
Deep	
 Learning	
 	

	
 	

	

	

Yoshua	
 Bengio	
 	

June	
 15,	
 2015	

CORS/INFORMS’2015	
 Tutorial	

What is Machine Learning?

	

•  for	
 extrac?ng	
 what	
 is	
 GENERAL	

•  so	
 as	
 to	
 be	
 able	
 to	
 say	
 something	
 meaningful	
 about	
 new	
 cases	

•  to	
 iden?fy	
 which	
 configura?ons	
 of	
 variables	
 are	
 plausible	

•  to	
 generate	
 new	
 plausible	
 configura?ons	
 or	
 choose	
 best	
 ones	

•  to	
 learn	
 to	
 predict,	
 classify,	
 take	
 decisions	

Mathematical principles and computer algorithms exploiting data

Generalization vs Training Error
•  Minimizing	
 Training	
 Error	
 very	
 well	
 can	
 be	
 easy	
 	

	
 	
 	
 	
 à	
 learning	
 by	
 heart	

	
 	
 	
 à	
 Machine	
 Learning	
 ≠	
 Op?miza?on	

•  Real	
 objec6ve:	
 generalizing	
 to	
 new	
 examples	

	

	

	

	

•  Mathema?cal	
 guarantees	
 about	
 generaliza?on	
 if	
 training	

error	
 is	
 small	
 and	
 predictor	
 not	
 too	
 flexible	
 (by	
 defining	

priors	
 or	
 preferences)	

What is Generalizing?

•  Capturing	
 dependencies	
 between	
 random	
 variables	

•  Spreading	
 out	
 the	
 probability	
 mass	
 from	
 the	
 empirical	

distribu?on.	
 Where???	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

=	
 making	
 good	
 guesses	
 away	
 from	
 the	
 training	
 examples.	

•  Discovering	
 underlying	
 abstrac?ons	
 /	
 explanatory	
 factors	
 	

Breakthrough for
AI and ML
• 	
 Deep	
 Learning:	
 machine	

learning	
 algorithms	
 based	
 on	

learning	
 mul6ple	
 levels	
 of	

representa6on	
 /	
 abstrac6on.	

	

5	

Amazing	
 improvements	
 in	
 error	
 rate	
 in	
 object	
 recogni?on,	
 object	

detec?on,	
 speech	
 recogni?on,	
 and	
 more	
 recently,	
 some	
 in	

machine	
 transla?on	

Montréal
Toronto

Bengio

Hinton
Le Cun

Initial Breakthrough in 2006

•  Ability	
 to	
 train	
 deep	
 architectures	
 by	

using	
 layer-­‐wise	
 unsupervised	

learning,	
 whereas	
 previous	
 purely	

supervised	
 a\empts	
 had	
 failed	

•  Unsupervised	
 feature	
 learners:	

•  RBMs	

•  Auto-­‐encoder	
 variants	

•  Sparse	
 coding	
 variants	

New York
6	

Canadian	
 ini6a6ve:	
 CIFAR	

2010-2012: Breakthrough in speech
recognition à in Androids by 2012

1%	

2%	

4%	

10%	

100%	

1990	
 2000	
 2010	

Deep	
 learning	

According	
 to	
 Microsod:	

Breakthrough in computer vision:
2012-2015

•  GPUs	
 +	
 10x	
 more	
 data	

8	

•  1000	
 object	
 categories,	
 	

•  Facebook:	
 millions	
 of	
 faces	

•  2015:	

Deep Learning in the News

9	

Researcher Dreams Up Machines
That Learn Without Humans
06.27.13

Scientists See Promise in
Deep-Learning Programs
John Markoff
November 23, 2012

Google	
 taps	
 U	

of	
 T	
 professor	

to	
 teach	

context	
 to	

computers	

03.11.13	

IT Companies are Racing into
Deep Learning

Ongoing breakthrough:
natural language
understanding
Examples:	
 	
 machine	
 transla?on,	
 and	
 “transla?ng”	
 images	
 into	
 text	
 	

Xu	
 et	
 al,	
 to	
 appear	
 ICML’2015	

Why is Deep Learning
Working so Well?

12	

Ultimate Goals

•  AI	

•  Needs	
 knowledge	

•  Needs	
 learning	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

(involves	
 priors	
 +	
 op#miza#on/search)	

•  Needs	
 generaliza6on	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

(guessing	
 where	
 probability	
 mass	
 concentrates)	

•  Needs	
 ways	
 to	
 fight	
 the	
 curse	
 of	
 dimensionality	

(exponen?ally	
 many	
 configura?ons	
 of	
 the	
 variables	
 to	
 consider)	

•  Needs	
 disentangling	
 the	
 underlying	
 explanatory	
 factors	

(making	
 sense	
 of	
 the	
 data)	

13	

•  Good	
 features	
 essen?al	
 for	
 successful	
 ML:	
 90%	
 of	
 effort	

•  Handcrading	
 features	
 vs	
 learning	
 them	

•  Good	
 representa?on?	

•  guesses	

	
 	
 	
 	
 	
 the	
 features	
 /	
 factors	
 /	
 causes	

Representation Learning

14	

raw	

input	

data	

represented	

by	
 chosen	

features	

MACHINE	

LEARNING	
 	

represented	

by	
 learned	

features	

Input

Hand-
designed
program

Output

Input

Hand-
designed
features

Mapping
from

features

Output

Input

Features

Mapping
from

features

Output

Input

Simplest
features

Mapping
from

features

Output

Most
complex
features

Rule-based
systems

Classic
machine
learning

Representation
learning

Deep
learning

Automating
Feature Discovery

15	

Visualizing and Understanding Convolutional Networks

(a) (b)

(c) (d) (e)

Figure 6. (a): 1st layer features without feature scale clipping. Note that one feature dominates. (b): 1st layer features
from (Krizhevsky et al., 2012). (c): Our 1st layer features. The smaller stride (2 vs 4) and filter size (7x7 vs 11x11)
results in more distinctive features and fewer “dead” features. (d): Visualizations of 2nd layer features from (Krizhevsky
et al., 2012). (e): Visualizations of our 2nd layer features. These are cleaner, with no aliasing artifacts that are visible in
(d).

Car wheel
Racer
Cab
Police van

Pomeranian
Tennis ball
Keeshond
Pekinese

Afghan hound
Gordon setter
Irish setter
Mortarboard
Fur coat
Academic gown
Australian terrier
Ice lolly
Vizsla
Neck brace

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.05

0.1

0.15

0.2

0.25

True Label: Pomeranian

(a) Input Image (b) Layer 5, strongest feature map
(c) Layer 5, strongest
feature map projections

(d) Classifier, probability
of correct class

(e) Classifier, most
probable class

True Label: Car Wheel

True Label: Afghan Hound

Figure 7. Three test examples where we systematically cover up di↵erent portions of the scene with a gray square (1st
column) and see how the top (layer 5) feature maps ((b) & (c)) and classifier output ((d) & (e)) changes. (b): for each
position of the gray scale, we record the total activation in one layer 5 feature map (the one with the strongest response
in the unoccluded image). (c): a visualization of this feature map projected down into the input image (black square),
along with visualizations of this map from other images. The first row example shows the strongest feature to be the
dog’s face. When this is covered-up the activity in the feature map decreases (blue area in (b)). (d): a map of correct
class probability, as a function of the position of the gray square. E.g. when the dog’s face is obscured, the probability
for “pomeranian” drops significantly. (e): the most probable label as a function of occluder position. E.g. in the 1st row,
for most locations it is “pomeranian”, but if the dog’s face is obscured but not the ball, then it predicts “tennis ball”. In
the 2nd example, text on the car is the strongest feature in layer 5, but the classifier is most sensitive to the wheel. The
3rd example contains multiple objects. The strongest feature in layer 5 picks out the faces, but the classifier is sensitive
to the dog (blue region in (d)), since it uses multiple feature maps.

Visualizing and Understanding Convolutional Networks

(a) (b)

(c) (d) (e)

Figure 6. (a): 1st layer features without feature scale clipping. Note that one feature dominates. (b): 1st layer features
from (Krizhevsky et al., 2012). (c): Our 1st layer features. The smaller stride (2 vs 4) and filter size (7x7 vs 11x11)
results in more distinctive features and fewer “dead” features. (d): Visualizations of 2nd layer features from (Krizhevsky
et al., 2012). (e): Visualizations of our 2nd layer features. These are cleaner, with no aliasing artifacts that are visible in
(d).

Car wheel
Racer
Cab
Police van

Pomeranian
Tennis ball
Keeshond
Pekinese

Afghan hound
Gordon setter
Irish setter
Mortarboard
Fur coat
Academic gown
Australian terrier
Ice lolly
Vizsla
Neck brace

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.05

0.1

0.15

0.2

0.25

True Label: Pomeranian

(a) Input Image (b) Layer 5, strongest feature map
(c) Layer 5, strongest
feature map projections

(d) Classifier, probability
of correct class

(e) Classifier, most
probable class

True Label: Car Wheel

True Label: Afghan Hound

Figure 7. Three test examples where we systematically cover up di↵erent portions of the scene with a gray square (1st
column) and see how the top (layer 5) feature maps ((b) & (c)) and classifier output ((d) & (e)) changes. (b): for each
position of the gray scale, we record the total activation in one layer 5 feature map (the one with the strongest response
in the unoccluded image). (c): a visualization of this feature map projected down into the input image (black square),
along with visualizations of this map from other images. The first row example shows the strongest feature to be the
dog’s face. When this is covered-up the activity in the feature map decreases (blue area in (b)). (d): a map of correct
class probability, as a function of the position of the gray square. E.g. when the dog’s face is obscured, the probability
for “pomeranian” drops significantly. (e): the most probable label as a function of occluder position. E.g. in the 1st row,
for most locations it is “pomeranian”, but if the dog’s face is obscured but not the ball, then it predicts “tennis ball”. In
the 2nd example, text on the car is the strongest feature in layer 5, but the classifier is most sensitive to the wheel. The
3rd example contains multiple objects. The strongest feature in layer 5 picks out the faces, but the classifier is sensitive
to the dog (blue region in (d)), since it uses multiple feature maps.

Visualizing and Understanding Convolutional Networks

(a) (b)

(c) (d) (e)

Figure 6. (a): 1st layer features without feature scale clipping. Note that one feature dominates. (b): 1st layer features
from (Krizhevsky et al., 2012). (c): Our 1st layer features. The smaller stride (2 vs 4) and filter size (7x7 vs 11x11)
results in more distinctive features and fewer “dead” features. (d): Visualizations of 2nd layer features from (Krizhevsky
et al., 2012). (e): Visualizations of our 2nd layer features. These are cleaner, with no aliasing artifacts that are visible in
(d).

Car wheel
Racer
Cab
Police van

Pomeranian
Tennis ball
Keeshond
Pekinese

Afghan hound
Gordon setter
Irish setter
Mortarboard
Fur coat
Academic gown
Australian terrier
Ice lolly
Vizsla
Neck brace

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.05

0.1

0.15

0.2

0.25

True Label: Pomeranian

(a) Input Image (b) Layer 5, strongest feature map
(c) Layer 5, strongest
feature map projections

(d) Classifier, probability
of correct class

(e) Classifier, most
probable class

True Label: Car Wheel

True Label: Afghan Hound

Figure 7. Three test examples where we systematically cover up di↵erent portions of the scene with a gray square (1st
column) and see how the top (layer 5) feature maps ((b) & (c)) and classifier output ((d) & (e)) changes. (b): for each
position of the gray scale, we record the total activation in one layer 5 feature map (the one with the strongest response
in the unoccluded image). (c): a visualization of this feature map projected down into the input image (black square),
along with visualizations of this map from other images. The first row example shows the strongest feature to be the
dog’s face. When this is covered-up the activity in the feature map decreases (blue area in (b)). (d): a map of correct
class probability, as a function of the position of the gray square. E.g. when the dog’s face is obscured, the probability
for “pomeranian” drops significantly. (e): the most probable label as a function of occluder position. E.g. in the 1st row,
for most locations it is “pomeranian”, but if the dog’s face is obscured but not the ball, then it predicts “tennis ball”. In
the 2nd example, text on the car is the strongest feature in layer 5, but the classifier is most sensitive to the wheel. The
3rd example contains multiple objects. The strongest feature in layer 5 picks out the faces, but the classifier is sensitive
to the dog (blue region in (d)), since it uses multiple feature maps.

Visualizing and Understanding Convolutional Networks

Figure 2. Visualization of features in a fully trained model. For layers 2-5 we show the top 9 activations in a random subset
of feature maps across the validation data, projected down to pixel space using our deconvolutional network approach.
Our reconstructions are not samples from the model: they are reconstructed patterns from the validation set that cause
high activations in a given feature map. For each feature map we also show the corresponding image patches. Note:
(i) the the strong grouping within each feature map, (ii) greater invariance at higher layers and (iii) exaggeration of
discriminative parts of the image, e.g. eyes and noses of dogs (layer 4, row 1, cols 1). Best viewed in electronic form.

Visualizing and Understanding Convolutional Networks

Figure 2. Visualization of features in a fully trained model. For layers 2-5 we show the top 9 activations in a random subset
of feature maps across the validation data, projected down to pixel space using our deconvolutional network approach.
Our reconstructions are not samples from the model: they are reconstructed patterns from the validation set that cause
high activations in a given feature map. For each feature map we also show the corresponding image patches. Note:
(i) the the strong grouping within each feature map, (ii) greater invariance at higher layers and (iii) exaggeration of
discriminative parts of the image, e.g. eyes and noses of dogs (layer 4, row 1, cols 1). Best viewed in electronic form.

Visualizing and Understanding Convolutional Networks

Figure 2. Visualization of features in a fully trained model. For layers 2-5 we show the top 9 activations in a random subset
of feature maps across the validation data, projected down to pixel space using our deconvolutional network approach.
Our reconstructions are not samples from the model: they are reconstructed patterns from the validation set that cause
high activations in a given feature map. For each feature map we also show the corresponding image patches. Note:
(i) the the strong grouping within each feature map, (ii) greater invariance at higher layers and (iii) exaggeration of
discriminative parts of the image, e.g. eyes and noses of dogs (layer 4, row 1, cols 1). Best viewed in electronic form.

Visualizing and Understanding Convolutional Networks

Figure 2. Visualization of features in a fully trained model. For layers 2-5 we show the top 9 activations in a random subset
of feature maps across the validation data, projected down to pixel space using our deconvolutional network approach.
Our reconstructions are not samples from the model: they are reconstructed patterns from the validation set that cause
high activations in a given feature map. For each feature map we also show the corresponding image patches. Note:
(i) the the strong grouping within each feature map, (ii) greater invariance at higher layers and (iii) exaggeration of
discriminative parts of the image, e.g. eyes and noses of dogs (layer 4, row 1, cols 1). Best viewed in electronic form.

Visible layer
(input pixels)

1st hidden layer
(edges)

Visualizing and Understanding Convolutional Networks

Figure 2. Visualization of features in a fully trained model. For layers 2-5 we show the top 9 activations in a random subset
of feature maps across the validation data, projected down to pixel space using our deconvolutional network approach.
Our reconstructions are not samples from the model: they are reconstructed patterns from the validation set that cause
high activations in a given feature map. For each feature map we also show the corresponding image patches. Note:
(i) the the strong grouping within each feature map, (ii) greater invariance at higher layers and (iii) exaggeration of
discriminative parts of the image, e.g. eyes and noses of dogs (layer 4, row 1, cols 1). Best viewed in electronic form.

Visualizing and Understanding Convolutional Networks

Figure 2. Visualization of features in a fully trained model. For layers 2-5 we show the top 9 activations in a random subset
of feature maps across the validation data, projected down to pixel space using our deconvolutional network approach.
Our reconstructions are not samples from the model: they are reconstructed patterns from the validation set that cause
high activations in a given feature map. For each feature map we also show the corresponding image patches. Note:
(i) the the strong grouping within each feature map, (ii) greater invariance at higher layers and (iii) exaggeration of
discriminative parts of the image, e.g. eyes and noses of dogs (layer 4, row 1, cols 1). Best viewed in electronic form.

Visualizing and Understanding Convolutional Networks

Figure 2. Visualization of features in a fully trained model. For layers 2-5 we show the top 9 activations in a random subset
of feature maps across the validation data, projected down to pixel space using our deconvolutional network approach.
Our reconstructions are not samples from the model: they are reconstructed patterns from the validation set that cause
high activations in a given feature map. For each feature map we also show the corresponding image patches. Note:
(i) the the strong grouping within each feature map, (ii) greater invariance at higher layers and (iii) exaggeration of
discriminative parts of the image, e.g. eyes and noses of dogs (layer 4, row 1, cols 1). Best viewed in electronic form.

2nd hidden layer
(corners and

contours)

3rd hidden layer
(object parts)

CAR PERSON ANIMAL Output
(object identity)

Composing Features on Features

16	

Higher-­‐level	
 features	

are	
 defined	
 in	
 terms	
 of	

lower-­‐level	

features	

Learning multiple levels of
representation
There	
 is	
 theore?cal	
 and	
 empirical	
 evidence	
 in	
 favor	
 of	

mul?ple	
 levels	
 of	
 representa?on	

	
 Exponen6al	
 gain	
 for	
 some	
 families	
 of	
 func6ons	

Biologically	
 inspired	
 learning	

Brain	
 has	
 a	
 deep	
 architecture	

Cortex	
 seems	
 to	
 have	
 a	
 	

generic	
 learning	
 algorithm	
 	

Humans	
 first	
 learn	
 simpler	
 	

concepts	
 and	
 compose	
 them	

It	
 works!	
 Speech	
 +	
 vision	
 +	
 NLP	
 breakthroughs	

17	

Machine Learning, AI
& No Free Lunch
•  Three	
 key	
 ingredients	
 for	
 ML	
 towards	
 AI	

1.  Lots	
 &	
 lots	
 of	
 data	

2.  Very	
 flexible	
 models	

3.  Powerful	
 priors	
 that	
 can	
 defeat	
 the	
 curse	
 of	

dimensionality	

18	

ML 101. What We Are Fighting Against:
The Curse of Dimensionality

	
 	
 	
 To	
 generalize	
 locally,	

need	
 representa?ve	

examples	
 for	
 all	

relevant	
 varia?ons!	

	

Classical	
 solu?on:	
 hope	

for	
 a	
 smooth	
 enough	

target	
 func?on,	
 or	

make	
 it	
 smooth	
 by	

handcrading	
 good	

features	
 /	
 kernel	

Not Dimensionality so much as
Number of Variations

•  Theorem:	
 Gaussian	
 kernel	
 machines	
 need	
 at	
 least	
 k	
 examples	

to	
 learn	
 a	
 func?on	
 that	
 has	
 2k	
 zero-­‐crossings	
 along	
 some	
 line	

	

	

	

	

	

•  Theorem:	
 For	
 a	
 Gaussian	
 kernel	
 machine	
 to	
 learn	
 some	

maximally	
 varying	
 func?ons	
 	
 over	
 d	
 inputs	
 requires	
 O(2d)	

examples	

	

(Bengio, Dellalleau & Le Roux 2007)

Putting Probability Mass where
Structure is Plausible

•  Empirical	
 distribu?on:	
 mass	
 at	

training	
 examples	

21	

•  Smoothness:	
 spread	
 mass	
 around	

•  Insufficient	

•  Guess	
 some	
 ‘structure’	
 and	

generalize	
 accordingly	

Bypassing the curse of
dimensionality
Deep	
 learning	
 builds	
 composi?onality	
 into	
 ML	
 models	
 	

Just	
 as	
 human	
 languages	
 exploit	
 composi?onality	
 to	
 give	

representa?ons	
 and	
 meanings	
 to	
 complex	
 ideas	

Exploi?ng	
 composi?onality	
 gives	
 an	
 exponen?al	
 gain	
 in	

representa?onal	
 power	

Distributed	
 representa?ons	
 /	
 embeddings:	
 feature	
 learning	

Deep	
 architecture:	
 mul?ple	
 levels	
 of	
 feature	
 learning	

Prior:	
 composi?onality	
 is	
 useful	
 to	
 describe	
 the	

world	
 around	
 us	
 efficiently	

	
 22	

•  Clustering,	
 n-­‐grams,	
 Nearest-­‐
Neighbors,	
 RBF	
 SVMs,	
 local	

non-­‐parametric	
 density	

es?ma?on	
 &	
 predic?on,	

decision	
 trees,	
 etc.	

•  Parameters	
 for	
 each	

dis?nguishable	
 region	

•  #	
 of	
 dis6nguishable	
 regions	

is	
 linear	
 in	
 #	
 of	
 parameters	

Non-distributed representations

Clustering	

23	

à	
 No	
 non-­‐trivial	
 generaliza?on	
 to	
 regions	
 without	
 examples	

•  Factor	
 models,	
 PCA,	
 RBMs,	

Neural	
 Nets,	
 Sparse	
 Coding,	

Deep	
 Learning,	
 etc.	

•  Each	
 parameter	
 influences	

many	
 regions,	
 not	
 just	
 local	

neighbors	

•  #	
 of	
 dis6nguishable	
 regions	

grows	
 almost	
 exponen6ally	

with	
 #	
 of	
 parameters	

•  GENERALIZE	
 NON-­‐LOCALLY	

TO	
 NEVER-­‐SEEN	
 REGIONS	

The need for distributed
representations

Mul?-­‐	

Clustering	

24	

C1	
 C2	
 C3	

input	

Non-­‐mutually	

exclusive	
 features/
a\ributes	
 create	
 a	

combinatorially	
 large	

set	
 of	
 dis?nguiable	

configura?ons	

Classical Symbolic AI vs
Representation Learning

•  Two	
 symbols	
 are	
 equally	
 far	
 from	
 each	
 other	

•  Concepts	
 are	
 not	
 represented	
 by	
 symbols	
 in	
 our	

brain,	
 but	
 by	
 pa\erns	
 of	
 ac?va?on	
 	

	
 (Connec/onism,	
 1980’s)	

25	

cat	
 	

dog	
 	

person	
 	
 Input	

units	

Hidden	
 units	

Output	
 units	

Geoffrey	
 Hinton	

David	
 Rumelhart	

Neural Language Models: fighting one
exponential by another one!

•  (Bengio	
 et	
 al	
 NIPS’2000)	

26	

w1 w2 w3 w4 w5 w6

R(w6)R(w5)R(w4)R(w3)R(w2)R(w1)

output

input sequence

i−th output = P(w(t) = i | context)

softmax

tanh

.

.

.

across words

most computation here

index for w(t−n+1) index for w(t−2) index for w(t−1)

shared parameters

Matrix

in
look−up
Table C

C

C(w(t−2)) C(w(t−1))C(w(t−n+1))

. . .

Exponen?ally	
 large	
 set	
 of	

generaliza?ons:	
 seman?cally	
 close	

sequences	

Exponen?ally	
 large	
 set	
 of	
 possible	
 contexts	

Neural word embeddings – visualization
Directions = Learned Attributes

27	

Analogical Representations for Free
(Mikolov et al, ICLR 2013)

•  Seman?c	
 rela?ons	
 appear	
 as	
 linear	
 rela?onships	
 in	
 the	
 space	
 of	

learned	
 representa?ons	

•  King	
 –	
 Queen	
 ≈	
 	
 Man	
 –	
 Woman	

•  Paris	
 –	
 France	
 +	
 Italy	
 ≈	
 Rome	

28	

Paris	

France	

Italy	

Rome	

Google Image Search:
Different object types represented in the
same space

Google:	

S.	
 Bengio,	
 J.	

Weston	
 &	
 N.	

Usunier	

(IJCAI	
 2011,	

NIPS’2010,	

JMLR	
 2010,	

MLJ	
 2010)	

Summary of New Theoretical Results

•  Expressiveness	
 of	
 deep	
 networks	
 with	
 piecewise	
 linear	

ac?va?on	
 func?ons:	
 exponen?al	
 advantage	
 for	
 depth	

•  Theore?cal	
 and	
 empirical	
 evidence	
 against	
 bad	
 local	
 minima	

•  Manifold	
 &	
 probabilis?c	
 interpreta?ons	
 of	
 auto-­‐encoders	

•  Es?ma?ng	
 the	
 gradient	
 of	
 the	
 energy	
 func?on	

•  Sampling	
 via	
 Markov	
 chain	

•  Varia?onal	
 auto-­‐encoder	
 breakthrough	

30	

(Montufar	
 et	
 al	
 NIPS	
 2014)	

(Dauphin	
 et	
 al	
 NIPS	
 2014)	

(Alain	
 &	
 Bengio	
 ICLR	
 2013)	

(Bengio	
 et	
 al	
 NIPS	
 2013)	

(Gregor	
 et	
 al	
 arXiv	
 2015)	

The Depth Prior can be Exponentially
Advantageous
Theore?cal	
 arguments:	

…	

1	
 2	
 3	
 2n

1	
 2	
 3	

…	

n	

= universal approximator 2 layers of
Logic gates
Formal neurons
RBF units

Theorems on advantage of depth:
(Hastad et al 86 & 91, Bengio et al 2007,
Bengio & Delalleau 2011, Braverman 2011,
Pascanu et al 2014, Montufar et al NIPS 2014)

Some functions compactly
represented with k layers may
require exponential size with 2
layers

RBMs & auto-encoders = universal approximator

main

subroutine1 includes
subsub1 code and
subsub2 code and
subsubsub1 code

“Shallow” computer program

subroutine2 includes
subsub2 code and
subsub3 code and
subsubsub3 code and …

main

sub1 sub2 sub3

subsub1 subsub2 subsub3

subsubsub1 subsubsub2
subsubsub3

“Deep” computer program

Sharing Components in a Deep
Architecture

Sum-­‐product	

network	

Polynomial	
 expressed	
 with	
 shared	
 components:	
 advantage	
 of	

depth	
 may	
 grow	
 exponen?ally	
 	

	

Theorems	
 in	
 	

(Bengio	
 &	
 Delalleau,	
 ALT	
 2011;	

Delalleau	
 &	
 Bengio	
 NIPS	
 2011)	

New theoretical result:
Expressiveness of deep nets with
piecewise-linear activation fns

35	

(Pascanu,	
 Montufar,	
 Cho	
 &	
 Bengio;	
 ICLR	
 2014)	

(Montufar,	
 Pascanu,	
 Cho	
 &	
 Bengio;	
 NIPS	
 2014)	

Deeper	
 nets	
 with	
 rec?fier/maxout	
 units	
 are	
 exponen?ally	
 more	

expressive	
 than	
 shallow	
 ones	
 (1	
 hidden	
 layer)	
 because	
 they	
 can	
 split	

the	
 input	
 space	
 in	
 many	
 more	
 (not-­‐independent)	
 linear	
 regions,	
 with	

constraints,	
 e.g.,	
 with	
 abs	
 units,	
 each	
 unit	
 creates	
 mirror	
 responses,	

folding	
 the	
 input	
 space:	
 	

	

	

A Myth is Being Debunked: Local
Minima in Neural Nets
à Convexity is not needed
•  (Pascanu,	
 Dauphin,	
 Ganguli,	
 Bengio,	
 arXiv	
 May	
 2014):	
 On	
 the	

saddle	
 point	
 problem	
 for	
 non-­‐convex	
 op/miza/on	

•  (Dauphin,	
 Pascanu,	
 Gulcehre,	
 Cho,	
 Ganguli,	
 Bengio,	
 NIPS’	
 2014):	

Iden/fying	
 and	
 aWacking	
 the	
 saddle	
 point	
 problem	
 in	
 high-­‐
dimensional	
 non-­‐convex	
 op/miza/on	
 	

•  (Choromanska,	
 Henaff,	
 Mathieu,	
 Ben	
 Arous	
 &	
 LeCun	
 2014):	
 The	

Loss	
 Surface	
 of	
 Mul/layer	
 Nets	

36	

Saddle Points

•  Local	
 minima	
 dominate	
 in	
 low-­‐D,	
 but	

saddle	
 points	
 dominate	
 in	
 high-­‐D	

•  Most	
 local	
 minima	
 are	
 close	
 to	
 the	

bo\om	
 (global	
 minimum	
 error)	

37	

Saddle Points During Training

•  Oscilla?ng	
 between	
 two	
 behaviors:	

•  Slowly	
 approaching	
 a	
 saddle	
 point	

•  Escaping	
 it	

38	

Low Index Critical Points

Choromanska	
 et	
 al	
 &	
 LeCun	
 2014,	
 ‘The	
 Loss	
 Surface	
 of	
 Mul/layer	
 Nets’	

Shows	
 that	
 deep	
 rec?fier	
 nets	
 are	
 analogous	
 to	
 spherical	
 spin-­‐glass	
 models	

The	
 low-­‐index	
 cri?cal	
 points	
 of	
 large	
 models	
 concentrate	
 in	
 a	
 band	
 just	

above	
 the	
 global	
 minimum	

39	

Saddle-Free Optimization
(Pascanu, Dauphin, Ganguli, Bengio 2014)

•  Saddle	
 points	
 are	
 ATTRACTIVE	
 for	
 Newton’s	
 method	

•  Replace	
 eigenvalues	
 λ	
 of	
 Hessian	
 by	
 |λ|	

•  Jus?fied	
 as	
 a	
 par?cular	
 trust	
 region	
 method	

40	

Advantage	
 increases	

with	
 dimensionality	

Curriculum Learning

Guided learning helps training humans and animals

 Shaping

Start from simpler examples / easier tasks (Piaget 1952, Skinner 1958)

Education

Order & Selection of Examples Matters
(Bengio,	
 Louradour,	
 Collobert	
 &	
 Weston,	
 ICML’2009)	
 	
 	
 	
 A	

• Curriculum	
 learning	
 	

•  (Bengio	
 et	
 al	
 2009,	
 Krueger	
 &	
 Dayan	
 2009)	
 	
 	

•  Start	
 with	
 easier	
 examples	

•  Faster	
 convergence	
 to	
 a	
 be\er	
 local	

minimum	
 in	
 deep	
 architectures	

!"#$%

&%

&"!$%

&"$%

'% $''% ('''% ($''%

!"
#
$%
&
'
(
)'
*
+
,)
-
"
%.
/)

01!!1"'))

23.&,*4)

)*++,)*-*.%

/01)*++,)*-*.%

!"#$%

&%

&"!$%

&"$%

'% $''% ('''% ($''%

!"
#
$%
&
'
(
)'
*
+
,)
-
"
%.
/)

01!!1"'))

23.&,*4)

)*++,)*-*.%

/01)*++,)*-*.%

42	

Curriculum learning as a
Continuation Method

Track local minima

Final solution

Easy to find minimum

How do humans generalize
from very few examples?

44	

•  They	
 transfer	
 knowledge	
 from	
 previous	
 learning:	

•  Representa?ons	

•  Explanatory	
 factors	

•  Previous	
 learning	
 from:	
 unlabeled	
 data	
 	

	
 	
 	
 	
 	
 	
 	
 	
 +	
 labels	
 for	
 other	
 tasks	

•  Prior:	
 shared	
 underlying	
 explanatory	
 factors,	
 in	

par6cular	
 between	
 P(x)	
 and	
 P(Y|x)	
 	

	

Multi-Task Learning
•  Generalizing	
 be\er	
 to	
 new	
 tasks	

(tens	
 of	
 thousands!)	
 is	
 crucial	
 to	

approach	
 AI	

•  Deep	
 architectures	
 learn	
 good	

intermediate	
 representa?ons	
 that	

can	
 be	
 shared	
 across	
 tasks	

	
 	
 	
 	
 	
 (Collobert	
 &	
 Weston	
 ICML	
 2008,	

	
 	
 	
 	
 	
 Bengio	
 et	
 al	
 AISTATS	
 2011)	

•  Good	
 representa?ons	
 that	

disentangle	
 underlying	
 factors	
 of	

varia?on	
 make	
 sense	
 for	
 many	
 tasks	

because	
 each	
 task	
 concerns	
 a	

subset	
 of	
 the	
 factors	

45	

raw input x

task 1
output y1

task 3
output y3

task 2
output y2

Task	
 A	
 Task	
 B	
 Task	
 C	

Prior:	
 shared	
 underlying	
 explanatory	
 factors	
 between	
 tasks	
 	

	

E.g.	
 dic?onary,	
 with	
 intermediate	

concepts	
 re-­‐used	
 across	
 many	
 defini?ons	

Sharing Statistical Strength by Semi-
Supervised Learning

•  Hypothesis:	
 P(x)	
 shares	
 structure	
 with	
 P(y|x)	

purely	

supervised	

semi-­‐	

supervised	

46	

Raw	
 data	

1	
 layer	
 2	
 layers	

4	
 layers	

3	
 layers	

ICML’2011	

workshop	
 on	

Unsup.	
 &	

Transfer	
 Learning	

NIPS’2011	

Transfer	

Learning	

Challenge	
 	

Paper:	

ICML’2012	

Unsupervised and Transfer Learning
Challenge + Transfer Learning
Challenge: Deep Learning 1st Place

The Next Challenge:
Unsupervised Learning

•  Recent	
 progress	
 mostly	
 in	
 supervised	
 DL	

•  Real	
 technical	
 challenges	
 for	
 unsupervised	
 DL	

•  Poten?al	
 benefits:	

•  Exploit	
 tons	
 of	
 unlabeled	
 data	

•  Answer	
 new	
 ques?ons	
 about	
 the	
 variables	
 observed	

•  Regularizer	
 –	
 transfer	
 learning	
 –	
 domain	
 adapta?on	

•  Easier	
 op?miza?on	
 (local	
 training	
 signal)	

•  Structured	
 outputs	

48	

Why Latent Factors & Unsupervised
Representation Learning? Because of
Causality.

•  If	
 Ys	
 of	
 interest	
 are	
 among	
 the	
 causal	
 factors	
 of	
 X,	
 then	

is	
 ?ed	
 to	
 P(X)	
 and	
 P(X|Y),	
 and	
 P(X)	
 is	
 defined	
 in	
 terms	
 of	
 P(X|Y),	
 i.e.	

•  The	
 best	
 possible	
 model	
 of	
 X	
 (unsupervised	
 learning)	
 MUST	

involve	
 Y	
 as	
 a	
 latent	
 factor,	
 implicitly	
 or	
 explicitly.	

•  Representa?on	
 learning	
 SEEKS	
 the	
 latent	
 variables	
 H	
 that	

explain	
 the	
 varia?ons	
 of	
 X,	
 making	
 it	
 likely	
 to	
 also	
 uncover	
 Y.	

	
 	

49	

P (Y |X) =
P (X|Y)P (Y)

P (X)

Manifold Learning =
 Representation Learning

50	

tangent directions

tangent plane

Data on a curved manifold

Non-Parametric Manifold Learning:
hopeless without powerful enough priors

51	

AI-­‐related	
 data	
 manifolds	
 have	
 too	
 many	

twists	
 and	
 turns,	
 not	
 enough	
 examples	

to	
 cover	
 all	
 the	
 ups	
 &	
 downs	
 &	
 twists	

Manifolds	
 es?mated	
 out	
 of	
 the	

neighborhood	
 graph:	
 	

	
 -­‐	
 node	
 =	
 example	

	
 -­‐	
 arc	
 =	
 near	
 neighbor	

52	

Auto-Encoders Learn Salient
Variations, like a non-linear PCA

•  Minimizing	
 reconstruc?on	
 error	
 forces	
 to	

keep	
 varia?ons	
 along	
 manifold.	

•  Regularizer	
 wants	
 to	
 throw	
 away	
 all	

varia?ons.	

•  With	
 both:	
 keep	
 ONLY	
 sensi?vity	
 to	

varia?ons	
 ON	
 the	
 manifold.	

Denoising Auto-Encoder
•  Learns	
 a	
 vector	
 field	
 poin?ng	
 towards	

higher	
 probability	
 direc?on	
 (Alain	
 &	
 Bengio	
 2013)	

•  Some	
 DAEs	
 correspond	
 to	
 a	
 kind	
 of	

Gaussian	
 RBM	
 with	
 regularized	
 Score	

Matching	
 (Vincent	
 2011)	

	
 	
 	
 	
 	
 [equivalent	
 when	
 noiseà0]	

Corrupted input

Corrupted input

prior:	
 examples	

concentrate	
 near	
 a	

lower	
 dimensional	

“manifold”	
 	
 reconstruction(x)� x ! �

2 @ log p(x)

@x

Regularized Auto-Encoders Learn a
Vector Field that Estimates a
Gradient Field (Alain	
 &	
 Bengio	
 ICLR	
 2013)	

54	

Denoising Auto-Encoder Markov Chain

55	

Xt	

Xt	

~	
 Xt+1	

~	

Xt+1	
 Xt+2	

Xt+2	

~	

corrupt	

denoise	

Denoising Auto-Encoders Learn a
Markov Chain Transition Distribution
(Bengio	
 et	
 al	
 NIPS	
 2013)	

56	

Space-Filling in Representation-Space
•  Deeper	
 representa6ons	
 è	
 abstrac6ons	
 è	
 disentangling	

•  Manifolds	
 are	
 expanded	
 and	
 fla_ened	

Linear	
 interpola?on	
 at	
 layer	
 2	

Linear	
 interpola?on	
 at	
 layer	
 1	

3’s	
 manifold	

9’s	
 manifold	

Linear	
 interpola?on	
 in	
 pixel	
 space	

Pixel	
 space	

9’s	
 manifold	
 3’s	
 manifold	

Representa?on	
 space	

9’s	
 manifold	
 3’s	
 manifold	

X-­‐space	

H-­‐space	

Extracting Structure By Gradual
Disentangling and Manifold Unfolding
(Bengio 2014, arXiv 1407.7906)
Each	
 level	
 transforms	
 the	

data	
 into	
 a	
 representa?on	
 in	

which	
 it	
 is	
 easier	
 to	
 model,	

unfolding	
 it	
 more,	

contrac?ng	
 the	
 noise	

dimensions	
 and	
 mapping	
 the	

signal	
 dimensions	
 to	
 a	

factorized	
 (uniform-­‐like)	

distribu?on.	

	

	

58	

Q(x)	

f1	

g1	

Q(h1)	

P(h1)	

fL	
 gL	

Q(hL)	

P(hL)	
 no

ise
	

signal	

…	

P(x|h1)	

Q(h1|x)	

Q(h2|h1)	
 f2	
 P(h2|h1)	
 g2	

DRAW: the latest variant of
Variational Auto-Encoder

•  Even	
 for	
 a	
 sta?c	
 input,	
 the	
 encoder	
 and	
 decoder	
 are	
 now	

recurrent	
 nets,	
 which	
 gradually	
 add	
 elements	
 to	
 the	
 answer,	

and	
 use	
 an	
 a\en?on	
 mechanism	
 to	
 choose	
 where	
 to	
 do	
 so.	

59	

(Gregor	
 et	
 al	
 of	
 Google	
 DeepMind,	
 arXiv	
 1502.04623,	
 2015)	
 	

DRAW: A Recurrent Neural Network For Image Generation

Karol Gregor KAROLG@GOOGLE.COM
Ivo Danihelka DANIHELKA@GOOGLE.COM
Alex Graves GRAVESA@GOOGLE.COM
Daan Wierstra WIERSTRA@GOOGLE.COM

Google DeepMind

Abstract
This paper introduces the Deep Recurrent Atten-

tive Writer (DRAW) neural network architecture
for image generation. DRAW networks combine
a novel spatial attention mechanism that mimics
the foveation of the human eye, with a sequential
variational auto-encoding framework that allows
for the iterative construction of complex images.
The system substantially improves on the state
of the art for generative models on MNIST, and,
when trained on the Street View House Numbers
dataset, it generates images that cannot be distin-
guished from real data with the naked eye.

1. Introduction
A person asked to draw, paint or otherwise recreate a visual
scene will naturally do so in a sequential, iterative fashion,
reassessing their handiwork after each modification. Rough
outlines are gradually replaced by precise forms, lines are
sharpened, darkened or erased, shapes are altered, and the
final picture emerges. Most approaches to automatic im-
age generation, however, aim to generate entire scenes at
once. In the context of generative neural networks, this typ-
ically means that all the pixels are conditioned on a single
latent distribution (Dayan et al., 1995; Hinton & Salakhut-
dinov, 2006; Larochelle & Murray, 2011). As well as pre-
cluding the possibility of iterative self-correction, the “one
shot” approach is fundamentally difficult to scale to large
images. The Deep Recurrent Attentive Writer (DRAW) ar-
chitecture represents a shift towards a more natural form of
image construction, in which parts of a scene are created
independently from others, and approximate sketches are
successively refined.

The core of the DRAW architecture is a pair of recurrent
neural networks: an encoder network that compresses the
real images presented during training, and a decoder that
reconstitutes images after receiving codes. The combined
system is trained end-to-end with stochastic gradient de-

Time

Figure 1. A trained DRAW network generating MNIST dig-
its. Each row shows successive stages in the generation of a sin-
gle digit. Note how the lines composing the digits appear to be
“drawn” by the network. The red rectangle delimits the area at-
tended to by the network at each time-step, with the focal preci-
sion indicated by the width of the rectangle border.

scent, where the loss function is a variational upper bound
on the log-likelihood of the data. It therefore belongs to the
family of variational auto-encoders, a recently emerged
hybrid of deep learning and variational inference that has
led to significant advances in generative modelling (Gre-
gor et al., 2014; Kingma & Welling, 2014; Rezende et al.,
2014; Mnih & Gregor, 2014; Salimans et al., 2014). Where
DRAW differs from its siblings is that, rather than generat-
ing images in a single pass, it iteratively constructs scenes
through an accumulation of modifications emitted by the
decoder, each of which is observed by the encoder.

An obvious correlate of generating images step by step is
the ability to selectively attend to parts of the scene while
ignoring others. A wealth of results in the past few years
suggest that visual structure can be better captured by a se-

ar
X

iv
:1

50
2.

04
62

3v
1

 [c
s.C

V
]

16
 F

eb
 2

01
5 DRAW: A Recurrent Neural Network For Image Generation

quence of partial glimpses, or foveations, than by a sin-
gle sweep through the entire image (Larochelle & Hinton,
2010; Denil et al., 2012; Tang et al., 2013; Ranzato, 2014;
Zheng et al., 2014; Mnih et al., 2014; Ba et al., 2014; Ser-
manet et al., 2014). The main challenge faced by sequential
attention models is learning where to look, which can be
addressed with reinforcement learning techniques such as
policy gradients (Mnih et al., 2014). The attention model in
DRAW, however, is fully differentiable, making it possible
to train with standard backpropagation. In this sense it re-
sembles the selective read and write operations developed
for the Neural Turing Machine (Graves et al., 2014).

The following section defines the DRAW architecture,
along with the loss function used for training and the pro-
cedure for image generation. Section 3 presents the selec-
tive attention model and shows how it is applied to read-
ing and modifying images. Section 4 provides experi-
mental results on the MNIST, Street View House Num-
bers and CIFAR-10 datasets, with examples of generated
images; and concluding remarks are given in Section 5.
Lastly, we would like to direct the reader to the video
accompanying this paper (https://www.youtube.
com/watch?v=Zt-7MI9eKEo) which contains exam-
ples of DRAW networks reading and generating images.

2. The DRAW Network
The basic structure of a DRAW network is similar to that of
other variational auto-encoders: an encoder network deter-
mines a distribution over latent codes that capture salient
information about the input data; a decoder network re-
ceives samples from the code distribuion and uses them to
condition its own distribution over images. However there
are three key differences. Firstly, both the encoder and de-
coder are recurrent networks in DRAW, so that a sequence

of code samples is exchanged between them; moreover the
encoder is privy to the decoder’s previous outputs, allow-
ing it to tailor the codes it sends according to the decoder’s
behaviour so far. Secondly, the decoder’s outputs are suc-
cessively added to the distribution that will ultimately gen-
erate the data, as opposed to emitting this distribution in
a single step. And thirdly, a dynamically updated atten-
tion mechanism is used to restrict both the input region
observed by the encoder, and the output region modified
by the decoder. In simple terms, the network decides at
each timestep “where to read” and “where to write” as
well as “what to write”. The architecture is sketched in
Fig. 2, alongside a conventional, feedforward variational
auto-encoder.

2.1. Network Architecture

Let RNN enc be the function enacted by the encoder net-
work at a single time-step. The output of RNN enc at time

read

x

zt zt+1

P (x|z1:T)write

encoder
RNN

sample

decoder
RNN

read

x

write

encoder
RNN

sample

decoder
RNN

c

t�1

c

t

c

T

�

h

enc

t�1

h

dec

t�1

Q(zt|x, z1:t�1) Q(z

t+1

|x, z

1:t

)

. . .

decoding
(generative model)

encoding
(inference)

x

encoder
FNN

sample

decoder
FNN

z

Q(z|x)

P (x|z)

Figure 2. Left: Conventional Variational Auto-Encoder. Dur-
ing generation, a sample z is drawn from a prior P (z) and passed
through the feedforward decoder network to compute the proba-
bility of the input P (x|z) given the sample. During inference the
input x is passed to the encoder network, producing an approx-
imate posterior Q(z|x) over latent variables. During training, z
is sampled from Q(z|x) and then used to compute the total de-
scription length KL

�
Q(Z|x)||P (Z)

�
� log(P (x|z)), which is

minimised with stochastic gradient descent. Right: DRAW Net-
work. At each time-step a sample zt from the prior P (zt) is
passed to the recurrent decoder network, which then modifies part
of the canvas matrix. The final canvas matrix cT is used to com-
pute P (x|z1:T). During inference the input is read at every time-
step and the result is passed to the encoder RNN. The RNNs at
the previous time-step specify where to read. The output of the
encoder RNN is used to compute the approximate posterior over
the latent variables at that time-step.

t is the encoder hidden vector h

enc
t

. Similarly the output of
the decoder RNN dec at t is the hidden vector h

dec
t

. In gen-
eral the encoder and decoder may be implemented by any
recurrent neural network. In our experiments we use the
Long Short-Term Memory architecture (LSTM; Hochreiter
& Schmidhuber (1997)) for both, in the extended form with
forget gates (Gers et al., 2000). We favour LSTM due to
its proven track record for handling long-range dependen-
cies in real sequential data (Graves, 2013; Sutskever et al.,
2014). Throughout the paper, we use the notation b = L(a)

to denote a linear weight matrix from the vector a to the
vector b.

At each time-step t, the encoder receives input from both
the image x and from the previous decoder hidden vector
h

dec
t�1

. The precise form of the encoder input depends on a
read operation, which will be defined in the next section.
The output h

enc
t

of the encoder is used to parameterise a
distribution Q(Z

t

|henc
t

) over the latent vector z

t

. In our
experiments the latent distribution is a diagonal Gaussian
N (Z

t

|µ
t

, �

t

):

µ

t

= L(h

enc

t

) (1)
�

t

= exp (L(h

enc

t

)) (2)

Bernoulli distributions are more common than Gaussians

DRAW Samples of SVHN Images: the
drawing process

60	

DRAW: A Recurrent Neural Network For Image Generation

Table 3. Experimental Hyper-Parameters.
Task #glimpses LSTM #h #z Read Size Write Size
100 ⇥ 100 MNIST Classification 8 256 - 12 ⇥ 12 -
MNIST Model 64 256 100 2 ⇥ 2 5 ⇥ 5

SVHN Model 32 800 100 12 ⇥ 12 12 ⇥ 12

CIFAR Model 64 400 200 5 ⇥ 5 5 ⇥ 5

Figure 10. SVHN Generation Sequences. The red rectangle in-
dicates the attention patch. Notice how the network draws the dig-
its one at a time, and how it moves and scales the writing patch to
produce numbers with different slopes and sizes.

 5060
 5080
 5100
 5120
 5140
 5160
 5180
 5200
 5220

 0 50 100 150 200 250 300 350

co
st

 p
er

 e
xa

m
pl

e

minibatch number (thousands)

training
validation

Figure 11. Training and validation cost on SVHN. The valida-
tion cost is consistently lower because the validation set patches
were extracted from the image centre (rather than from random
locations, as in the training set). The network was never able to
overfit on the training data.

Figure 12. Generated CIFAR images. The rightmost column
shows the nearest training examples to the column beside it.

5. Conclusion
This paper introduced the Deep Recurrent Attentive Writer
(DRAW) neural network architecture, and demonstrated its
ability to generate highly realistic natural images such as
photographs of house numbers, as well as improving on the
best known results for binarized MNIST generation. We
also established that the two-dimensional differentiable at-
tention mechanism embedded in DRAW is beneficial not
only to image generation, but also to cluttered image clas-
sification.

Acknowledgments
Of the many who assisted in creating this paper, we are es-
pecially thankful to Koray Kavukcuoglu, Volodymyr Mnih,
Jimmy Ba, Yaroslav Bulatov, Greg Wayne, Andrei Rusu,
Danilo Jimenez Rezende and Shakir Mohamed.

DRAW Samples of SVHN Images:
generated samples vs training nearest
neighbor

61	

DRAW: A Recurrent Neural Network For Image Generation

Figure 8. Generated MNIST images with two digits.

with attention it constructs the digit by tracing the lines—
much like a person with a pen.

4.3. MNIST Generation with Two Digits

The main motivation for using an attention-based genera-
tive model is that large images can be built up iteratively,
by adding to a small part of the image at a time. To test
this capability in a controlled fashion, we trained DRAW
to generate images with two 28 ⇥ 28 MNIST images cho-
sen at random and placed at random locations in a 60 ⇥ 60

black background. In cases where the two digits overlap,
the pixel intensities were added together at each point and
clipped to be no greater than one. Examples of generated
data are shown in Fig. 8. The network typically generates
one digit and then the other, suggesting an ability to recre-
ate composite scenes from simple pieces.

4.4. Street View House Number Generation

MNIST digits are very simplistic in terms of visual struc-
ture, and we were keen to see how well DRAW performed
on natural images. Our first natural image generation ex-
periment used the multi-digit Street View House Numbers
dataset (Netzer et al., 2011). We used the same preprocess-
ing as (Goodfellow et al., 2013), yielding a 64 ⇥ 64 house
number image for each training example. The network was
then trained using 54 ⇥ 54 patches extracted at random lo-
cations from the preprocessed images. The SVHN training
set contains 231,053 images, and the validation set contains

Figure 9. Generated SVHN images. The rightmost column
shows the training images closest (in L

2 distance) to the gener-
ated images beside them. Note that the two columns are visually
similar, but the numbers are generally different.

4,701 images.

A major challenge with natural image generation is how to
model the pixel colours. In this work we applied a simple
approximation where the normalised intensity of each of
the RGB channels was treated as an independent Bernoulli
probability. This approach has the advantage of being easy
to implement and train; however it does mean that the loss
function used for training does not match the true compres-
sion cost of the data.

The house number images generated by the network are
highly realistic, as shown in Figs. 9 and 10. Fig. 11 reveals
that, despite the long training time, the DRAW network un-
derfit the SVHN training data.

4.5. Generating CIFAR Images

The most challenging dataset we applied DRAW to was
the CIFAR-10 collection of natural images (Krizhevsky,
2009). CIFAR-10 is very diverse, and with only 50,000
training examples it is very difficult to generate realistic-
looking objects without overfitting (in other words, without
copying from the training set). Nonetheless the images in
Fig. 12 demonstrate that DRAW is able to capture much of
the shape, colour and composition of real photographs.

Nearest	
 training	

example	
 for	
 last	

column	
 of	
 samples	

•  Computa?onal	
 Scaling	

•  Op?miza?on	
 &	
 Underfi�ng	

•  Intractable	
 Marginaliza?on,	
 Approximate	

Inference	
 &	
 Sampling	

•  Disentangling	
 Factors	
 of	
 Varia?on	

•  Reasoning	
 &	
 One-­‐Shot	
 Learning	
 of	
 Facts	

Deep Learning Challenges
(Bengio, arxiv 1305.0445 Deep learning
of representations: looking forward)

62	

Learning Multiple Levels of
Abstraction

•  The	
 big	
 payoff	
 of	
 deep	
 learning	
 is	
 to	
 allow	
 learning	

higher	
 levels	
 of	
 abstrac?on	

•  Higher-­‐level	
 abstrac?ons	
 disentangle	
 the	
 factors	
 of	

varia?on,	
 which	
 allows	
 much	
 easier	
 generaliza?on	
 and	

transfer	

63	

Conclusions

•  Machine	
 Learning	
 has	
 become	
 a	
 central	
 technology	
 in	
 order	
 to	

extract	
 informa6on	
 from	
 data	

•  Deep	
 Learning:	
 a	
 machine	
 learning	
 breakthrough	

•  Distributed	
 representa6ons:	
 	

•  prior	
 that	
 can	
 buy	
 exponen?al	
 gain	
 in	
 generaliza?on	

•  Deep	
 composi6on	
 of	
 non-­‐lineari6es:	
 	

•  prior	
 that	
 can	
 buy	
 exponen?al	
 gain	
 in	
 generaliza?on	

•  Both	
 yield	
 non-­‐local	
 generaliza6on	

•  Strong	
 evidence	
 that	
 local	
 minima	
 are	
 not	
 an	
 issue,	
 saddle	
 points	

•  Many	
 challenges	
 remain,	
 in	
 par6cular	
 wrt	
 unsupervised	
 learning	

	

64	

MILA: Montreal Institute for Learning Algorithms

