAW architecture,
along with the loss function used for training and the pro-
cedure for image generation. Section 3 presents the selec-
tive attention model and shows how it is applied to read-
ing and modifying images. Section 4 provides experi-
mental results on the MNIST, Street View House Num-
bers and CIFAR-10 datasets, with examples of generated
images; and concluding remarks are given in Section 5.
Lastly, we would like to direct the reader to the video
accompanying this paper (https://www.youtube.
com/watch?v=Zt-7MI9eKEo) which contains exam-
ples of DRAW networks reading and generating images.

2. The DRAW Network
The basic structure of a DRAW network is similar to that of
other variational auto-encoders: an encoder network deter-
mines a distribution over latent codes that capture salient
information about the input data; a decoder network re-
ceives samples from the code distribuion and uses them to
condition its own distribution over images. However there
are three key differences. Firstly, both the encoder and de-
coder are recurrent networks in DRAW, so that a sequence

of code samples is exchanged between them; moreover the
encoder is privy to the decoder’s previous outputs, allow-
ing it to tailor the codes it sends according to the decoder’s
behaviour so far. Secondly, the decoder’s outputs are suc-
cessively added to the distribution that will ultimately gen-
erate the data, as opposed to emitting this distribution in
a single step. And thirdly, a dynamically updated atten-
tion mechanism is used to restrict both the input region
observed by the encoder, and the output region modified
by the decoder. In simple terms, the network decides at
each timestep “where to read” and “where to write” as
well as “what to write”. The architecture is sketched in
Fig. 2, alongside a conventional, feedforward variational
auto-encoder.

2.1. Network Architecture

Let RNN enc be the function enacted by the encoder net-
work at a single time-step. The output of RNN enc at time
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Figure 2. Left: Conventional Variational Auto-Encoder. Dur-
ing generation, a sample z is drawn from a prior P (z) and passed
through the feedforward decoder network to compute the proba-
bility of the input P (x|z) given the sample. During inference the
input x is passed to the encoder network, producing an approx-
imate posterior Q(z|x) over latent variables. During training, z
is sampled from Q(z|x) and then used to compute the total de-
scription length KL

�
Q(Z|x)||P (Z)

�
� log(P (x|z)), which is

minimised with stochastic gradient descent. Right: DRAW Net-
work. At each time-step a sample zt from the prior P (zt) is
passed to the recurrent decoder network, which then modifies part
of the canvas matrix. The final canvas matrix cT is used to com-
pute P (x|z1:T ). During inference the input is read at every time-
step and the result is passed to the encoder RNN. The RNNs at
the previous time-step specify where to read. The output of the
encoder RNN is used to compute the approximate posterior over
the latent variables at that time-step.

t is the encoder hidden vector h

enc
t

. Similarly the output of
the decoder RNN dec at t is the hidden vector h

dec
t

. In gen-
eral the encoder and decoder may be implemented by any
recurrent neural network. In our experiments we use the
Long Short-Term Memory architecture (LSTM; Hochreiter
& Schmidhuber (1997)) for both, in the extended form with
forget gates (Gers et al., 2000). We favour LSTM due to
its proven track record for handling long-range dependen-
cies in real sequential data (Graves, 2013; Sutskever et al.,
2014). Throughout the paper, we use the notation b = L(a)

to denote a linear weight matrix from the vector a to the
vector b.

At each time-step t, the encoder receives input from both
the image x and from the previous decoder hidden vector
h

dec
t�1

. The precise form of the encoder input depends on a
read operation, which will be defined in the next section.
The output h

enc
t

of the encoder is used to parameterise a
distribution Q(Z

t

|henc
t

) over the latent vector z

t

. In our
experiments the latent distribution is a diagonal Gaussian
N (Z

t

|µ
t

, �

t

):

µ

t

= L(h

enc

t

) (1)
�

t

= exp (L(h

enc

t

)) (2)

Bernoulli distributions are more common than Gaussians
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Table 3. Experimental Hyper-Parameters.
Task #glimpses LSTM #h #z Read Size Write Size
100 ⇥ 100 MNIST Classification 8 256 - 12 ⇥ 12 -
MNIST Model 64 256 100 2 ⇥ 2 5 ⇥ 5

SVHN Model 32 800 100 12 ⇥ 12 12 ⇥ 12

CIFAR Model 64 400 200 5 ⇥ 5 5 ⇥ 5

Figure 10. SVHN Generation Sequences. The red rectangle in-
dicates the attention patch. Notice how the network draws the dig-
its one at a time, and how it moves and scales the writing patch to
produce numbers with different slopes and sizes.

 5060
 5080
 5100
 5120
 5140
 5160
 5180
 5200
 5220

 0  50  100  150  200  250  300  350

co
st

 p
er

 e
xa

m
pl

e

minibatch number (thousands)

training
validation

Figure 11. Training and validation cost on SVHN. The valida-
tion cost is consistently lower because the validation set patches
were extracted from the image centre (rather than from random
locations, as in the training set). The network was never able to
overfit on the training data.

Figure 12. Generated CIFAR images. The rightmost column
shows the nearest training examples to the column beside it.

5. Conclusion
This paper introduced the Deep Recurrent Attentive Writer
(DRAW) neural network architecture, and demonstrated its
ability to generate highly realistic natural images such as
photographs of house numbers, as well as improving on the
best known results for binarized MNIST generation. We
also established that the two-dimensional differentiable at-
tention mechanism embedded in DRAW is beneficial not
only to image generation, but also to cluttered image clas-
sification.
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Figure 8. Generated MNIST images with two digits.

with attention it constructs the digit by tracing the lines—
much like a person with a pen.

4.3. MNIST Generation with Two Digits

The main motivation for using an attention-based genera-
tive model is that large images can be built up iteratively,
by adding to a small part of the image at a time. To test
this capability in a controlled fashion, we trained DRAW
to generate images with two 28 ⇥ 28 MNIST images cho-
sen at random and placed at random locations in a 60 ⇥ 60

black background. In cases where the two digits overlap,
the pixel intensities were added together at each point and
clipped to be no greater than one. Examples of generated
data are shown in Fig. 8. The network typically generates
one digit and then the other, suggesting an ability to recre-
ate composite scenes from simple pieces.

4.4. Street View House Number Generation

MNIST digits are very simplistic in terms of visual struc-
ture, and we were keen to see how well DRAW performed
on natural images. Our first natural image generation ex-
periment used the multi-digit Street View House Numbers
dataset (Netzer et al., 2011). We used the same preprocess-
ing as (Goodfellow et al., 2013), yielding a 64 ⇥ 64 house
number image for each training example. The network was
then trained using 54 ⇥ 54 patches extracted at random lo-
cations from the preprocessed images. The SVHN training
set contains 231,053 images, and the validation set contains

Figure 9. Generated SVHN images. The rightmost column
shows the training images closest (in L

2 distance) to the gener-
ated images beside them. Note that the two columns are visually
similar, but the numbers are generally different.

4,701 images.

A major challenge with natural image generation is how to
model the pixel colours. In this work we applied a simple
approximation where the normalised intensity of each of
the RGB channels was treated as an independent Bernoulli
probability. This approach has the advantage of being easy
to implement and train; however it does mean that the loss
function used for training does not match the true compres-
sion cost of the data.

The house number images generated by the network are
highly realistic, as shown in Figs. 9 and 10. Fig. 11 reveals
that, despite the long training time, the DRAW network un-
derfit the SVHN training data.

4.5. Generating CIFAR Images

The most challenging dataset we applied DRAW to was
the CIFAR-10 collection of natural images (Krizhevsky,
2009). CIFAR-10 is very diverse, and with only 50,000
training examples it is very difficult to generate realistic-
looking objects without overfitting (in other words, without
copying from the training set). Nonetheless the images in
Fig. 12 demonstrate that DRAW is able to capture much of
the shape, colour and composition of real photographs.
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Conclusions 

•  Machine	
  Learning	
  has	
  become	
  a	
  central	
  technology	
  in	
  order	
  to	
  
extract	
  informa6on	
  from	
  data	
  

•  Deep	
  Learning:	
  a	
  machine	
  learning	
  breakthrough	
  
•  Distributed	
  representa6ons:	
  	
  

•  prior	
  that	
  can	
  buy	
  exponen?al	
  gain	
  in	
  generaliza?on	
  
•  Deep	
  composi6on	
  of	
  non-­‐lineari6es:	
  	
  

•  prior	
  that	
  can	
  buy	
  exponen?al	
  gain	
  in	
  generaliza?on	
  
•  Both	
  yield	
  non-­‐local	
  generaliza6on	
  
•  Strong	
  evidence	
  that	
  local	
  minima	
  are	
  not	
  an	
  issue,	
  saddle	
  points	
  
•  Many	
  challenges	
  remain,	
  in	
  par6cular	
  wrt	
  unsupervised	
  learning	
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