
Deep	 Learning	 	
	 	
	
	

Yoshua	 Bengio	 	
June	 15,	 2015	

CORS/INFORMS’2015	 Tutorial	

What is Machine Learning?

	
•  for	 extrac?ng	 what	 is	 GENERAL	

•  so	 as	 to	 be	 able	 to	 say	 something	 meaningful	 about	 new	 cases	

•  to	 iden?fy	 which	 configura?ons	 of	 variables	 are	 plausible	
•  to	 generate	 new	 plausible	 configura?ons	 or	 choose	 best	 ones	
•  to	 learn	 to	 predict,	 classify,	 take	 decisions	

Mathematical principles and computer algorithms exploiting data

Generalization vs Training Error
•  Minimizing	 Training	 Error	 very	 well	 can	 be	 easy	 	
	 	 	 	 à	 learning	 by	 heart	

	 	 	 à	 Machine	 Learning	 ≠	 Op?miza?on	

•  Real	 objec6ve:	 generalizing	 to	 new	 examples	
	

	

	

	
•  Mathema?cal	 guarantees	 about	 generaliza?on	 if	 training	

error	 is	 small	 and	 predictor	 not	 too	 flexible	 (by	 defining	
priors	 or	 preferences)	

What is Generalizing?

•  Capturing	 dependencies	 between	 random	 variables	

•  Spreading	 out	 the	 probability	 mass	 from	 the	 empirical	
distribu?on.	 Where???	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
=	 making	 good	 guesses	 away	 from	 the	 training	 examples.	

•  Discovering	 underlying	 abstrac?ons	 /	 explanatory	 factors	 	

Breakthrough for
AI and ML
• 	 Deep	 Learning:	 machine	
learning	 algorithms	 based	 on	
learning	 mul6ple	 levels	 of	
representa6on	 /	 abstrac6on.	

	
5	

Amazing	 improvements	 in	 error	 rate	 in	 object	 recogni?on,	 object	
detec?on,	 speech	 recogni?on,	 and	 more	 recently,	 some	 in	
machine	 transla?on	

Montréal
Toronto

Bengio

Hinton
Le Cun

Initial Breakthrough in 2006

•  Ability	 to	 train	 deep	 architectures	 by	
using	 layer-‐wise	 unsupervised	
learning,	 whereas	 previous	 purely	
supervised	 a\empts	 had	 failed	

•  Unsupervised	 feature	 learners:	
•  RBMs	
•  Auto-‐encoder	 variants	
•  Sparse	 coding	 variants	

New York
6	

Canadian	 ini6a6ve:	 CIFAR	

2010-2012: Breakthrough in speech
recognition à in Androids by 2012

1%	

2%	

4%	

10%	

100%	

1990	 2000	 2010	

Deep	 learning	

According	 to	 Microsod:	

Breakthrough in computer vision:
2012-2015

•  GPUs	 +	 10x	 more	 data	

8	

•  1000	 object	 categories,	 	
•  Facebook:	 millions	 of	 faces	

•  2015:	

Deep Learning in the News

9	

Researcher Dreams Up Machines
That Learn Without Humans
06.27.13

Scientists See Promise in
Deep-Learning Programs
John Markoff
November 23, 2012

Google	 taps	 U	
of	 T	 professor	
to	 teach	
context	 to	
computers	
03.11.13	

IT Companies are Racing into
Deep Learning

Ongoing breakthrough:
natural language
understanding
Examples:	 	 machine	 transla?on,	 and	 “transla?ng”	 images	 into	 text	 	

Xu	 et	 al,	 to	 appear	 ICML’2015	

Why is Deep Learning
Working so Well?

12	

Ultimate Goals

•  AI	
•  Needs	 knowledge	
•  Needs	 learning	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

(involves	 priors	 +	 op#miza#on/search)	

•  Needs	 generaliza6on	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
(guessing	 where	 probability	 mass	 concentrates)	

•  Needs	 ways	 to	 fight	 the	 curse	 of	 dimensionality	
(exponen?ally	 many	 configura?ons	 of	 the	 variables	 to	 consider)	

•  Needs	 disentangling	 the	 underlying	 explanatory	 factors	
(making	 sense	 of	 the	 data)	

13	

•  Good	 features	 essen?al	 for	 successful	 ML:	 90%	 of	 effort	

•  Handcrading	 features	 vs	 learning	 them	

•  Good	 representa?on?	
•  guesses	
	 	 	 	 	 the	 features	 /	 factors	 /	 causes	

Representation Learning

14	

raw	
input	
data	

represented	
by	 chosen	
features	

MACHINE	
LEARNING	 	

represented	
by	 learned	
features	

Input

Hand-
designed
program

Output

Input

Hand-
designed
features

Mapping
from

features

Output

Input

Features

Mapping
from

features

Output

Input

Simplest
features

Mapping
from

features

Output

Most
complex
features

Rule-based
systems

Classic
machine
learning

Representation
learning

Deep
learning

Automating
Feature Discovery

15	

Visualizing and Understanding Convolutional Networks

(a) (b)

(c) (d) (e)

Figure 6. (a): 1st layer features without feature scale clipping. Note that one feature dominates. (b): 1st layer features
from (Krizhevsky et al., 2012). (c): Our 1st layer features. The smaller stride (2 vs 4) and filter size (7x7 vs 11x11)
results in more distinctive features and fewer “dead” features. (d): Visualizations of 2nd layer features from (Krizhevsky
et al., 2012). (e): Visualizations of our 2nd layer features. These are cleaner, with no aliasing artifacts that are visible in
(d).

Car wheel
Racer
Cab
Police van

Pomeranian
Tennis ball
Keeshond
Pekinese

Afghan hound
Gordon setter
Irish setter
Mortarboard
Fur coat
Academic gown
Australian terrier
Ice lolly
Vizsla
Neck brace

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.05

0.1

0.15

0.2

0.25

True Label: Pomeranian

(a) Input Image (b) Layer 5, strongest feature map
(c) Layer 5, strongest
feature map projections

(d) Classifier, probability
of correct class

(e) Classifier, most
probable class

True Label: Car Wheel

True Label: Afghan Hound

Figure 7. Three test examples where we systematically cover up di↵erent portions of the scene with a gray square (1st
column) and see how the top (layer 5) feature maps ((b) & (c)) and classifier output ((d) & (e)) changes. (b): for each
position of the gray scale, we record the total activation in one layer 5 feature map (the one with the strongest response
in the unoccluded image). (c): a visualization of this feature map projected down into the input image (black square),
along with visualizations of this map from other images. The first row example shows the strongest feature to be the
dog’s face. When this is covered-up the activity in the feature map decreases (blue area in (b)). (d): a map of correct
class probability, as a function of the position of the gray square. E.g. when the dog’s face is obscured, the probability
for “pomeranian” drops significantly. (e): the most probable label as a function of occluder position. E.g. in the 1st row,
for most locations it is “pomeranian”, but if the dog’s face is obscured but not the ball, then it predicts “tennis ball”. In
the 2nd example, text on the car is the strongest feature in layer 5, but the classifier is most sensitive to the wheel. The
3rd example contains multiple objects. The strongest feature in layer 5 picks out the faces, but the classifier is sensitive
to the dog (blue region in (d)), since it uses multiple feature maps.

Visualizing and Understanding Convolutional Networks

(a) (b)

(c) (d) (e)

Figure 6. (a): 1st layer features without feature scale clipping. Note that one feature dominates. (b): 1st layer features
from (Krizhevsky et al., 2012). (c): Our 1st layer features. The smaller stride (2 vs 4) and filter size (7x7 vs 11x11)
results in more distinctive features and fewer “dead” features. (d): Visualizations of 2nd layer features from (Krizhevsky
et al., 2012). (e): Visualizations of our 2nd layer features. These are cleaner, with no aliasing artifacts that are visible in
(d).

Car wheel
Racer
Cab
Police van

Pomeranian
Tennis ball
Keeshond
Pekinese

Afghan hound
Gordon setter
Irish setter
Mortarboard
Fur coat
Academic gown
Australian terrier
Ice lolly
Vizsla
Neck brace

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.05

0.1

0.15

0.2

0.25

True Label: Pomeranian

(a) Input Image (b) Layer 5, strongest feature map
(c) Layer 5, strongest
feature map projections

(d) Classifier, probability
of correct class

(e) Classifier, most
probable class

True Label: Car Wheel

True Label: Afghan Hound

Figure 7. Three test examples where we systematically cover up di↵erent portions of the scene with a gray square (1st
column) and see how the top (layer 5) feature maps ((b) & (c)) and classifier output ((d) & (e)) changes. (b): for each
position of the gray scale, we record the total activation in one layer 5 feature map (the one with the strongest response
in the unoccluded image). (c): a visualization of this feature map projected down into the input image (black square),
along with visualizations of this map from other images. The first row example shows the strongest feature to be the
dog’s face. When this is covered-up the activity in the feature map decreases (blue area in (b)). (d): a map of correct
class probability, as a function of the position of the gray square. E.g. when the dog’s face is obscured, the probability
for “pomeranian” drops significantly. (e): the most probable label as a function of occluder position. E.g. in the 1st row,
for most locations it is “pomeranian”, but if the dog’s face is obscured but not the ball, then it predicts “tennis ball”. In
the 2nd example, text on the car is the strongest feature in layer 5, but the classifier is most sensitive to the wheel. The
3rd example contains multiple objects. The strongest feature in layer 5 picks out the faces, but the classifier is sensitive
to the dog (blue region in (d)), since it uses multiple feature maps.

Visualizing and Understanding Convolutional Networks

(a) (b)

(c) (d) (e)

Figure 6. (a): 1st layer features without feature scale clipping. Note that one feature dominates. (b): 1st layer features
from (Krizhevsky et al., 2012). (c): Our 1st layer features. The smaller stride (2 vs 4) and filter size (7x7 vs 11x11)
results in more distinctive features and fewer “dead” features. (d): Visualizations of 2nd layer features from (Krizhevsky
et al., 2012). (e): Visualizations of our 2nd layer features. These are cleaner, with no aliasing artifacts that are visible in
(d).

Car wheel
Racer
Cab
Police van

Pomeranian
Tennis ball
Keeshond
Pekinese

Afghan hound
Gordon setter
Irish setter
Mortarboard
Fur coat
Academic gown
Australian terrier
Ice lolly
Vizsla
Neck brace

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.05

0.1

0.15

0.2

0.25

True Label: Pomeranian

(a) Input Image (b) Layer 5, strongest feature map
(c) Layer 5, strongest
feature map projections

(d) Classifier, probability
of correct class

(e) Classifier, most
probable class

True Label: Car Wheel

True Label: Afghan Hound

Figure 7. Three test examples where we systematically cover up di↵erent portions of the scene with a gray square (1st
column) and see how the top (layer 5) feature maps ((b) & (c)) and classifier output ((d) & (e)) changes. (b): for each
position of the gray scale, we record the total activation in one layer 5 feature map (the one with the strongest response
in the unoccluded image). (c): a visualization of this feature map projected down into the input image (black square),
along with visualizations of this map from other images. The first row example shows the strongest feature to be the
dog’s face. When this is covered-up the activity in the feature map decreases (blue area in (b)). (d): a map of correct
class probability, as a function of the position of the gray square. E.g. when the dog’s face is obscured, the probability
for “pomeranian” drops significantly. (e): the most probable label as a function of occluder position. E.g. in the 1st row,
for most locations it is “pomeranian”, but if the dog’s face is obscured but not the ball, then it predicts “tennis ball”. In
the 2nd example, text on the car is the strongest feature in layer 5, but the classifier is most sensitive to the wheel. The
3rd example contains multiple objects. The strongest feature in layer 5 picks out the faces, but the classifier is sensitive
to the dog (blue region in (d)), since it uses multiple feature maps.

Visualizing and Understanding Convolutional Networks

Figure 2. Visualization of features in a fully trained model. For layers 2-5 we show the top 9 activations in a random subset
of feature maps across the validation data, projected down to pixel space using our deconvolutional network approach.
Our reconstructions are not samples from the model: they are reconstructed patterns from the validation set that cause
high activations in a given feature map. For each feature map we also show the corresponding image patches. Note:
(i) the the strong grouping within each feature map, (ii) greater invariance at higher layers and (iii) exaggeration of
discriminative parts of the image, e.g. eyes and noses of dogs (layer 4, row 1, cols 1). Best viewed in electronic form.

Visualizing and Understanding Convolutional Networks

Figure 2. Visualization of features in a fully trained model. For layers 2-5 we show the top 9 activations in a random subset
of feature maps across the validation data, projected down to pixel space using our deconvolutional network approach.
Our reconstructions are not samples from the model: they are reconstructed patterns from the validation set that cause
high activations in a given feature map. For each feature map we also show the corresponding image patches. Note:
(i) the the strong grouping within each feature map, (ii) greater invariance at higher layers and (iii) exaggeration of
discriminative parts of the image, e.g. eyes and noses of dogs (layer 4, row 1, cols 1). Best viewed in electronic form.

Visualizing and Understanding Convolutional Networks

Figure 2. Visualization of features in a fully trained model. For layers 2-5 we show the top 9 activations in a random subset
of feature maps across the validation data, projected down to pixel space using our deconvolutional network approach.
Our reconstructions are not samples from the model: they are reconstructed patterns from the validation set that cause
high activations in a given feature map. For each feature map we also show the corresponding image patches. Note:
(i) the the strong grouping within each feature map, (ii) greater invariance at higher layers and (iii) exaggeration of
discriminative parts of the image, e.g. eyes and noses of dogs (layer 4, row 1, cols 1). Best viewed in electronic form.

Visualizing and Understanding Convolutional Networks

Figure 2. Visualization of features in a fully trained model. For layers 2-5 we show the top 9 activations in a random subset
of feature maps across the validation data, projected down to pixel space using our deconvolutional network approach.
Our reconstructions are not samples from the model: they are reconstructed patterns from the validation set that cause
high activations in a given feature map. For each feature map we also show the corresponding image patches. Note:
(i) the the strong grouping within each feature map, (ii) greater invariance at higher layers and (iii) exaggeration of
discriminative parts of the image, e.g. eyes and noses of dogs (layer 4, row 1, cols 1). Best viewed in electronic form.

Visible layer
(input pixels)

1st hidden layer
(edges)

Visualizing and Understanding Convolutional Networks

Figure 2. Visualization of features in a fully trained model. For layers 2-5 we show the top 9 activations in a random subset
of feature maps across the validation data, projected down to pixel space using our deconvolutional network approach.
Our reconstructions are not samples from the model: they are reconstructed patterns from the validation set that cause
high activations in a given feature map. For each feature map we also show the corresponding image patches. Note:
(i) the the strong grouping within each feature map, (ii) greater invariance at higher layers and (iii) exaggeration of
discriminative parts of the image, e.g. eyes and noses of dogs (layer 4, row 1, cols 1). Best viewed in electronic form.

Visualizing and Understanding Convolutional Networks

Figure 2. Visualization of features in a fully trained model. For layers 2-5 we show the top 9 activations in a random subset
of feature maps across the validation data, projected down to pixel space using our deconvolutional network approach.
Our reconstructions are not samples from the model: they are reconstructed patterns from the validation set that cause
high activations in a given feature map. For each feature map we also show the corresponding image patches. Note:
(i) the the strong grouping within each feature map, (ii) greater invariance at higher layers and (iii) exaggeration of
discriminative parts of the image, e.g. eyes and noses of dogs (layer 4, row 1, cols 1). Best viewed in electronic form.

Visualizing and Understanding Convolutional Networks

Figure 2. Visualization of features in a fully trained model. For layers 2-5 we show the top 9 activations in a random subset
of feature maps across the validation data, projected down to pixel space using our deconvolutional network approach.
Our reconstructions are not samples from the model: they are reconstructed patterns from the validation set that cause
high activations in a given feature map. For each feature map we also show the corresponding image patches. Note:
(i) the the strong grouping within each feature map, (ii) greater invariance at higher layers and (iii) exaggeration of
discriminative parts of the image, e.g. eyes and noses of dogs (layer 4, row 1, cols 1). Best viewed in electronic form.

2nd hidden layer
(corners and

contours)

3rd hidden layer
(object parts)

CAR PERSON ANIMAL Output
(object identity)

Composing Features on Features

16	

Higher-‐level	 features	

are	 defined	 in	 terms	 of	

lower-‐level	

features	

Learning multiple levels of
representation
There	 is	 theore?cal	 and	 empirical	 evidence	 in	 favor	 of	
mul?ple	 levels	 of	 representa?on	

	 Exponen6al	 gain	 for	 some	 families	 of	 func6ons	

Biologically	 inspired	 learning	

Brain	 has	 a	 deep	 architecture	

Cortex	 seems	 to	 have	 a	 	
generic	 learning	 algorithm	 	

Humans	 first	 learn	 simpler	 	
concepts	 and	 compose	 them	

It	 works!	 Speech	 +	 vision	 +	 NLP	 breakthroughs	
17	

Machine Learning, AI
& No Free Lunch
•  Three	 key	 ingredients	 for	 ML	 towards	 AI	

1.  Lots	 &	 lots	 of	 data	

2.  Very	 flexible	 models	

3.  Powerful	 priors	 that	 can	 defeat	 the	 curse	 of	
dimensionality	

18	

ML 101. What We Are Fighting Against:
The Curse of Dimensionality

	 	 	 To	 generalize	 locally,	
need	 representa?ve	
examples	 for	 all	
relevant	 varia?ons!	

	
Classical	 solu?on:	 hope	

for	 a	 smooth	 enough	
target	 func?on,	 or	
make	 it	 smooth	 by	
handcrading	 good	
features	 /	 kernel	

Not Dimensionality so much as
Number of Variations

•  Theorem:	 Gaussian	 kernel	 machines	 need	 at	 least	 k	 examples	
to	 learn	 a	 func?on	 that	 has	 2k	 zero-‐crossings	 along	 some	 line	

	
	
	
	
	
•  Theorem:	 For	 a	 Gaussian	 kernel	 machine	 to	 learn	 some	

maximally	 varying	 func?ons	 	 over	 d	 inputs	 requires	 O(2d)	
examples	

	

(Bengio, Dellalleau & Le Roux 2007)

Putting Probability Mass where
Structure is Plausible

•  Empirical	 distribu?on:	 mass	 at	
training	 examples	

21	

•  Smoothness:	 spread	 mass	 around	
•  Insufficient	
•  Guess	 some	 ‘structure’	 and	

generalize	 accordingly	

Bypassing the curse of
dimensionality
Deep	 learning	 builds	 composi?onality	 into	 ML	 models	 	

Just	 as	 human	 languages	 exploit	 composi?onality	 to	 give	
representa?ons	 and	 meanings	 to	 complex	 ideas	

Exploi?ng	 composi?onality	 gives	 an	 exponen?al	 gain	 in	
representa?onal	 power	

Distributed	 representa?ons	 /	 embeddings:	 feature	 learning	

Deep	 architecture:	 mul?ple	 levels	 of	 feature	 learning	

Prior:	 composi?onality	 is	 useful	 to	 describe	 the	
world	 around	 us	 efficiently	

	 22	

•  Clustering,	 n-‐grams,	 Nearest-‐
Neighbors,	 RBF	 SVMs,	 local	
non-‐parametric	 density	
es?ma?on	 &	 predic?on,	
decision	 trees,	 etc.	

•  Parameters	 for	 each	
dis?nguishable	 region	

•  #	 of	 dis6nguishable	 regions	
is	 linear	 in	 #	 of	 parameters	

Non-distributed representations

Clustering	

23	

à	 No	 non-‐trivial	 generaliza?on	 to	 regions	 without	 examples	

•  Factor	 models,	 PCA,	 RBMs,	
Neural	 Nets,	 Sparse	 Coding,	
Deep	 Learning,	 etc.	

•  Each	 parameter	 influences	
many	 regions,	 not	 just	 local	
neighbors	

•  #	 of	 dis6nguishable	 regions	
grows	 almost	 exponen6ally	
with	 #	 of	 parameters	

•  GENERALIZE	 NON-‐LOCALLY	
TO	 NEVER-‐SEEN	 REGIONS	

The need for distributed
representations

Mul?-‐	
Clustering	

24	

C1	 C2	 C3	

input	

Non-‐mutually	
exclusive	 features/
a\ributes	 create	 a	
combinatorially	 large	
set	 of	 dis?nguiable	
configura?ons	

Classical Symbolic AI vs
Representation Learning

•  Two	 symbols	 are	 equally	 far	 from	 each	 other	
•  Concepts	 are	 not	 represented	 by	 symbols	 in	 our	

brain,	 but	 by	 pa\erns	 of	 ac?va?on	 	
	 (Connec/onism,	 1980’s)	

25	

cat	 	
dog	 	

person	 	 Input	
units	

Hidden	 units	

Output	 units	

Geoffrey	 Hinton	

David	 Rumelhart	

Neural Language Models: fighting one
exponential by another one!

•  (Bengio	 et	 al	 NIPS’2000)	

26	

w1 w2 w3 w4 w5 w6

R(w6)R(w5)R(w4)R(w3)R(w2)R(w1)

output

input sequence

i−th output = P(w(t) = i | context)

softmax

tanh

.

.

.

across words

most computation here

index for w(t−n+1) index for w(t−2) index for w(t−1)

shared parameters

Matrix

in
look−up
Table C

C

C(w(t−2)) C(w(t−1))C(w(t−n+1))

. . .

Exponen?ally	 large	 set	 of	
generaliza?ons:	 seman?cally	 close	
sequences	

Exponen?ally	 large	 set	 of	 possible	 contexts	

Neural word embeddings – visualization
Directions = Learned Attributes

27	

Analogical Representations for Free
(Mikolov et al, ICLR 2013)

•  Seman?c	 rela?ons	 appear	 as	 linear	 rela?onships	 in	 the	 space	 of	
learned	 representa?ons	

•  King	 –	 Queen	 ≈	 	 Man	 –	 Woman	
•  Paris	 –	 France	 +	 Italy	 ≈	 Rome	

28	

Paris	

France	
Italy	

Rome	

Google Image Search:
Different object types represented in the
same space

Google:	
S.	 Bengio,	 J.	
Weston	 &	 N.	
Usunier	

(IJCAI	 2011,	
NIPS’2010,	
JMLR	 2010,	
MLJ	 2010)	

Summary of New Theoretical Results

•  Expressiveness	 of	 deep	 networks	 with	 piecewise	 linear	
ac?va?on	 func?ons:	 exponen?al	 advantage	 for	 depth	

•  Theore?cal	 and	 empirical	 evidence	 against	 bad	 local	 minima	

•  Manifold	 &	 probabilis?c	 interpreta?ons	 of	 auto-‐encoders	
•  Es?ma?ng	 the	 gradient	 of	 the	 energy	 func?on	
•  Sampling	 via	 Markov	 chain	
•  Varia?onal	 auto-‐encoder	 breakthrough	

30	

(Montufar	 et	 al	 NIPS	 2014)	

(Dauphin	 et	 al	 NIPS	 2014)	

(Alain	 &	 Bengio	 ICLR	 2013)	

(Bengio	 et	 al	 NIPS	 2013)	

(Gregor	 et	 al	 arXiv	 2015)	

The Depth Prior can be Exponentially
Advantageous
Theore?cal	 arguments:	

…	
1	 2	 3	 2n

1	 2	 3	
…	

n	

= universal approximator 2 layers of
Logic gates
Formal neurons
RBF units

Theorems on advantage of depth:
(Hastad et al 86 & 91, Bengio et al 2007,
Bengio & Delalleau 2011, Braverman 2011,
Pascanu et al 2014, Montufar et al NIPS 2014)

Some functions compactly
represented with k layers may
require exponential size with 2
layers

RBMs & auto-encoders = universal approximator

main

subroutine1 includes
subsub1 code and
subsub2 code and
subsubsub1 code

“Shallow” computer program

subroutine2 includes
subsub2 code and
subsub3 code and
subsubsub3 code and …

main

sub1 sub2 sub3

subsub1 subsub2 subsub3

subsubsub1 subsubsub2
subsubsub3

“Deep” computer program

Sharing Components in a Deep
Architecture

Sum-‐product	
network	

Polynomial	 expressed	 with	 shared	 components:	 advantage	 of	
depth	 may	 grow	 exponen?ally	 	
	

Theorems	 in	 	
(Bengio	 &	 Delalleau,	 ALT	 2011;	
Delalleau	 &	 Bengio	 NIPS	 2011)	

New theoretical result:
Expressiveness of deep nets with
piecewise-linear activation fns

35	

(Pascanu,	 Montufar,	 Cho	 &	 Bengio;	 ICLR	 2014)	

(Montufar,	 Pascanu,	 Cho	 &	 Bengio;	 NIPS	 2014)	

Deeper	 nets	 with	 rec?fier/maxout	 units	 are	 exponen?ally	 more	
expressive	 than	 shallow	 ones	 (1	 hidden	 layer)	 because	 they	 can	 split	
the	 input	 space	 in	 many	 more	 (not-‐independent)	 linear	 regions,	 with	
constraints,	 e.g.,	 with	 abs	 units,	 each	 unit	 creates	 mirror	 responses,	
folding	 the	 input	 space:	 	

	

	

A Myth is Being Debunked: Local
Minima in Neural Nets
à Convexity is not needed
•  (Pascanu,	 Dauphin,	 Ganguli,	 Bengio,	 arXiv	 May	 2014):	 On	 the	

saddle	 point	 problem	 for	 non-‐convex	 op/miza/on	
•  (Dauphin,	 Pascanu,	 Gulcehre,	 Cho,	 Ganguli,	 Bengio,	 NIPS’	 2014):	

Iden/fying	 and	 aWacking	 the	 saddle	 point	 problem	 in	 high-‐
dimensional	 non-‐convex	 op/miza/on	 	

•  (Choromanska,	 Henaff,	 Mathieu,	 Ben	 Arous	 &	 LeCun	 2014):	 The	
Loss	 Surface	 of	 Mul/layer	 Nets	

36	

Saddle Points

•  Local	 minima	 dominate	 in	 low-‐D,	 but	
saddle	 points	 dominate	 in	 high-‐D	

•  Most	 local	 minima	 are	 close	 to	 the	
bo\om	 (global	 minimum	 error)	

37	

Saddle Points During Training

•  Oscilla?ng	 between	 two	 behaviors:	
•  Slowly	 approaching	 a	 saddle	 point	
•  Escaping	 it	

38	

Low Index Critical Points

Choromanska	 et	 al	 &	 LeCun	 2014,	 ‘The	 Loss	 Surface	 of	 Mul/layer	 Nets’	
Shows	 that	 deep	 rec?fier	 nets	 are	 analogous	 to	 spherical	 spin-‐glass	 models	
The	 low-‐index	 cri?cal	 points	 of	 large	 models	 concentrate	 in	 a	 band	 just	
above	 the	 global	 minimum	

39	

Saddle-Free Optimization
(Pascanu, Dauphin, Ganguli, Bengio 2014)

•  Saddle	 points	 are	 ATTRACTIVE	 for	 Newton’s	 method	
•  Replace	 eigenvalues	 λ	 of	 Hessian	 by	 |λ|	
•  Jus?fied	 as	 a	 par?cular	 trust	 region	 method	

40	

Advantage	 increases	
with	 dimensionality	

Curriculum Learning

Guided learning helps training humans and animals

 Shaping

Start from simpler examples / easier tasks (Piaget 1952, Skinner 1958)

Education

Order & Selection of Examples Matters
(Bengio,	 Louradour,	 Collobert	 &	 Weston,	 ICML’2009)	 	 	 	 A	

• Curriculum	 learning	 	
•  (Bengio	 et	 al	 2009,	 Krueger	 &	 Dayan	 2009)	 	 	

•  Start	 with	 easier	 examples	

•  Faster	 convergence	 to	 a	 be\er	 local	
minimum	 in	 deep	 architectures	

!"#$%

&%

&"!$%

&"$%

'% $''% ('''% ($''%

!"
#
$%
&
'
(
)'
*
+
,)
-
"
%.
/)

01!!1"'))

23.&,*4)

)*++,)*-*.%

/01)*++,)*-*.%

!"#$%

&%

&"!$%

&"$%

'% $''% ('''% ($''%

!"
#
$%
&
'
(
)'
*
+
,)
-
"
%.
/)

01!!1"'))

23.&,*4)

)*++,)*-*.%

/01)*++,)*-*.%

42	

Curriculum learning as a
Continuation Method

Track local minima

Final solution

Easy to find minimum

How do humans generalize
from very few examples?

44	

•  They	 transfer	 knowledge	 from	 previous	 learning:	
•  Representa?ons	

•  Explanatory	 factors	

•  Previous	 learning	 from:	 unlabeled	 data	 	

	 	 	 	 	 	 	 	 +	 labels	 for	 other	 tasks	

•  Prior:	 shared	 underlying	 explanatory	 factors,	 in	
par6cular	 between	 P(x)	 and	 P(Y|x)	 	

	

Multi-Task Learning
•  Generalizing	 be\er	 to	 new	 tasks	

(tens	 of	 thousands!)	 is	 crucial	 to	
approach	 AI	

•  Deep	 architectures	 learn	 good	
intermediate	 representa?ons	 that	
can	 be	 shared	 across	 tasks	

	 	 	 	 	 (Collobert	 &	 Weston	 ICML	 2008,	
	 	 	 	 	 Bengio	 et	 al	 AISTATS	 2011)	

•  Good	 representa?ons	 that	
disentangle	 underlying	 factors	 of	
varia?on	 make	 sense	 for	 many	 tasks	
because	 each	 task	 concerns	 a	
subset	 of	 the	 factors	

45	

raw input x

task 1
output y1

task 3
output y3

task 2
output y2

Task	 A	 Task	 B	 Task	 C	

Prior:	 shared	 underlying	 explanatory	 factors	 between	 tasks	 	
	

E.g.	 dic?onary,	 with	 intermediate	
concepts	 re-‐used	 across	 many	 defini?ons	

Sharing Statistical Strength by Semi-
Supervised Learning

•  Hypothesis:	 P(x)	 shares	 structure	 with	 P(y|x)	

purely	
supervised	

semi-‐	
supervised	

46	

Raw	 data	
1	 layer	 2	 layers	

4	 layers	
3	 layers	

ICML’2011	
workshop	 on	
Unsup.	 &	
Transfer	 Learning	

NIPS’2011	
Transfer	
Learning	
Challenge	 	
Paper:	
ICML’2012	

Unsupervised and Transfer Learning
Challenge + Transfer Learning
Challenge: Deep Learning 1st Place

The Next Challenge:
Unsupervised Learning

•  Recent	 progress	 mostly	 in	 supervised	 DL	
•  Real	 technical	 challenges	 for	 unsupervised	 DL	
•  Poten?al	 benefits:	

•  Exploit	 tons	 of	 unlabeled	 data	
•  Answer	 new	 ques?ons	 about	 the	 variables	 observed	
•  Regularizer	 –	 transfer	 learning	 –	 domain	 adapta?on	
•  Easier	 op?miza?on	 (local	 training	 signal)	
•  Structured	 outputs	

48	

Why Latent Factors & Unsupervised
Representation Learning? Because of
Causality.

•  If	 Ys	 of	 interest	 are	 among	 the	 causal	 factors	 of	 X,	 then	

is	 ?ed	 to	 P(X)	 and	 P(X|Y),	 and	 P(X)	 is	 defined	 in	 terms	 of	 P(X|Y),	 i.e.	
•  The	 best	 possible	 model	 of	 X	 (unsupervised	 learning)	 MUST	

involve	 Y	 as	 a	 latent	 factor,	 implicitly	 or	 explicitly.	
•  Representa?on	 learning	 SEEKS	 the	 latent	 variables	 H	 that	

explain	 the	 varia?ons	 of	 X,	 making	 it	 likely	 to	 also	 uncover	 Y.	
	 	

49	

P (Y |X) =
P (X|Y)P (Y)

P (X)

Manifold Learning =
 Representation Learning

50	

tangent directions

tangent plane

Data on a curved manifold

Non-Parametric Manifold Learning:
hopeless without powerful enough priors

51	

AI-‐related	 data	 manifolds	 have	 too	 many	
twists	 and	 turns,	 not	 enough	 examples	
to	 cover	 all	 the	 ups	 &	 downs	 &	 twists	

Manifolds	 es?mated	 out	 of	 the	
neighborhood	 graph:	 	

	 -‐	 node	 =	 example	
	 -‐	 arc	 =	 near	 neighbor	

52	

Auto-Encoders Learn Salient
Variations, like a non-linear PCA

•  Minimizing	 reconstruc?on	 error	 forces	 to	
keep	 varia?ons	 along	 manifold.	

•  Regularizer	 wants	 to	 throw	 away	 all	
varia?ons.	

•  With	 both:	 keep	 ONLY	 sensi?vity	 to	
varia?ons	 ON	 the	 manifold.	

Denoising Auto-Encoder
•  Learns	 a	 vector	 field	 poin?ng	 towards	

higher	 probability	 direc?on	 (Alain	 &	 Bengio	 2013)	

•  Some	 DAEs	 correspond	 to	 a	 kind	 of	
Gaussian	 RBM	 with	 regularized	 Score	
Matching	 (Vincent	 2011)	

	 	 	 	 	 [equivalent	 when	 noiseà0]	

Corrupted input

Corrupted input

prior:	 examples	
concentrate	 near	 a	
lower	 dimensional	
“manifold”	 	 reconstruction(x)� x ! �

2 @ log p(x)

@x

Regularized Auto-Encoders Learn a
Vector Field that Estimates a
Gradient Field (Alain	 &	 Bengio	 ICLR	 2013)	

54	

Denoising Auto-Encoder Markov Chain

55	

Xt	

Xt	
~	 Xt+1	

~	

Xt+1	 Xt+2	

Xt+2	
~	

corrupt	
denoise	

Denoising Auto-Encoders Learn a
Markov Chain Transition Distribution
(Bengio	 et	 al	 NIPS	 2013)	

56	

Space-Filling in Representation-Space
•  Deeper	 representa6ons	 è	 abstrac6ons	 è	 disentangling	
•  Manifolds	 are	 expanded	 and	 fla_ened	

Linear	 interpola?on	 at	 layer	 2	

Linear	 interpola?on	 at	 layer	 1	

3’s	 manifold	

9’s	 manifold	

Linear	 interpola?on	 in	 pixel	 space	

Pixel	 space	

9’s	 manifold	 3’s	 manifold	

Representa?on	 space	

9’s	 manifold	 3’s	 manifold	

X-‐space	

H-‐space	

Extracting Structure By Gradual
Disentangling and Manifold Unfolding
(Bengio 2014, arXiv 1407.7906)
Each	 level	 transforms	 the	
data	 into	 a	 representa?on	 in	
which	 it	 is	 easier	 to	 model,	
unfolding	 it	 more,	
contrac?ng	 the	 noise	
dimensions	 and	 mapping	 the	
signal	 dimensions	 to	 a	
factorized	 (uniform-‐like)	
distribu?on.	
	
	

58	

Q(x)	

f1	
g1	

Q(h1)	
P(h1)	

fL	 gL	

Q(hL)	
P(hL)	 no

ise
	

signal	

…	

P(x|h1)	
Q(h1|x)	

Q(h2|h1)	 f2	 P(h2|h1)	 g2	

DRAW: the latest variant of
Variational Auto-Encoder

•  Even	 for	 a	 sta?c	 input,	 the	 encoder	 and	 decoder	 are	 now	
recurrent	 nets,	 which	 gradually	 add	 elements	 to	 the	 answer,	
and	 use	 an	 a\en?on	 mechanism	 to	 choose	 where	 to	 do	 so.	

59	

(Gregor	 et	 al	 of	 Google	 DeepMind,	 arXiv	 1502.04623,	 2015)	 	

DRAW: A Recurrent Neural Network For Image Generation

Karol Gregor KAROLG@GOOGLE.COM
Ivo Danihelka DANIHELKA@GOOGLE.COM
Alex Graves GRAVESA@GOOGLE.COM
Daan Wierstra WIERSTRA@GOOGLE.COM

Google DeepMind

Abstract
This paper introduces the Deep Recurrent Atten-

tive Writer (DRAW) neural network architecture
for image generation. DRAW networks combine
a novel spatial attention mechanism that mimics
the foveation of the human eye, with a sequential
variational auto-encoding framework that allows
for the iterative construction of complex images.
The system substantially improves on the state
of the art for generative models on MNIST, and,
when trained on the Street View House Numbers
dataset, it generates images that cannot be distin-
guished from real data with the naked eye.

1. Introduction
A person asked to draw, paint or otherwise recreate a visual
scene will naturally do so in a sequential, iterative fashion,
reassessing their handiwork after each modification. Rough
outlines are gradually replaced by precise forms, lines are
sharpened, darkened or erased, shapes are altered, and the
final picture emerges. Most approaches to automatic im-
age generation, however, aim to generate entire scenes at
once. In the context of generative neural networks, this typ-
ically means that all the pixels are conditioned on a single
latent distribution (Dayan et al., 1995; Hinton & Salakhut-
dinov, 2006; Larochelle & Murray, 2011). As well as pre-
cluding the possibility of iterative self-correction, the “one
shot” approach is fundamentally difficult to scale to large
images. The Deep Recurrent Attentive Writer (DRAW) ar-
chitecture represents a shift towards a more natural form of
image construction, in which parts of a scene are created
independently from others, and approximate sketches are
successively refined.

The core of the DRAW architecture is a pair of recurrent
neural networks: an encoder network that compresses the
real images presented during training, and a decoder that
reconstitutes images after receiving codes. The combined
system is trained end-to-end with stochastic gradient de-

Time

Figure 1. A trained DRAW network generating MNIST dig-
its. Each row shows successive stages in the generation of a sin-
gle digit. Note how the lines composing the digits appear to be
“drawn” by the network. The red rectangle delimits the area at-
tended to by the network at each time-step, with the focal preci-
sion indicated by the width of the rectangle border.

scent, where the loss function is a variational upper bound
on the log-likelihood of the data. It therefore belongs to the
family of variational auto-encoders, a recently emerged
hybrid of deep learning and variational inference that has
led to significant advances in generative modelling (Gre-
gor et al., 2014; Kingma & Welling, 2014; Rezende et al.,
2014; Mnih & Gregor, 2014; Salimans et al., 2014). Where
DRAW differs from its siblings is that, rather than generat-
ing images in a single pass, it iteratively constructs scenes
through an accumulation of modifications emitted by the
decoder, each of which is observed by the encoder.

An obvious correlate of generating images step by step is
the ability to selectively attend to parts of the scene while
ignoring others. A wealth of results in the past few years
suggest that visual structure can be better captured by a se-

ar
X

iv
:1

50
2.

04
62

3v
1

 [c
s.C

V
]

16
 F

eb
 2

01
5 DRAW: A Recurrent Neural Network For Image Generation

quence of partial glimpses, or foveations, than by a sin-
gle sweep through the entire image (Larochelle & Hinton,
2010; Denil et al., 2012; Tang et al., 2013; Ranzato, 2014;
Zheng et al., 2014; Mnih et al., 2014; Ba et al., 2014; Ser-
manet et al., 2014). The main challenge faced by sequential
attention models is learning where to look, which can be
addressed with reinforcement learning techniques such as
policy gradients (Mnih et al., 2014). The attention model in
DRAW, however, is fully differentiable, making it possible
to train with standard backpropagation. In this sense it re-
sembles the selective read and write operations developed
for the Neural Turing Machine (Graves et al., 2014).

The following section defines the DRAW architecture,
along with the loss function used for training and the pro-
cedure for image generation. Section 3 presents the selec-
tive attention model and shows how it is applied to read-
ing and modifying images. Section 4 provides experi-
mental results on the MNIST, Street View House Num-
bers and CIFAR-10 datasets, with examples of generated
images; and concluding remarks are given in Section 5.
Lastly, we would like to direct the reader to the video
accompanying this paper (https://www.youtube.
com/watch?v=Zt-7MI9eKEo) which contains exam-
ples of DRAW networks reading and generating images.

2. The DRAW Network
The basic structure of a DRAW network is similar to that of
other variational auto-encoders: an encoder network deter-
mines a distribution over latent codes that capture salient
information about the input data; a decoder network re-
ceives samples from the code distribuion and uses them to
condition its own distribution over images. However there
are three key differences. Firstly, both the encoder and de-
coder are recurrent networks in DRAW, so that a sequence

of code samples is exchanged between them; moreover the
encoder is privy to the decoder’s previous outputs, allow-
ing it to tailor the codes it sends according to the decoder’s
behaviour so far. Secondly, the decoder’s outputs are suc-
cessively added to the distribution that will ultimately gen-
erate the data, as opposed to emitting this distribution in
a single step. And thirdly, a dynamically updated atten-
tion mechanism is used to restrict both the input region
observed by the encoder, and the output region modified
by the decoder. In simple terms, the network decides at
each timestep “where to read” and “where to write” as
well as “what to write”. The architecture is sketched in
Fig. 2, alongside a conventional, feedforward variational
auto-encoder.

2.1. Network Architecture

Let RNN enc be the function enacted by the encoder net-
work at a single time-step. The output of RNN enc at time

read

x

zt zt+1

P (x|z1:T)write

encoder
RNN

sample

decoder
RNN

read

x

write

encoder
RNN

sample

decoder
RNN

c

t�1

c

t

c

T

�

h

enc

t�1

h

dec

t�1

Q(zt|x, z1:t�1) Q(z

t+1

|x, z

1:t

)

. . .

decoding
(generative model)

encoding
(inference)

x

encoder
FNN

sample

decoder
FNN

z

Q(z|x)

P (x|z)

Figure 2. Left: Conventional Variational Auto-Encoder. Dur-
ing generation, a sample z is drawn from a prior P (z) and passed
through the feedforward decoder network to compute the proba-
bility of the input P (x|z) given the sample. During inference the
input x is passed to the encoder network, producing an approx-
imate posterior Q(z|x) over latent variables. During training, z
is sampled from Q(z|x) and then used to compute the total de-
scription length KL

�
Q(Z|x)||P (Z)

�
� log(P (x|z)), which is

minimised with stochastic gradient descent. Right: DRAW Net-
work. At each time-step a sample zt from the prior P (zt) is
passed to the recurrent decoder network, which then modifies part
of the canvas matrix. The final canvas matrix cT is used to com-
pute P (x|z1:T). During inference the input is read at every time-
step and the result is passed to the encoder RNN. The RNNs at
the previous time-step specify where to read. The output of the
encoder RNN is used to compute the approximate posterior over
the latent variables at that time-step.

t is the encoder hidden vector h

enc
t

. Similarly the output of
the decoder RNN dec at t is the hidden vector h

dec
t

. In gen-
eral the encoder and decoder may be implemented by any
recurrent neural network. In our experiments we use the
Long Short-Term Memory architecture (LSTM; Hochreiter
& Schmidhuber (1997)) for both, in the extended form with
forget gates (Gers et al., 2000). We favour LSTM due to
its proven track record for handling long-range dependen-
cies in real sequential data (Graves, 2013; Sutskever et al.,
2014). Throughout the paper, we use the notation b = L(a)

to denote a linear weight matrix from the vector a to the
vector b.

At each time-step t, the encoder receives input from both
the image x and from the previous decoder hidden vector
h

dec
t�1

. The precise form of the encoder input depends on a
read operation, which will be defined in the next section.
The output h

enc
t

of the encoder is used to parameterise a
distribution Q(Z

t

|henc
t

) over the latent vector z

t

. In our
experiments the latent distribution is a diagonal Gaussian
N (Z

t

|µ
t

, �

t

):

µ

t

= L(h

enc

t

) (1)
�

t

= exp (L(h

enc

t

)) (2)

Bernoulli distributions are more common than Gaussians

DRAW Samples of SVHN Images: the
drawing process

60	

DRAW: A Recurrent Neural Network For Image Generation

Table 3. Experimental Hyper-Parameters.
Task #glimpses LSTM #h #z Read Size Write Size
100 ⇥ 100 MNIST Classification 8 256 - 12 ⇥ 12 -
MNIST Model 64 256 100 2 ⇥ 2 5 ⇥ 5

SVHN Model 32 800 100 12 ⇥ 12 12 ⇥ 12

CIFAR Model 64 400 200 5 ⇥ 5 5 ⇥ 5

Figure 10. SVHN Generation Sequences. The red rectangle in-
dicates the attention patch. Notice how the network draws the dig-
its one at a time, and how it moves and scales the writing patch to
produce numbers with different slopes and sizes.

 5060
 5080
 5100
 5120
 5140
 5160
 5180
 5200
 5220

 0 50 100 150 200 250 300 350

co
st

 p
er

 e
xa

m
pl

e

minibatch number (thousands)

training
validation

Figure 11. Training and validation cost on SVHN. The valida-
tion cost is consistently lower because the validation set patches
were extracted from the image centre (rather than from random
locations, as in the training set). The network was never able to
overfit on the training data.

Figure 12. Generated CIFAR images. The rightmost column
shows the nearest training examples to the column beside it.

5. Conclusion
This paper introduced the Deep Recurrent Attentive Writer
(DRAW) neural network architecture, and demonstrated its
ability to generate highly realistic natural images such as
photographs of house numbers, as well as improving on the
best known results for binarized MNIST generation. We
also established that the two-dimensional differentiable at-
tention mechanism embedded in DRAW is beneficial not
only to image generation, but also to cluttered image clas-
sification.

Acknowledgments
Of the many who assisted in creating this paper, we are es-
pecially thankful to Koray Kavukcuoglu, Volodymyr Mnih,
Jimmy Ba, Yaroslav Bulatov, Greg Wayne, Andrei Rusu,
Danilo Jimenez Rezende and Shakir Mohamed.

DRAW Samples of SVHN Images:
generated samples vs training nearest
neighbor

61	

DRAW: A Recurrent Neural Network For Image Generation

Figure 8. Generated MNIST images with two digits.

with attention it constructs the digit by tracing the lines—
much like a person with a pen.

4.3. MNIST Generation with Two Digits

The main motivation for using an attention-based genera-
tive model is that large images can be built up iteratively,
by adding to a small part of the image at a time. To test
this capability in a controlled fashion, we trained DRAW
to generate images with two 28 ⇥ 28 MNIST images cho-
sen at random and placed at random locations in a 60 ⇥ 60

black background. In cases where the two digits overlap,
the pixel intensities were added together at each point and
clipped to be no greater than one. Examples of generated
data are shown in Fig. 8. The network typically generates
one digit and then the other, suggesting an ability to recre-
ate composite scenes from simple pieces.

4.4. Street View House Number Generation

MNIST digits are very simplistic in terms of visual struc-
ture, and we were keen to see how well DRAW performed
on natural images. Our first natural image generation ex-
periment used the multi-digit Street View House Numbers
dataset (Netzer et al., 2011). We used the same preprocess-
ing as (Goodfellow et al., 2013), yielding a 64 ⇥ 64 house
number image for each training example. The network was
then trained using 54 ⇥ 54 patches extracted at random lo-
cations from the preprocessed images. The SVHN training
set contains 231,053 images, and the validation set contains

Figure 9. Generated SVHN images. The rightmost column
shows the training images closest (in L

2 distance) to the gener-
ated images beside them. Note that the two columns are visually
similar, but the numbers are generally different.

4,701 images.

A major challenge with natural image generation is how to
model the pixel colours. In this work we applied a simple
approximation where the normalised intensity of each of
the RGB channels was treated as an independent Bernoulli
probability. This approach has the advantage of being easy
to implement and train; however it does mean that the loss
function used for training does not match the true compres-
sion cost of the data.

The house number images generated by the network are
highly realistic, as shown in Figs. 9 and 10. Fig. 11 reveals
that, despite the long training time, the DRAW network un-
derfit the SVHN training data.

4.5. Generating CIFAR Images

The most challenging dataset we applied DRAW to was
the CIFAR-10 collection of natural images (Krizhevsky,
2009). CIFAR-10 is very diverse, and with only 50,000
training examples it is very difficult to generate realistic-
looking objects without overfitting (in other words, without
copying from the training set). Nonetheless the images in
Fig. 12 demonstrate that DRAW is able to capture much of
the shape, colour and composition of real photographs.

Nearest	 training	
example	 for	 last	
column	 of	 samples	

•  Computa?onal	 Scaling	
•  Op?miza?on	 &	 Underfi�ng	
•  Intractable	 Marginaliza?on,	 Approximate	
Inference	 &	 Sampling	

•  Disentangling	 Factors	 of	 Varia?on	
•  Reasoning	 &	 One-‐Shot	 Learning	 of	 Facts	

Deep Learning Challenges
(Bengio, arxiv 1305.0445 Deep learning
of representations: looking forward)

62	

Learning Multiple Levels of
Abstraction

•  The	 big	 payoff	 of	 deep	 learning	 is	 to	 allow	 learning	
higher	 levels	 of	 abstrac?on	

•  Higher-‐level	 abstrac?ons	 disentangle	 the	 factors	 of	
varia?on,	 which	 allows	 much	 easier	 generaliza?on	 and	
transfer	

63	

Conclusions

•  Machine	 Learning	 has	 become	 a	 central	 technology	 in	 order	 to	
extract	 informa6on	 from	 data	

•  Deep	 Learning:	 a	 machine	 learning	 breakthrough	
•  Distributed	 representa6ons:	 	

•  prior	 that	 can	 buy	 exponen?al	 gain	 in	 generaliza?on	
•  Deep	 composi6on	 of	 non-‐lineari6es:	 	

•  prior	 that	 can	 buy	 exponen?al	 gain	 in	 generaliza?on	
•  Both	 yield	 non-‐local	 generaliza6on	
•  Strong	 evidence	 that	 local	 minima	 are	 not	 an	 issue,	 saddle	 points	
•  Many	 challenges	 remain,	 in	 par6cular	 wrt	 unsupervised	 learning	
	
64	

MILA: Montreal Institute for Learning Algorithms

