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What is Machine Learning?

Mathematical principles and computer algorithms exploiting data

 for extracting what is GENERAL

* so as to be able to say something meaningful about new cases
* to identify which configurations of variables are plausible
* to generate new plausible configurations or choose best ones

* to learn to predict, classify, take decisions



Generalization vs Training Error

 Minimizing Training Error very well can be easy
-2 learning by heart

- Machine Learning # Optimization

generalization

f!)l'ff(‘.:l?ling Rn
o Enes
learning” =

Rademacher

e Mathematical guarantees about generalization if training
error is small and predictor not too flexible (by defining
priors or preferences)



What is Greneralizing?

e Capturing dependencies between random variables

e Spreading out the probability mass from the empirical
distribution. Where???

= making good guesses away from the training examples.

e Discovering underlying abstractions / explanatory factors



Breakthrough for
Al and ML

 Deep Learning: machine
learning algorithms based on
learning multiple levels of
representation / abstraction.

Amazing improvements in error rate in object recognition, object
detection, speech recognition, and more recently, some in
machine translation
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Initial Breakthrough in 20
Canadian initiative: CIFAR
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e Ability to train deep architectures by
using layer-wise unsupervised
learning, whereas previous purely
supervised attempts had failed

* Unsupervised feature learners:
* RBMs

e  Auto-encoder variants

Sparse coding variants

# Le Cun
" New York
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2010-2012: Breakthrough in speech
recognition > in Androids by 2012
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Deep learning
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Breakthrough in computer vision:
RO12-2016

person

e 1000 object categories,

chair _—
e Facebook: millions of faces

motorcycle
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EXCLUSIVE

Facebook, Google in 'Deep Learning'
Arms Race

NEWS BULLETIN

Google Beat Facebook for DeepMmd

Google Acqulres Artificial Intelllgence Startup DeepMind
For More Than $5ooM

Catherine Shu (@cathe



1T Companies are Racing into
Deep Learning

ANee amazon



Ongoing brealkthrough:
natural Language
uhde‘rs &a“d"'hg Xu et al, to appear ICML’2015

Examples: machine translation, and “translating” images into text

A stop sign is on a road with a

A dog is standing on a hardwood floor.
- mountain in the background.

S—— = =

A little girl sitting on a bed with A group of people sitting on a boat A giraffe standing in a forest with
in the water. trees in the background.

a teddy bear.



Why is Deep Learning
Worlking so Well?



OLkimate Goals

o Al
* Needs knowledge
* Needs learning

* Needs generalization

e Needs ways to fight the curse of dimensionality
* Needs disentangling the underlying explanatory factors
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Representation Learning

e Good features essential for successful ML: 90% of effort

raw represented MACHINE
input > by téreserd ml | | EARNING
data features

 Handcrafting features vs learning them

e Good representation?

* guesses
the features / factors / causes

14



Automating
Feature Discovery
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Output

\

Mapping
Output Output from
features
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Mapping Mapping Most
Output from from complex
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designed designed Features f P
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Rule-based Classic Representation Deep
systems machine learning learning
learning




Composing Features on Features

Higher-level features

Output
(object identity)

are defined in terms of

3rd hidden layer
(object parts)

lower-level

2nd hidden layer
(corners and
contours)

features

1st hidden layer
(edges)

Visible layer
(input pixels)
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Learning multiple Levels of
representaktion

There is theoretical and empirical evidence in favor of
multiple levels of representation

Exponential gain for some families of functions

Biologically inspired learning
Brain has a deep architecture

Cortex seems to have a
generic learning algorithm

Humans first learn simpler
concepts and compose them

It works! Speech + vision + NLP breakthrougi
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Machine Learning, Al
# No Free Lunch

e Three key ingredients for ML towards Al

1. Lots & lots of data
2. Very flexible models

3. Powerful priors that can defeat the curse of
dimensionality
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ML 1ol, What We Are Fighting Against:
The Curse of ‘mmehsiovml,i!:v

To generalize locally,
need representative
examples for all
relevant variations!

Classical solution: hope
for a smooth enough
target function, or
make it smooth by
handcrafting good
features / kernel

1 dimension:
10 positions

2 dimensions:
100 positions
Q

» 3 dimensions:
1000 positions!



Not bime:nsionati&v so much as
Number of Variations ‘

e Theorem: Gaussian kernel machines need at least k examples
to learn a function that has 2k zero-crossings along some line

M
//’\\/\/ \//X/x

e Theorem: For a Gaussian kernel machine to learn some

maximally varying functions over d inputs requires O(2¢)
examples




Putting Probability Mass where
Structure is Plausible

e Empirical distribution: mass at
training examples

e Smoothness: spread mass around
e |nsufficient

e Guess some ‘structure’ and
generalize accordingly
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Bypassing the curse of
d?rﬁ\ev\siomatwv

Deep learning builds compositionality into ML models

Just as human languages exploit compositionality to give
representations and meanings to complex ideas

Exploiting compositionality gives an exponential gain in
representational power
Distributed representations / embeddings: feature learning

Deep architecture: multiple levels of feature learning

Prior: compositionality is useful to describe the
world around us efficiently
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Now-distributed representations

e (Clustering, n-grams, Nearest-
Neighbors, RBF SVMs, local
non-parametric density
estimation & prediction,
decision trees, etc.

Clustering

e Parameters for each
distinguishable region

LOCAL PARTITION

e # of distinguishable regions
is linear in # of parameters

- No non-trivial generalization to regions without examples
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The need for distributed
represe.vx&a!:iov\s

24

Factor models, PCA, RBMs,
Neural Nets, Sparse Coding,
Deep Learning, etc.

Each parameter influences
many regions, not just local
neighbors

# of distinguishable regions

grows almost exponentially
with # of parameters

GENERALIZE NON-LOCALLY
TO NEVER-SEEN REGIONS

Multi-
Clustering

C1

artition 1

Cl=1
C2=0
C3=0

Cl1=0
C2=1
C3=0

Sub—partition 3
\

oL, Sub—partition 2
\ Cl= s

\ CjZ:(] .,:‘
\( .‘:I!~

\ C1=0
C2=1
\ C3=1

\

DISTRIBUTED PARTITION \

C2

input

C3

Non-mutually
exclusive features/
attributes create a
combinatorially large
set of distinguiable
configurations



Classical Symbolic AI vs
Representation Learning

e Two symbols are equally far from each other

e Concepts are not represented by symbols in our
brain, but by patterns of activation

(Connectionism, 1980’s)

Output units

Hidden units

Input person

units

catb
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Neural Langquage Models: fi.;)ktmg ohe

exponential b3 anoclther one!

. ’
¢ (Benglo et al NIPS 2000) i~th output = P(w(t) =i | context)
Output softmax
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Neural word embeddings - visualizakion
Directions = Learned Attributbes

need help
come
go
take
give keep
make get
meet cem continue
expect want become
think
say remain
are .
IS
be
wergas
being
been
haq1as
have
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Analogical Representations for Free
(Mc.katov et al, ICLR 2013)

e Semantic relations appear as linear relationships in the space of
learned representations

* King —Queen = Man—-Woman
e Paris — France + Italy = Rome

France

a

Paris

Rome
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Google Image Search:

Different object types represented in the
same space

DDDDDDD

DOLPHIN
— OBAMA
—EIFFEL TOWER

"?Google:

'S. Bengio, J.
Weston & N.
»_ Usunier

Se¢ (1JCAI 2011,
NIPS’2010,
JMLR 2010,
MLJ 2010)

[

4

100-dim
embedding space

Learn ®(+) and 9,-) to optimize precision@k.



Summary of New Theoretical Results

e Expressiveness of deep networks with piecewise linear
activation functions: exponential advantage for depth

(Montufar et al NIPS 2014)

e Theoretical and empirical evidence against bad local minima
(Dauphin et al NIPS 2014)

e Manifold & probabilistic interpretations of auto-encoders
* Estimating the gradient of the energy function (Alain & Bengio ICLR 2013)
e Sampling via Markov chain (Bengio et al NIPS 2013)
* Variational auto-encoder breakthrough (Gregor et al arxiv 2015)
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The Depth Prior can be Exponentially
Advantageous -

Theoretical arguments:

=

Logic gates

2 layers of = Formal neurons = universal approximator
RBF units

RBMs & auto-encoders = universal approximat
Theorems on advantage of depth:
(Hastad et al 86 & 91, Bengio et al 2007,
Bengio & Delalleau 2011, Braverman 2011,

Pascanu et al 2014, Montufar et al NIPS 2014) 1 2 3 2n

Some functions compactly

represented with k layers may
require exponential size with 2
layers 1 2 3 n



subroutine1 includes gybroutine? includes
subsub1 code and  sybsub2 code and
subsub2 code and  sybsub3 code and

subsubsub1 code subsubsub3 code and ...

\\ /

main

“Shallow” computer program



N

bsubsub] subsubsub?

subsubsu //////////fBbS“bSUbs
subsub1 subsub2 subsub3

sub //jgbZ sub3
\ . /

“Deep” computer program



Sharing Components in a Deep
Architecture

Polynomial expressed with shared components: advantage of
depth may grow exponentially

(r179)(XoX3) + (r129) (23224) + (X2X3)2 + (x9x3)(7374)

(X2X3) 9X3) + (r374)
Sum-product
network
X9X3 Ty
2 3

Theorems in
(Bengio & Delalleau, ALT 2011;
T W €Ty

19

Delalleau & Bengio NIPS 2011)



New theoretical result:
Expressiveness of deep hets with
ri.e.ceuai.se:-uv\ear activation fns
Pascanu, Montufar, Cho & Bengio; ICLR 2014)

(Montufar, Pascanu, Cho & Bengio; NIPS 2014)

Deeper nets with rectifier/maxout units are exponentially more
expressive than shallow ones (1 hidden layer) because they can split
the input space in many more (not-independent) linear regions, with
constraints, e.g., with abs units, each unit creates mirror responses,
folding the input space:
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A Myth is Being Debuniced: Local
Minima in Neural Nets

= Cov\ve.xﬂ:v s wolt needed

e (Pascanu, Dauphin, Ganguli, Bengio, arXiv May 2014): On the
saddle point problem for non-convex optimization

e (Dauphin, Pascanu, Gulcehre, Cho, Ganguli, Bengio, NIPS’ 2014):
Identifying and attacking the saddle point problem in high-
dimensional non-convex optimization

e (Choromanska, Henaff, Mathieu, Ben Arous & LeCun 2014): The
Loss Surface of Multilayer Nets
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Saddle Poinks

* Local minima dominate in low-D, but
saddle points dominate in high-D ¢

e Most local minima are close to the
bottom (global minimum error)

O e cpupe et O ¢

0700 0.05 0.10 0.15 0.20 0.25
Index of critical point
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YWolfram Global Problem




Saddle Points During Training

e QOscillating between two behaviors:

38

Training error (MSE)

Slowly approaching a saddle point

Escaping it
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Low Index Critical Poinks

Choromanska et al & LeCun 2014, ‘The Loss Surface of Multilayer Nets’
Shows that deep rectifier nets are analogous to spherical spin-glass models

The low-index critical points of large models concentrate in a band just
above the global minimum

60 -

nhidden

40 -

count

500

20 -

I I I
0.08 0.09 0.10

loss
39



Saddle-Free Optimization

(Pascanu, Da\u,phi.v\, Granquli, Bengio 2014)

e Saddle points are ATTRACTIVE for Newton’s method

Replace eigenvalues A of Hessian by |A|
e Justified as a particular trust region method

1017 /////////I//
Yy,
//’////#’#f;ﬂ;m,,,,, :
S, Advantage increases
" //////////// . . . .
= ulu/u//z//'//z/ﬁ’z//'//////,,,//// with dimensionality
P ) [
- "": " '”/" ILI ”l, HIIHIHIIHWIIHIIITWW W
O BT,
- wwwwwwm‘
Voo
o 107
£
(-
£ e® minibatch SGD
¢4 Damped Newton method
m—8 Saddle-Free Newton method
10_1 50

25
Number of hidden units

5
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Curriculum Learning

Guided learning helps fraining humans and animails

Start from simpler examples / easier tasks (Piaget 1952, Skinner 1958)



Order & Selection of Examples Ma!:&ars

(Bengio, Louradour, Collobert & Weston, ICML’2009)

e Curriculum learning

e (Bengio et al 2009, Krueger & Dayan 2009) Ik ok VN

e Start with easier examples

—curriculum

e Faster convergence to a better local = = no-curriculum
minimum in deep architectures

42



Curriculum Learning as a
Continuakion Method

Final solution

Track local minima

asy to find minimum



How do humans generalize
from very few examples?

* They transfer knowledge from previous learning:
* Representations

*  Explanatory factors

* Previous learning from: unlabeled data
+ labels for other tasks

* Prior: shared underlying explanatory factors, in
particular between P(x) and P(Y|x)
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Multi-Task Learning

e Generalizing better to new tasks
(tens of thousands!) is crucial to
approach Al

e Deep architectures learn good
intermediate representations that
can be shared across tasks

(Collobert & Weston ICML 2008,
Bengio et al AISTATS 2011)

e Good representations that
disentangle underlying factors of
variation make sense for many tasks  E.g. dictionary, with intermediate
because each task concerns a concepts re-used across many definitions
subset of the factors

Prior: shared underlying explanatory factors between tasks
45



Sharing Statistical Strength by Semi-
Supervised Learhing

e Hypothesis: P(x) shares structure with P(y|x)

purely semi-
supervised P supervised
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Unsupervised and Transfer Learning
Challenge + Transfer Learning

Raw data

ICML’2011
workshop on

Unsup. &

Transfer Learning:™”|

095

085

curve (AUC)
o

o
< 065

3 layers

Cha%ﬁvxgez ‘De.e,gwg‘.aamm

2 layers

3 4
N umber ot tiaining e xamples)

SYLVESTER VALID: ALC=09316

q 1lst Place

NIPS’2011
Transfer
Learning

Challenge
Paper:
ICML’2012

& 9 & &
4 layers

LogziN umber ot training examples)




The Next Challenge:
Unsupervised Learning

e Recent progress mostly in supervised DL

e Real technical challenges for unsupervised DL

e Potential benefits:
e Exploit tons of unlabeled data
* Answer new questions about the variables observed
e Regularizer — transfer learning — domain adaptation
* Easier optimization (local training signal)
e Structured outputs
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Why Latent Factors & Unsupervised
Representation Learning? Because of

Causalééj.

e If Ys of interest are among the causal factors of X, then
P(X|Y)P(Y

P(X)

is tied to P(X) and P(X|Y), and P(X) is defined in terms of P(X|Y), i.e.

e The best possible model of X (unsupervised learning) MUST
involve Y as a latent factor, implicitly or explicitly.

e Representation learning SEEKS the latent variables H that
explain the variations of X, making it likely to also uncover.
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Manifold Learning =
Representation Learning

angext directions

tangent plane
X

Data on a curved manifold
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Non-Paramelric Manifold Learhing:
hopeless without powerful enough priors

Manifolds estimated out of the
neighborhood graph:

- node = example

- arc = near neighbor

Al-related data manifolds have too many
twists and turns, not enough examples
to cover all the ups & downs & twists
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Auto-Encoders Learn Salienk
Variakions, Like a non-Linear PCA

..0 .(

* Minimizing reconstruction error forces to

keep variations along manifold. ®
* Regularizer wants to throw away all

variations. 9
e With both: keep ONLY sensitivity to

variations ON the manifold.
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Denoising Auto-Encoder

e Learns a vector field pointing towards @

prior: examples

higher probability direction (Alain & Bengio 2013) concentrate near a
0 1ng(3;) lower dimensional
reconstruction(z) —xz — o 5 “manifold”
€T ,

e Some DAEs correspond to a kind of
Gaussian RBM with regularized Score
Matching (Vincent 2011)

[equivalent when noise—>0] Corrupted input




(Alain & Bengio ICLR 2013)

ularized Auto-Encoders Learn a
teld that Estimates a

9
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Denoising Auto-Encoder Markov Chain

corrupt

C(X|X)
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Auto-Encoders Learn a

9
Markov Chain Transition Distribution

Denoisin

(Bengio et al NIPS 2013)
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Space-Filling in Representation-Space
* Deeper representations = abstractions = disentangling
e Manifolds are expanded and flattened

- X-space
4 Pixel space A Representation space
" 3 il q symantol e htod X
Lmenr interpolation at Iayer 2 3’s manifold
. 3
o} ®
9’s mahifold B -
Pe_Linear interpolation at layer 1 ®

1 E

Linear mterpolatlon in pixel space
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Extracting Structure By Gradual
Disentangling and Manifold Unfolding

(Bengio 2014, arXiv 1407,7906) 3
ahy) 1=
Each level transforms the  — ——
data into a representation in Tf ) T
which it is easier to model, o

unfolding it more,
contracting the noise

Q(h,lh,) |f g, P(h,[h;)
dimensions and mapping the o ’ 2

signal dimensions to a alh,) P(
factorized (uniform-like) o Pl
distribution. Q(h,/x) sz l

Q(x)
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DRAW: the Latest variont of
Variational Auto-Encoder

(Gregor et al of Google DeepMind, arXiv 1502.04623, 2015)

e Even for a static input, the encoder and decoder are now
recurrent nets, which gradually add elements to the answer,
and use an attention mechanism to choose where to do so.
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DRAW Samples of SVHN Images: the
drawing process

O T i et w21 01 17 F'"
.--!UE‘H"NWW
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DRAW Samples of SVHN Images:
generated samples vs training v\eouresl:
neighbor

1 250088 oo R 677 85 20" PR ¢ 47 ﬂ o
nmm..@.nnlﬁ 790 Im of samples

E'. 4 11001776 .E- ;
TR 0 21508 125 o vy 12
L1 Ey oxf e s w

TN 1 <R
L 0 5" U
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Deea Learning Challenges
(Benglo, arxiv 1305.04-45 Deep Learning
of representations: Looking forward)

e Computational Scaling
e Optimization & Underfitting

* Intractable Marginalization, Approximate
Inference & Sampling

e Disentangling Factors of Variation
e Reasoning & One-Shot Learning of Facts
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Learning Multiple Levels of
Abstrackion

e The big payoff of deep learning is to allow learning
higher levels of abstraction

e Higher-level abstractions disentangle the factors of
variation, which allows much easier generalization and

transfer

Organizational Maturity
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Cownclusions

64

Machine Learning has become a central technology in order to
extract information from data

Deep Learning: a machine learning breakthrough
Distributed representations:
e prior that can buy exponential gain in generalization
Deep composition of non-linearities:
e prior that can buy exponential gain in generalization
Both yield non-local generalization
Strong evidence that local minima are not an issue, saddle points
Many challenges remain, in particular wrt unsupervised learning
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