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What is Machine Learning? 

	  
•  for	  extrac?ng	  what	  is	  GENERAL	  

•  so	  as	  to	  be	  able	  to	  say	  something	  meaningful	  about	  new	  cases	  

•  to	  iden?fy	  which	  configura?ons	  of	  variables	  are	  plausible	  
•  to	  generate	  new	  plausible	  configura?ons	  or	  choose	  best	  ones	  
•  to	  learn	  to	  predict,	  classify,	  take	  decisions	  

Mathematical principles and computer algorithms exploiting data  
 



Generalization vs Training Error 
•  Minimizing	  Training	  Error	  very	  well	  can	  be	  easy	  	  
	   	   	   	  à	  learning	  by	  heart	  

	  	  	  à	  Machine	  Learning	  ≠	  Op?miza?on	  

•  Real	  objec6ve:	  generalizing	  to	  new	  examples	  
	  

	  

	  

	  
•  Mathema?cal	  guarantees	  about	  generaliza?on	  if	  training	  

error	  is	  small	  and	  predictor	  not	  too	  flexible	  (by	  defining	  
priors	  or	  preferences)	  



What is Generalizing? 

•  Capturing	  dependencies	  between	  random	  variables	  

•  Spreading	  out	  the	  probability	  mass	  from	  the	  empirical	  
distribu?on.	  Where???	   	   	   	   	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
=	  making	  good	  guesses	  away	  from	  the	  training	  examples.	  

•  Discovering	  underlying	  abstrac?ons	  /	  explanatory	  factors	  	  



Breakthrough for 
AI and ML 
• 	  Deep	  Learning:	  machine	  
learning	  algorithms	  based	  on	  
learning	  mul6ple	  levels	  of	  
representa6on	  /	  abstrac6on.	  
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Amazing	  improvements	  in	  error	  rate	  in	  object	  recogni?on,	  object	  
detec?on,	  speech	  recogni?on,	  and	  more	  recently,	  some	  in	  
machine	  transla?on	  



Montréal 
Toronto 

Bengio 

Hinton 
Le Cun 

Initial Breakthrough in 2006 

•  Ability	  to	  train	  deep	  architectures	  by	  
using	  layer-‐wise	  unsupervised	  
learning,	  whereas	  previous	  purely	  
supervised	  a\empts	  had	  failed	  

•  Unsupervised	  feature	  learners:	  
•  RBMs	  
•  Auto-‐encoder	  variants	  
•  Sparse	  coding	  variants	  

New York 
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Canadian	  ini6a6ve:	  CIFAR	  



2010-2012: Breakthrough in speech 
recognition à in Androids by 2012 
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Deep	  learning	  

According	  to	  Microsod:	  



Breakthrough in computer vision: 
2012-2015 

•  GPUs	  +	  10x	  more	  data	  
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•  1000	  object	  categories,	  	  
•  Facebook:	  millions	  of	  faces	  

•  2015:	  



Deep Learning in the News 
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Researcher Dreams Up Machines  
That Learn Without Humans 
06.27.13 

Scientists See Promise in 
Deep-Learning Programs 
John Markoff 
November 23, 2012 

Google	  taps	  U	  
of	  T	  professor	  
to	  teach	  
context	  to	  
computers	  
03.11.13	  



IT Companies are Racing into  
Deep Learning 



Ongoing breakthrough: 
natural language 
understanding 
Examples:	  	  machine	  transla?on,	  and	  “transla?ng”	  images	  into	  text	  	  

Xu	  et	  al,	  to	  appear	  ICML’2015	  



Why is Deep Learning 
Working so Well? 

12	  



Ultimate Goals 

•  AI	  
•  Needs	  knowledge	  
•  Needs	  learning	   	   	   	   	   	  	  	  	  	  	  	  	  	  	  	  	  

(involves	  priors	  +	  op#miza#on/search)	  

•  Needs	  generaliza6on	   	   	   	   	  	  	  	  	  	  	  	  	  	  	  
(guessing	  where	  probability	  mass	  concentrates)	  

•  Needs	  ways	  to	  fight	  the	  curse	  of	  dimensionality	  
(exponen?ally	  many	  configura?ons	  of	  the	  variables	  to	  consider)	  

•  Needs	  disentangling	  the	  underlying	  explanatory	  factors	  
(making	  sense	  of	  the	  data)	  
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•  Good	  features	  essen?al	  for	  successful	  ML:	  90%	  of	  effort	  

•  Handcrading	  features	  vs	  learning	  them	  

•  Good	  representa?on?	  
•  guesses	  
	  	  	  	  	  the	  features	  /	  factors	  /	  causes	  

Representation Learning 
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represented	  
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Visualizing and Understanding Convolutional Networks

(a) (b)

(c) (d) (e)

Figure 6. (a): 1st layer features without feature scale clipping. Note that one feature dominates. (b): 1st layer features
from (Krizhevsky et al., 2012). (c): Our 1st layer features. The smaller stride (2 vs 4) and filter size (7x7 vs 11x11)
results in more distinctive features and fewer “dead” features. (d): Visualizations of 2nd layer features from (Krizhevsky
et al., 2012). (e): Visualizations of our 2nd layer features. These are cleaner, with no aliasing artifacts that are visible in
(d).
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Figure 7. Three test examples where we systematically cover up di↵erent portions of the scene with a gray square (1st
column) and see how the top (layer 5) feature maps ((b) & (c)) and classifier output ((d) & (e)) changes. (b): for each
position of the gray scale, we record the total activation in one layer 5 feature map (the one with the strongest response
in the unoccluded image). (c): a visualization of this feature map projected down into the input image (black square),
along with visualizations of this map from other images. The first row example shows the strongest feature to be the
dog’s face. When this is covered-up the activity in the feature map decreases (blue area in (b)). (d): a map of correct
class probability, as a function of the position of the gray square. E.g. when the dog’s face is obscured, the probability
for “pomeranian” drops significantly. (e): the most probable label as a function of occluder position. E.g. in the 1st row,
for most locations it is “pomeranian”, but if the dog’s face is obscured but not the ball, then it predicts “tennis ball”. In
the 2nd example, text on the car is the strongest feature in layer 5, but the classifier is most sensitive to the wheel. The
3rd example contains multiple objects. The strongest feature in layer 5 picks out the faces, but the classifier is sensitive
to the dog (blue region in (d)), since it uses multiple feature maps.
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Visualizing and Understanding Convolutional Networks

Figure 2. Visualization of features in a fully trained model. For layers 2-5 we show the top 9 activations in a random subset
of feature maps across the validation data, projected down to pixel space using our deconvolutional network approach.
Our reconstructions are not samples from the model: they are reconstructed patterns from the validation set that cause
high activations in a given feature map. For each feature map we also show the corresponding image patches. Note:
(i) the the strong grouping within each feature map, (ii) greater invariance at higher layers and (iii) exaggeration of
discriminative parts of the image, e.g. eyes and noses of dogs (layer 4, row 1, cols 1). Best viewed in electronic form.
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Composing Features on Features 
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Higher-‐level	  features	  

are	  defined	  in	  terms	  of	  

lower-‐level	  

features	  



Learning multiple levels of 
representation 
There	  is	  theore?cal	  and	  empirical	  evidence	  in	  favor	  of	  
mul?ple	  levels	  of	  representa?on	  

	  Exponen6al	  gain	  for	  some	  families	  of	  func6ons	  

Biologically	  inspired	  learning	  

Brain	  has	  a	  deep	  architecture	  

Cortex	  seems	  to	  have	  a	  	  
generic	  learning	  algorithm	  	  

Humans	  first	  learn	  simpler	  	  
concepts	  and	  compose	  them	  

It	  works!	  Speech	  +	  vision	  +	  NLP	  breakthroughs	  
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Machine Learning, AI 
& No Free Lunch 
•  Three	  key	  ingredients	  for	  ML	  towards	  AI	  

1.  Lots	  &	  lots	  of	  data	  

2.  Very	  flexible	  models	  

3.  Powerful	  priors	  that	  can	  defeat	  the	  curse	  of	  
dimensionality	  
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ML 101. What We Are Fighting Against:  
The Curse of Dimensionality 

	  	  	  To	  generalize	  locally,	  
need	  representa?ve	  
examples	  for	  all	  
relevant	  varia?ons!	  

	  
Classical	  solu?on:	  hope	  

for	  a	  smooth	  enough	  
target	  func?on,	  or	  
make	  it	  smooth	  by	  
handcrading	  good	  
features	  /	  kernel	  



Not Dimensionality so much as 
Number of Variations 

•  Theorem:	  Gaussian	  kernel	  machines	  need	  at	  least	  k	  examples	  
to	  learn	  a	  func?on	  that	  has	  2k	  zero-‐crossings	  along	  some	  line	  

	  
	  
	  
	  
	  
•  Theorem:	  For	  a	  Gaussian	  kernel	  machine	  to	  learn	  some	  

maximally	  varying	  func?ons	  	  over	  d	  inputs	  requires	  O(2d)	  
examples	  

	  

(Bengio, Dellalleau & Le Roux 2007) 



Putting Probability Mass where 
Structure is Plausible 

•  Empirical	  distribu?on:	  mass	  at	  
training	  examples	  
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•  Smoothness:	  spread	  mass	  around	  
•  Insufficient	  
•  Guess	  some	  ‘structure’	  and	  

generalize	  accordingly	  



Bypassing the curse of 
dimensionality 
Deep	  learning	  builds	  composi?onality	  into	  ML	  models	  	  

Just	  as	  human	  languages	  exploit	  composi?onality	  to	  give	  
representa?ons	  and	  meanings	  to	  complex	  ideas	  

Exploi?ng	  composi?onality	  gives	  an	  exponen?al	  gain	  in	  
representa?onal	  power	  

Distributed	  representa?ons	  /	  embeddings:	  feature	  learning	  

Deep	  architecture:	  mul?ple	  levels	  of	  feature	  learning	  

Prior:	  composi?onality	  is	  useful	  to	  describe	  the	  
world	  around	  us	  efficiently	  

	  22	  



•  Clustering,	  n-‐grams,	  Nearest-‐
Neighbors,	  RBF	  SVMs,	  local	  
non-‐parametric	  density	  
es?ma?on	  &	  predic?on,	  
decision	  trees,	  etc.	  

•  Parameters	  for	  each	  
dis?nguishable	  region	  

•  #	  of	  dis6nguishable	  regions	  
is	  linear	  in	  #	  of	  parameters	  

Non-distributed representations 

Clustering	  
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à	  No	  non-‐trivial	  generaliza?on	  to	  regions	  without	  examples	  



•  Factor	  models,	  PCA,	  RBMs,	  
Neural	  Nets,	  Sparse	  Coding,	  
Deep	  Learning,	  etc.	  

•  Each	  parameter	  influences	  
many	  regions,	  not	  just	  local	  
neighbors	  

•  #	  of	  dis6nguishable	  regions	  
grows	  almost	  exponen6ally	  
with	  #	  of	  parameters	  

•  GENERALIZE	  NON-‐LOCALLY	  
TO	  NEVER-‐SEEN	  REGIONS	  

The need for distributed 
representations 

Mul?-‐	  
Clustering	  
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C1	   C2	   C3	  

input	  

Non-‐mutually	  
exclusive	  features/
a\ributes	  create	  a	  
combinatorially	  large	  
set	  of	  dis?nguiable	  
configura?ons	  



Classical Symbolic AI vs 
Representation Learning 

•  Two	  symbols	  are	  equally	  far	  from	  each	  other	  
•  Concepts	  are	  not	  represented	  by	  symbols	  in	  our	  

brain,	  but	  by	  pa\erns	  of	  ac?va?on	  	  
	  (Connec/onism,	  1980’s)	  
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cat	  	  
dog	  	  

person	  	  Input	  
units	  

Hidden	  units	  

Output	  units	  

Geoffrey	  Hinton	  

David	  Rumelhart	  



Neural Language Models: fighting one 
exponential by another one! 

•  (Bengio	  et	  al	  NIPS’2000)	  
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w1 w2 w3 w4 w5 w6

R(w6)R(w5)R(w4)R(w3)R(w2)R(w1)

output

input sequence

i−th output = P(w(t)  = i | context)

softmax

tanh

. . . . . .. . .

. . . . . .

. . . . . .

across words

most  computation here

index for w(t−n+1) index for w(t−2) index for w(t−1)

shared parameters

Matrix

in
look−up
Table C

C

C(w(t−2)) C(w(t−1))C(w(t−n+1))

. . .

Exponen?ally	  large	  set	  of	  
generaliza?ons:	  seman?cally	  close	  
sequences	  

Exponen?ally	  large	  set	  of	  possible	  contexts	  



Neural word embeddings – visualization 
Directions = Learned Attributes 

27	  



Analogical Representations for Free 
(Mikolov et al, ICLR 2013) 

•  Seman?c	  rela?ons	  appear	  as	  linear	  rela?onships	  in	  the	  space	  of	  
learned	  representa?ons	  

•  King	  –	  Queen	  ≈	  	  Man	  –	  Woman	  
•  Paris	  –	  France	  +	  Italy	  ≈	  Rome	  
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Paris	  

France	  
Italy	  

Rome	  



Google Image Search: 
Different object types represented in the 
same space 

Google:	  
S.	  Bengio,	  J.	  
Weston	  &	  N.	  
Usunier	  

(IJCAI	  2011,	  
NIPS’2010,	  
JMLR	  2010,	  
MLJ	  2010)	  



Summary of New Theoretical Results 

•  Expressiveness	  of	  deep	  networks	  with	  piecewise	  linear	  
ac?va?on	  func?ons:	  exponen?al	  advantage	  for	  depth	  

•  Theore?cal	  and	  empirical	  evidence	  against	  bad	  local	  minima	  

•  Manifold	  &	  probabilis?c	  interpreta?ons	  of	  auto-‐encoders	  
•  Es?ma?ng	  the	  gradient	  of	  the	  energy	  func?on	  
•  Sampling	  via	  Markov	  chain	  
•  Varia?onal	  auto-‐encoder	  breakthrough	  
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(Montufar	  et	  al	  NIPS	  2014)	  

(Dauphin	  et	  al	  NIPS	  2014)	  

(Alain	  &	  Bengio	  ICLR	  2013)	  

(Bengio	  et	  al	  NIPS	  2013)	  

(Gregor	  et	  al	  arXiv	  2015)	  



The Depth Prior can be Exponentially  
Advantageous 
Theore?cal	  arguments:	  

…	  
1	   2	   3	   2n 

1	   2	   3	  
…	  

n	  

= universal approximator 2 layers of 
Logic gates 
Formal neurons 
RBF units 

Theorems on advantage of depth: 
(Hastad et al 86 & 91, Bengio et al 2007, 
Bengio & Delalleau 2011, Braverman 2011, 
Pascanu et al 2014, Montufar et al NIPS 2014) 

Some functions compactly 
represented with k layers may 
require exponential size with 2 
layers 

RBMs & auto-encoders = universal approximator 



main 

subroutine1 includes 
subsub1 code and 
subsub2 code and 
subsubsub1 code 

“Shallow” computer program 

subroutine2 includes 
subsub2 code and 
subsub3 code and 
subsubsub3 code and … 



main 

sub1 sub2 sub3 

subsub1 subsub2 subsub3 

subsubsub1 subsubsub2 
subsubsub3 

“Deep” computer program 



Sharing Components in a Deep 
Architecture 

Sum-‐product	  
network	  

Polynomial	  expressed	  with	  shared	  components:	  advantage	  of	  
depth	  may	  grow	  exponen?ally	  	  
	  

Theorems	  in	  	  
(Bengio	  &	  Delalleau,	  ALT	  2011;	  
Delalleau	  &	  Bengio	  NIPS	  2011)	  



New theoretical result: 
Expressiveness of deep nets with 
piecewise-linear activation fns 
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(Pascanu,	  Montufar,	  Cho	  &	  Bengio;	  ICLR	  2014)	  

(Montufar,	  Pascanu,	  Cho	  &	  Bengio;	  NIPS	  2014)	  

Deeper	  nets	  with	  rec?fier/maxout	  units	  are	  exponen?ally	  more	  
expressive	  than	  shallow	  ones	  (1	  hidden	  layer)	  because	  they	  can	  split	  
the	  input	  space	  in	  many	  more	  (not-‐independent)	  linear	  regions,	  with	  
constraints,	  e.g.,	  with	  abs	  units,	  each	  unit	  creates	  mirror	  responses,	  
folding	  the	  input	  space:	  	  

	  

	  



A Myth is Being Debunked: Local 
Minima in Neural Nets  
à Convexity is not needed 
•  (Pascanu,	  Dauphin,	  Ganguli,	  Bengio,	  arXiv	  May	  2014):	  On	  the	  

saddle	  point	  problem	  for	  non-‐convex	  op/miza/on	  
•  (Dauphin,	  Pascanu,	  Gulcehre,	  Cho,	  Ganguli,	  Bengio,	  NIPS’	  2014):	  

Iden/fying	  and	  aWacking	  the	  saddle	  point	  problem	  in	  high-‐
dimensional	  non-‐convex	  op/miza/on	  	  

•  (Choromanska,	  Henaff,	  Mathieu,	  Ben	  Arous	  &	  LeCun	  2014):	  The	  
Loss	  Surface	  of	  Mul/layer	  Nets	  
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Saddle Points 

•  Local	  minima	  dominate	  in	  low-‐D,	  but	  
saddle	  points	  dominate	  in	  high-‐D	  

•  Most	  local	  minima	  are	  close	  to	  the	  
bo\om	  (global	  minimum	  error)	  
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Saddle Points During Training 

•  Oscilla?ng	  between	  two	  behaviors:	  
•  Slowly	  approaching	  a	  saddle	  point	  
•  Escaping	  it	  
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Low Index Critical Points 

Choromanska	  et	  al	  &	  LeCun	  2014,	  ‘The	  Loss	  Surface	  of	  Mul/layer	  Nets’	  
Shows	  that	  deep	  rec?fier	  nets	  are	  analogous	  to	  spherical	  spin-‐glass	  models	  
The	  low-‐index	  cri?cal	  points	  of	  large	  models	  concentrate	  in	  a	  band	  just	  
above	  the	  global	  minimum	  
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Saddle-Free Optimization  
(Pascanu, Dauphin, Ganguli, Bengio 2014) 

•  Saddle	  points	  are	  ATTRACTIVE	  for	  Newton’s	  method	  
•  Replace	  eigenvalues	  λ	  of	  Hessian	  by	  |λ|	  
•  Jus?fied	  as	  a	  par?cular	  trust	  region	  method	  
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Advantage	  increases	  
with	  dimensionality	  



Curriculum Learning 

Guided learning helps training humans and animals  

 Shaping 

 

Start from simpler examples / easier tasks   (Piaget 1952, Skinner 1958) 

Education 

 



Order & Selection of Examples Matters 
(Bengio,	  Louradour,	  Collobert	  &	  Weston,	  ICML’2009)	  	  	  	  A	  

• Curriculum	  learning	  	  
•  (Bengio	  et	  al	  2009,	  Krueger	  &	  Dayan	  2009)	  	  	  

•  Start	  with	  easier	  examples	  

•  Faster	  convergence	  to	  a	  be\er	  local	  
minimum	  in	  deep	  architectures	  
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Curriculum learning as a 
Continuation Method 

Track local minima 

 

Final solution 

 

Easy to find minimum 

 



How do humans generalize 
from very few examples? 
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•  They	  transfer	  knowledge	  from	  previous	  learning:	  
•  Representa?ons	  

•  Explanatory	  factors	  

•  Previous	  learning	  from:	  unlabeled	  data	  	  

	   	   	  	  	  	  	   	  +	  labels	  for	  other	  tasks	  

•  Prior:	  shared	  underlying	  explanatory	  factors,	  in	  
par6cular	  between	  P(x)	  and	  P(Y|x)	  	  

	  



Multi-Task Learning 
•  Generalizing	  be\er	  to	  new	  tasks	  

(tens	  of	  thousands!)	  is	  crucial	  to	  
approach	  AI	  

•  Deep	  architectures	  learn	  good	  
intermediate	  representa?ons	  that	  
can	  be	  shared	  across	  tasks	  

	  	  	  	  	  (Collobert	  &	  Weston	  ICML	  2008,	  
	  	  	  	  	  Bengio	  et	  al	  AISTATS	  2011)	  

•  Good	  representa?ons	  that	  
disentangle	  underlying	  factors	  of	  
varia?on	  make	  sense	  for	  many	  tasks	  
because	  each	  task	  concerns	  a	  
subset	  of	  the	  factors	  
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raw input x 

task 1  
output y1 

task 3  
output y3 

task 2 
output y2 

Task	  A	   Task	  B	   Task	  C	  

Prior:	  shared	  underlying	  explanatory	  factors	  between	  tasks	  	  
	  

E.g.	  dic?onary,	  with	  intermediate	  
concepts	  re-‐used	  across	  many	  defini?ons	  



Sharing Statistical Strength by Semi-
Supervised Learning 

•  Hypothesis:	  P(x)	  shares	  structure	  with	  P(y|x)	  

purely	  
supervised	  

semi-‐	  
supervised	  
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Raw	  data	  
1	  layer	   2	  layers	  

4	  layers	  
3	  layers	  

ICML’2011	  
workshop	  on	  
Unsup.	  &	  
Transfer	  Learning	  

NIPS’2011	  
Transfer	  
Learning	  
Challenge	  	  
Paper:	  
ICML’2012	  

Unsupervised and Transfer Learning 
Challenge + Transfer Learning 
Challenge: Deep Learning 1st Place 



The Next Challenge: 
Unsupervised Learning 

•  Recent	  progress	  mostly	  in	  supervised	  DL	  
•  Real	  technical	  challenges	  for	  unsupervised	  DL	  
•  Poten?al	  benefits:	  

•  Exploit	  tons	  of	  unlabeled	  data	  
•  Answer	  new	  ques?ons	  about	  the	  variables	  observed	  
•  Regularizer	  –	  transfer	  learning	  –	  domain	  adapta?on	  
•  Easier	  op?miza?on	  (local	  training	  signal)	  
•  Structured	  outputs	  
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Why Latent Factors & Unsupervised 
Representation Learning? Because of 
Causality. 

•  If	  Ys	  of	  interest	  are	  among	  the	  causal	  factors	  of	  X,	  then	  

is	  ?ed	  to	  P(X)	  and	  P(X|Y),	  and	  P(X)	  is	  defined	  in	  terms	  of	  P(X|Y),	  i.e.	  
•  The	  best	  possible	  model	  of	  X	  (unsupervised	  learning)	  MUST	  

involve	  Y	  as	  a	  latent	  factor,	  implicitly	  or	  explicitly.	  
•  Representa?on	  learning	  SEEKS	  the	  latent	  variables	  H	  that	  

explain	  the	  varia?ons	  of	  X,	  making	  it	  likely	  to	  also	  uncover	  Y.	  
	  	  

49	  

P (Y |X) =
P (X|Y )P (Y )

P (X)



Manifold Learning =  
 Representation Learning 
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tangent directions

tangent plane

Data on a curved manifold



Non-Parametric Manifold Learning: 
hopeless without powerful enough priors 
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AI-‐related	  data	  manifolds	  have	  too	  many	  
twists	  and	  turns,	  not	  enough	  examples	  
to	  cover	  all	  the	  ups	  &	  downs	  &	  twists	  

Manifolds	  es?mated	  out	  of	  the	  
neighborhood	  graph:	  	  

	  -‐	  node	  =	  example	  
	  -‐	  arc	  =	  near	  neighbor	  
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Auto-Encoders Learn Salient 
Variations, like a non-linear PCA 

•  Minimizing	  reconstruc?on	  error	  forces	  to	  
keep	  varia?ons	  along	  manifold.	  

•  Regularizer	  wants	  to	  throw	  away	  all	  
varia?ons.	  

•  With	  both:	  keep	  ONLY	  sensi?vity	  to	  
varia?ons	  ON	  the	  manifold.	  



Denoising Auto-Encoder 
•  Learns	  a	  vector	  field	  poin?ng	  towards	  

higher	  probability	  direc?on	  (Alain	  &	  Bengio	  2013)	  

•  Some	  DAEs	  correspond	  to	  a	  kind	  of	  
Gaussian	  RBM	  with	  regularized	  Score	  
Matching	  (Vincent	  2011)	  

	  	  	  	  	  [equivalent	  when	  noiseà0]	  

Corrupted input 

Corrupted input 

prior:	  examples	  
concentrate	  near	  a	  
lower	  dimensional	  
“manifold”	  	  reconstruction(x)� x ! �

2 @ log p(x)

@x



Regularized Auto-Encoders Learn a 
Vector Field that Estimates a 
Gradient Field (Alain	  &	  Bengio	  ICLR	  2013)	  
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Denoising Auto-Encoder Markov Chain 

55	  

Xt	  

Xt	  
~	   Xt+1	  

~	  

Xt+1	   Xt+2	  

Xt+2	  
~	  

corrupt	  
denoise	  



Denoising Auto-Encoders Learn a 
Markov Chain Transition Distribution 
(Bengio	  et	  al	  NIPS	  2013)	  
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Space-Filling in Representation-Space 
•  Deeper	  representa6ons	  è	  abstrac6ons	  è	  disentangling	  
•  Manifolds	  are	  expanded	  and	  fla_ened	  

Linear	  interpola?on	  at	  layer	  2	  

Linear	  interpola?on	  at	  layer	  1	  

3’s	  manifold	  

9’s	  manifold	  

Linear	  interpola?on	  in	  pixel	  space	  

Pixel	  space	  

9’s	  manifold	   3’s	  manifold	  

Representa?on	  space	  

9’s	  manifold	   3’s	  manifold	  

X-‐space	  

H-‐space	  



Extracting Structure By Gradual 
Disentangling and Manifold Unfolding 
(Bengio 2014, arXiv 1407.7906)  
Each	  level	  transforms	  the	  
data	  into	  a	  representa?on	  in	  
which	  it	  is	  easier	  to	  model,	  
unfolding	  it	  more,	  
contrac?ng	  the	  noise	  
dimensions	  and	  mapping	  the	  
signal	  dimensions	  to	  a	  
factorized	  (uniform-‐like)	  
distribu?on.	  
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Q(x)	  

f1	  
g1	  

Q(h1)	  
P(h1)	  

fL	   gL	  

Q(hL)	  
P(hL)	  no

ise
	  

signal	  

…	  

P(x|h1)	  
Q(h1|x)	  

Q(h2|h1)	   f2	   P(h2|h1)	  g2	  



DRAW: the latest variant of 
Variational Auto-Encoder 

•  Even	  for	  a	  sta?c	  input,	  the	  encoder	  and	  decoder	  are	  now	  
recurrent	  nets,	  which	  gradually	  add	  elements	  to	  the	  answer,	  
and	  use	  an	  a\en?on	  mechanism	  to	  choose	  where	  to	  do	  so.	  
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(Gregor	  et	  al	  of	  Google	  DeepMind,	  arXiv	  1502.04623,	  2015)	  	  

DRAW: A Recurrent Neural Network For Image Generation
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Abstract
This paper introduces the Deep Recurrent Atten-

tive Writer (DRAW) neural network architecture
for image generation. DRAW networks combine
a novel spatial attention mechanism that mimics
the foveation of the human eye, with a sequential
variational auto-encoding framework that allows
for the iterative construction of complex images.
The system substantially improves on the state
of the art for generative models on MNIST, and,
when trained on the Street View House Numbers
dataset, it generates images that cannot be distin-
guished from real data with the naked eye.

1. Introduction
A person asked to draw, paint or otherwise recreate a visual
scene will naturally do so in a sequential, iterative fashion,
reassessing their handiwork after each modification. Rough
outlines are gradually replaced by precise forms, lines are
sharpened, darkened or erased, shapes are altered, and the
final picture emerges. Most approaches to automatic im-
age generation, however, aim to generate entire scenes at
once. In the context of generative neural networks, this typ-
ically means that all the pixels are conditioned on a single
latent distribution (Dayan et al., 1995; Hinton & Salakhut-
dinov, 2006; Larochelle & Murray, 2011). As well as pre-
cluding the possibility of iterative self-correction, the “one
shot” approach is fundamentally difficult to scale to large
images. The Deep Recurrent Attentive Writer (DRAW) ar-
chitecture represents a shift towards a more natural form of
image construction, in which parts of a scene are created
independently from others, and approximate sketches are
successively refined.

The core of the DRAW architecture is a pair of recurrent
neural networks: an encoder network that compresses the
real images presented during training, and a decoder that
reconstitutes images after receiving codes. The combined
system is trained end-to-end with stochastic gradient de-

Time

Figure 1. A trained DRAW network generating MNIST dig-
its. Each row shows successive stages in the generation of a sin-
gle digit. Note how the lines composing the digits appear to be
“drawn” by the network. The red rectangle delimits the area at-
tended to by the network at each time-step, with the focal preci-
sion indicated by the width of the rectangle border.

scent, where the loss function is a variational upper bound
on the log-likelihood of the data. It therefore belongs to the
family of variational auto-encoders, a recently emerged
hybrid of deep learning and variational inference that has
led to significant advances in generative modelling (Gre-
gor et al., 2014; Kingma & Welling, 2014; Rezende et al.,
2014; Mnih & Gregor, 2014; Salimans et al., 2014). Where
DRAW differs from its siblings is that, rather than generat-
ing images in a single pass, it iteratively constructs scenes
through an accumulation of modifications emitted by the
decoder, each of which is observed by the encoder.

An obvious correlate of generating images step by step is
the ability to selectively attend to parts of the scene while
ignoring others. A wealth of results in the past few years
suggest that visual structure can be better captured by a se-

ar
X

iv
:1

50
2.

04
62

3v
1 

 [c
s.C

V
]  

16
 F

eb
 2

01
5 DRAW: A Recurrent Neural Network For Image Generation

quence of partial glimpses, or foveations, than by a sin-
gle sweep through the entire image (Larochelle & Hinton,
2010; Denil et al., 2012; Tang et al., 2013; Ranzato, 2014;
Zheng et al., 2014; Mnih et al., 2014; Ba et al., 2014; Ser-
manet et al., 2014). The main challenge faced by sequential
attention models is learning where to look, which can be
addressed with reinforcement learning techniques such as
policy gradients (Mnih et al., 2014). The attention model in
DRAW, however, is fully differentiable, making it possible
to train with standard backpropagation. In this sense it re-
sembles the selective read and write operations developed
for the Neural Turing Machine (Graves et al., 2014).

The following section defines the DRAW architecture,
along with the loss function used for training and the pro-
cedure for image generation. Section 3 presents the selec-
tive attention model and shows how it is applied to read-
ing and modifying images. Section 4 provides experi-
mental results on the MNIST, Street View House Num-
bers and CIFAR-10 datasets, with examples of generated
images; and concluding remarks are given in Section 5.
Lastly, we would like to direct the reader to the video
accompanying this paper (https://www.youtube.
com/watch?v=Zt-7MI9eKEo) which contains exam-
ples of DRAW networks reading and generating images.

2. The DRAW Network
The basic structure of a DRAW network is similar to that of
other variational auto-encoders: an encoder network deter-
mines a distribution over latent codes that capture salient
information about the input data; a decoder network re-
ceives samples from the code distribuion and uses them to
condition its own distribution over images. However there
are three key differences. Firstly, both the encoder and de-
coder are recurrent networks in DRAW, so that a sequence

of code samples is exchanged between them; moreover the
encoder is privy to the decoder’s previous outputs, allow-
ing it to tailor the codes it sends according to the decoder’s
behaviour so far. Secondly, the decoder’s outputs are suc-
cessively added to the distribution that will ultimately gen-
erate the data, as opposed to emitting this distribution in
a single step. And thirdly, a dynamically updated atten-
tion mechanism is used to restrict both the input region
observed by the encoder, and the output region modified
by the decoder. In simple terms, the network decides at
each timestep “where to read” and “where to write” as
well as “what to write”. The architecture is sketched in
Fig. 2, alongside a conventional, feedforward variational
auto-encoder.

2.1. Network Architecture

Let RNN enc be the function enacted by the encoder net-
work at a single time-step. The output of RNN enc at time

read

x

zt zt+1

P (x|z1:T )write

encoder
RNN

sample

decoder
RNN
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decoder
RNN
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1:t

)

. . .

decoding
(generative model)

encoding
(inference)

x

encoder
FNN

sample

decoder
FNN

z

Q(z|x)

P (x|z)

Figure 2. Left: Conventional Variational Auto-Encoder. Dur-
ing generation, a sample z is drawn from a prior P (z) and passed
through the feedforward decoder network to compute the proba-
bility of the input P (x|z) given the sample. During inference the
input x is passed to the encoder network, producing an approx-
imate posterior Q(z|x) over latent variables. During training, z
is sampled from Q(z|x) and then used to compute the total de-
scription length KL

�
Q(Z|x)||P (Z)

�
� log(P (x|z)), which is

minimised with stochastic gradient descent. Right: DRAW Net-
work. At each time-step a sample zt from the prior P (zt) is
passed to the recurrent decoder network, which then modifies part
of the canvas matrix. The final canvas matrix cT is used to com-
pute P (x|z1:T ). During inference the input is read at every time-
step and the result is passed to the encoder RNN. The RNNs at
the previous time-step specify where to read. The output of the
encoder RNN is used to compute the approximate posterior over
the latent variables at that time-step.

t is the encoder hidden vector h

enc
t

. Similarly the output of
the decoder RNN dec at t is the hidden vector h

dec
t

. In gen-
eral the encoder and decoder may be implemented by any
recurrent neural network. In our experiments we use the
Long Short-Term Memory architecture (LSTM; Hochreiter
& Schmidhuber (1997)) for both, in the extended form with
forget gates (Gers et al., 2000). We favour LSTM due to
its proven track record for handling long-range dependen-
cies in real sequential data (Graves, 2013; Sutskever et al.,
2014). Throughout the paper, we use the notation b = L(a)

to denote a linear weight matrix from the vector a to the
vector b.

At each time-step t, the encoder receives input from both
the image x and from the previous decoder hidden vector
h

dec
t�1

. The precise form of the encoder input depends on a
read operation, which will be defined in the next section.
The output h

enc
t

of the encoder is used to parameterise a
distribution Q(Z

t

|henc
t

) over the latent vector z

t

. In our
experiments the latent distribution is a diagonal Gaussian
N (Z

t

|µ
t

, �

t

):

µ

t

= L(h

enc

t

) (1)
�

t

= exp (L(h

enc

t

)) (2)

Bernoulli distributions are more common than Gaussians
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Table 3. Experimental Hyper-Parameters.
Task #glimpses LSTM #h #z Read Size Write Size
100 ⇥ 100 MNIST Classification 8 256 - 12 ⇥ 12 -
MNIST Model 64 256 100 2 ⇥ 2 5 ⇥ 5

SVHN Model 32 800 100 12 ⇥ 12 12 ⇥ 12

CIFAR Model 64 400 200 5 ⇥ 5 5 ⇥ 5

Figure 10. SVHN Generation Sequences. The red rectangle in-
dicates the attention patch. Notice how the network draws the dig-
its one at a time, and how it moves and scales the writing patch to
produce numbers with different slopes and sizes.
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Figure 11. Training and validation cost on SVHN. The valida-
tion cost is consistently lower because the validation set patches
were extracted from the image centre (rather than from random
locations, as in the training set). The network was never able to
overfit on the training data.

Figure 12. Generated CIFAR images. The rightmost column
shows the nearest training examples to the column beside it.

5. Conclusion
This paper introduced the Deep Recurrent Attentive Writer
(DRAW) neural network architecture, and demonstrated its
ability to generate highly realistic natural images such as
photographs of house numbers, as well as improving on the
best known results for binarized MNIST generation. We
also established that the two-dimensional differentiable at-
tention mechanism embedded in DRAW is beneficial not
only to image generation, but also to cluttered image clas-
sification.
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Figure 8. Generated MNIST images with two digits.

with attention it constructs the digit by tracing the lines—
much like a person with a pen.

4.3. MNIST Generation with Two Digits

The main motivation for using an attention-based genera-
tive model is that large images can be built up iteratively,
by adding to a small part of the image at a time. To test
this capability in a controlled fashion, we trained DRAW
to generate images with two 28 ⇥ 28 MNIST images cho-
sen at random and placed at random locations in a 60 ⇥ 60

black background. In cases where the two digits overlap,
the pixel intensities were added together at each point and
clipped to be no greater than one. Examples of generated
data are shown in Fig. 8. The network typically generates
one digit and then the other, suggesting an ability to recre-
ate composite scenes from simple pieces.

4.4. Street View House Number Generation

MNIST digits are very simplistic in terms of visual struc-
ture, and we were keen to see how well DRAW performed
on natural images. Our first natural image generation ex-
periment used the multi-digit Street View House Numbers
dataset (Netzer et al., 2011). We used the same preprocess-
ing as (Goodfellow et al., 2013), yielding a 64 ⇥ 64 house
number image for each training example. The network was
then trained using 54 ⇥ 54 patches extracted at random lo-
cations from the preprocessed images. The SVHN training
set contains 231,053 images, and the validation set contains

Figure 9. Generated SVHN images. The rightmost column
shows the training images closest (in L

2 distance) to the gener-
ated images beside them. Note that the two columns are visually
similar, but the numbers are generally different.

4,701 images.

A major challenge with natural image generation is how to
model the pixel colours. In this work we applied a simple
approximation where the normalised intensity of each of
the RGB channels was treated as an independent Bernoulli
probability. This approach has the advantage of being easy
to implement and train; however it does mean that the loss
function used for training does not match the true compres-
sion cost of the data.

The house number images generated by the network are
highly realistic, as shown in Figs. 9 and 10. Fig. 11 reveals
that, despite the long training time, the DRAW network un-
derfit the SVHN training data.

4.5. Generating CIFAR Images

The most challenging dataset we applied DRAW to was
the CIFAR-10 collection of natural images (Krizhevsky,
2009). CIFAR-10 is very diverse, and with only 50,000
training examples it is very difficult to generate realistic-
looking objects without overfitting (in other words, without
copying from the training set). Nonetheless the images in
Fig. 12 demonstrate that DRAW is able to capture much of
the shape, colour and composition of real photographs.

Nearest	  training	  
example	  for	  last	  
column	  of	  samples	  
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Learning Multiple Levels of 
Abstraction 

•  The	  big	  payoff	  of	  deep	  learning	  is	  to	  allow	  learning	  
higher	  levels	  of	  abstrac?on	  

•  Higher-‐level	  abstrac?ons	  disentangle	  the	  factors	  of	  
varia?on,	  which	  allows	  much	  easier	  generaliza?on	  and	  
transfer	  
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Conclusions 

•  Machine	  Learning	  has	  become	  a	  central	  technology	  in	  order	  to	  
extract	  informa6on	  from	  data	  

•  Deep	  Learning:	  a	  machine	  learning	  breakthrough	  
•  Distributed	  representa6ons:	  	  

•  prior	  that	  can	  buy	  exponen?al	  gain	  in	  generaliza?on	  
•  Deep	  composi6on	  of	  non-‐lineari6es:	  	  

•  prior	  that	  can	  buy	  exponen?al	  gain	  in	  generaliza?on	  
•  Both	  yield	  non-‐local	  generaliza6on	  
•  Strong	  evidence	  that	  local	  minima	  are	  not	  an	  issue,	  saddle	  points	  
•  Many	  challenges	  remain,	  in	  par6cular	  wrt	  unsupervised	  learning	  
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