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Progress in Deep Learhing Theory

*+ Exponential advantage of distributed
representations

» Exponential advantage of depth

* Myth-busting : non-convexity & Local
muALMa

» Probabilistic interpretation of auto-encoders



Exponential advantage of distributed
representations
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Learning a set of features that are not mutually exclusive
can be exponentially more statistically efficient than
having nearest-neighbor-like or clustering-like models
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Exponential advantage of distributed
representations

e Bengio 2009 (Learning Deep Architectures for Al, Foundations &
Trends in ML)

e Montufar & Morton 2014 (When does a mixture of products
contain a product of mixtures? SIAM J. Discr. Math)

e Longer discussion and relations to the notion of priors: Deep
Learning, Bengio, Goodfellow & Courville, to appear, MIT Press.



Exponential advantage of depth

Theoretical arguments:
Logic gates

2 layers of = Formal neurons = universal approximator
RBF units

RBMs & auto-encoders = universal approximat
Theorems on advantage of depth:
(Hastad et al 86 & 91, Bengio et al 2007,
Bengio & Delalleau 2011, Braverman 2011,

Pascanu et al 2014, Montufar et al NIPS 2014) 1 2 3 2n

Some functions compactly

represented with k layers may
require exponential size with 2
layers 1 2 3 n



Exponentiol advantage of depth

e Expressiveness of deep networks with piecewise linear
activation functions: exponential advantage for depth

(Montufar et al, NIPS 2014)

e They can split the input space in many more (not-independent)
linear regions, with constraints, e.g., with abs units, each unit
creates mirror responses, folding the input space:




A Myth is Being Debuniced: Local
Minima in Neural Nets

= Cov\ve.xﬂ:v s wolt needed

e (Pascanu, Dauphin, Ganguli, Bengio, arXiv May 2014): On the
saddle point problem for non-convex optimization

e (Dauphin, Pascanu, Gulcehre, Cho, Ganguli, Bengio, NIPS’ 2014):
Identifying and attacking the saddle point problem in high-
dimensional non-convex optimization

e (Choromanska, Henaff, Mathieu, Ben Arous & LeCun,
AISTATS’2015): The Loss Surface of Multilayer Nets



saddle points dominate in high-D ¢
Most local minima are close to the
bottom (global minimum error)
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Saddle Points During Training

e QOscillating between two behaviors:

Training error (MSE)

Slowly approaching a saddle point

Escaping it
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Low Index Critical Poinks

Choromanska et al & LeCun 2014, ‘The Loss Surface of Multilayer Nets’
Shows that deep rectifier nets are analogous to spherical spin-glass models

The low-index critical points of large models concentrate in a band just
above the global minimum
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The Next Challenge:
Unsupervised Learning

e Recent progress mostly in supervised DL

e Real technical challenges for unsupervised DL

e Potential benefits:
e Exploit tons of unlabeled data
* Answer new questions about the variables observed
e Regularizer — transfer learning — domain adaptation
* Easier optimization (local training signal)
e Structured outputs
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Why Latent Factors & Unsupervised
Representation Learning? Because of

Causalééj.

e If Ys of interest are among the causal factors of X, then
P(X|Y)P(Y

P(X)

is tied to P(X) and P(X|Y), and P(X) is defined in terms of P(X|Y), i.e.

e The best possible model of X (unsupervised learning) MUST
involve Y as a latent factor, implicitly or explicitly.

e Representation learning SEEKS the latent variables H that
explain the variations of X, making it likely to also uncover.
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Probabilistic interpretation of auto-
encoders

e Manifold & probabilistic interpretations of auto-encoders
* Denoising Score Matching as inductive principle

(Vincent 2011)
e Estimating the gradient of the energy function

(Alain & Bengio ICLR 2013)
e Sampling via Markov chain
(Bengio et al NIPS 2013)

* Variational auto-encoder breakthrough

(Kingma & Welling ICLR 2014)
(Gregor et al arXiv 2015)
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Denoising Auto-Encoder

e Learns a vector field pointing towards @

prior: examples

higher probability direction (Alain & Bengio 2013) concentrate near a
0 1ng(3;) lower dimensional
reconstruction(z) —xz — o 5 “manifold”
€T ,

e Some DAEs correspond to a kind of
Gaussian RBM with regularized Score
Matching (Vincent 2011)

[equivalent when noise—>0] Corrupted input




(Alain & Bengio ICLR 2013)

ularized Auto-Encoders Learn a
teld that Estimates a
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Denoising Auto-Encoder Markov Chain

corrupt

C(X|X)

X t X t+1 X t+2

The corrupt-encode-decode-sample Markov chain associated with a DAE
samples from a consistent estimator of the data generating distribution

16



Attention Mechanism for Deep Learning

e Consider an input (or intermediate) sequence or image

e Consider an upper level representation, which can choose
« where to look », by assigning a weight or probability to each
input position, as produced by an MLP, applied at each position

Q000000 OO0O0O0O0O0O00000

Higher-level

Softmax over lower
locations conditioned
on context at lower and
higher locations

Q0000000000000 0000

Lower-level
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Applying an attention mechanism to
= Translation

- Speech

- Images

- Video

- Memory
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End=-to-End Machine Translakion

19

Classical Machine Translation: several models separately trained
by max. likelihood, brought together with logistic regression on
top, based on n-grams

Neural language models already shown to outperform n-gram
models in terms of generalization power

Why not train a neural translation model end-to-end to estimate
P(target sentence | source sentence)?



2014 The Year of Neural Machine
Translation Breakthrough

e (Devlinetal, ACL'2014)

(Cho et al EMNLP’2014)

(Bahdanau, Cho & Bengio, arXiv sept. 2014)
(Jean, Cho, Memisevic & Bengio, arXiv dec. 2014)
(Sutskever et al NIPS’2014)

Earlier work: (Kalchbrenner & Blunsom et al 2013)
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Encoder-Decoder Framework

21

Intermediate representation of meaning

For bitext data

= ‘universal representation’
Encoder: from word sequence to sentence representation
Decoder: from representation to word sequence distribution

English sentence

French sentence

For unilingual data

English sentence

English sentence

Decoder

Encoder



Bidirectional RNN for Input Side

e Following Alex Graves’ work on handwriting
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Attention: Momj Recent ‘Papars

e (Xu et al 2015, caption generation, U. Montreal + U. Toronto)

e (Baetal 2014, Mnih et al 2014, visual attention, Google DeepMind)
e (Chorowski et al 2014, speech recognition, U. Montreal)

e (Bahdanau et al 2014, machine translation, U. Montreal)

And Older Pa pers

e (Larochelle & Hinton 2010, MNIST, U. Toronto)
e (Graves 2013, handwriting generation)

e (Denil et al 2014, visual tracking)

. (Tang et al 2014, generative models of images)



Soft-Attention vs
Stochastic Hard-Attention

e With soft-attention: input fed to higher level at locationiis a
softmax-weighted sum of states at locations j at lower level

* Train by back-prop
* Fast training

e With stochastic hard-attention: sample an input location
according to the softmax output

* Get a gradient on the decisions via REINFORCE - baseline
* Noisy gradient, slower training but works
* Symmetry breaking
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Attention-Based Neural Machine
Translation

Related to earlier Graves 2013 for generating handwriting

e (Bahdanau, Cho & Bengio, arXiv sept. 2014)
e (Jean, Cho, Memisevic & Bengio, arXiv dec. 2014)

f= (La, croissance, économique, s'est, ralentie, ces, dernicres, années, .)
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En-Fr & En-De Aliguments

Economic growth has slowed down in recent years

70D

La croissance économique s' est ralentie ces derniéres années .

Economic  growth as slowed down in recent years

AR i

Das Wirtschaftswachstum hat sich in den letzten Jahren verlangsamt .
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Im prove.men&s over Pure AE Model
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e RNNenc: encode whole sentence
e RNNsearch: predict alignment
e BLEU score on full test set (including UNK)
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IAnd, the rest is history..

NMT(A) | NMT(A)-LV | Google P-SMT
Basic NMT 29.48 32.68 30.6*
+Candidate List - 33.28 = . .
+UNK Replace 32.49 33.99 32.7° 33.3% | 31.03
+Ensemble — 36.71 36.9°
(a) English—French
NMT(A) | NMT(A)-LV | P-SMT

Basic NMT 16.02 16.95

+Candidate List - 17.51 20.67°

+UNK Replace 18.27 18.87 '

+Ensemble - 20.98

(b) English—German

NMT(A): (Bahdanau et al., 2014), NMT(A)-LV: (Jean et al., 2014),

(%): (Sutskever et al., 2014), (o): (Luong et al., 2014),
(e): (Durrani et al., 2014), (*): (Cho et al., 2014), (¢): (Buck et al., 2014)




Translating from Other Sources?
- Speech
- Images

- Video
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Muﬂ:i:lote Time Scales in Speeck

wores L N0 OO0 D NRNUN 0N W0 ROD OAD W WO

sequence in the
attention architecture
can be shorter than

the lower-level one '
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Acoustic-to-Phones Attention Alighment
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3 Ihpu,!:s to Attention Mechanism

33

Higher-level RNN state at current output location
Lower-level RNN state at all input locations
Previous attention pattern (for previous output location)

All three were necessary to apply attention-based models to
speech recognition (Chorowski et al, 2014, 2015)



Left-to-Right Soft Constraint

Whereas with translation the word order can change a lot, the

acoustic=>phonetic mapping is mostly left-to-right.

The strength of that prior can be learned by structuring the
attention location probability distribution:

0.30
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Prior: Match between
relative to last previous state
selection and each input
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i—E, [i] [frames]

30

40

50



End-to-end Conkinuous Speech
Recognition using Attention-based
Recurrent NN: First Resulls

(Chorowski, Bahdanau, Cho & Bengio, arXiv Dec. 2014)
(Chorowski et al, NIPS submission, 2015)

Model Dev Test
Baseline Model 159% | 18.7% TIMIT
Baseline + Conv. Features 16.1% | 18.0% h
Baseline + Conv. Features + Smooth Focus 15.8% | 17.6% Phoneme
RNN Transducer [17] N/A | 17.7% Error
HMM over Time and Frequency Convolutional Net [26] | 13.9% | 16.7% Rate

FDHCO SX209: Michael colored the bedroom wall with crayons.




Image-to-Text: Caption Generation

f=(a, man, is, jumping, into, a, lake, .)

Word

Recurrent
State

-
-
L

Attention
Mechanism

Adfnotation
Vectors

J

Convolutional Neural Network

(Xu et al., 2015), (Yao et al., 2015)
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Speaking about what one sees

~ A(0.97) stop(0.36) sign(0.19)

: n u
is(0.22) on(0.25) a(0.21) - road(0.26)
- u [

. ‘ | -

a(0.30) mountain(0.44)

with(0.28) in(0.37)

background(0.11)
=
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The bus by the road with a clear blue sky

XN B

Let's go back 2.5 years back in time.. (Mitchell et al., 2012)

stuff: sky .999
id: 1
atts: clear:0.432, blue:0.945
grey:0.853, white:0.501 ...
b. box: (1,1 440,141)
stuff: road .908
id: 2
atts: wooden:0.722 clear:0.020 ...
b. box: (1,236 188,94)
object: | bus 307
id: 3
atts: black:0.872, red:0.244 ...
b. box: (38,38 366,293)
preps: | id1,id2: by id1,id3: by 1id?2,id 3: below
Group the Nouns
Order the Nouns
Filter Incorrect Attributes
Group Plurals

|||||

Gather Local Sub-(parse) trees
Create Full Trees

Get Final Tree, Clear Mark-Up
Prenominal Modifier Ordering




woman(0.60)

™

And n
2018...
End=to~-
End
Neural o

\in(ou)

. . . . . ‘1 \J
N E A woman in a bikini holding a surfboard. 05&( E}g ’
< RN

//\\

surfboard(0.34)

holding(0.40)

The neural nets successfully learned to
» map a phrase in one language to that in another language

extract semantics [and syntax| of a sentence

separate different objects in an image

separate the background from foreground objects

vV v v Vv

create a syntactically and semantically correct sentence



Show, Attend and Tell: Neural
Image Caplion Greneration with
Visual Attention

Results from (Xu et al, arXiv Jan. 2015,
ICML 2015)

Table 1. BLEU-1,2,3, 4/METEOR metrics compared to other methods, 1 indicates a different split, (—) indicates an unknown metric, o
indicates the authors kindly provided missing metrics by personal communication, 3. indicates an ensemble, a indicates using AlexNet

BLEU
Dataset Model B-1 | B-2 | B-3 | B-4 | METEOR
Google NIC(Vinyals et al., 2014)7* 63 41 27 — —
FlickrSk Log Bilinear (Kiros et al., 2014a)° 656 424 277 17.7 17.31
Soft-Attention 67 448 299 195 18.93
Hard-Attention 67 45.7 314 213 20.30
Google NICT°* 66.3 423 277 183 —
. Log Bilinear 60.0 38 254 17.1 16.88
Fhickr30k Soft-Attention 667 434 288 19.1  18.49
Hard-Attention 669 439 296 199 18.46
CMU/MS Research (Chen & Zitnick, 2014)*  — — — — 20.41
MS Research (Fang et al., 2014)“‘ — — — — 20.71
BRNN (Karpathy & Li, 2014)° 64.2 45.1 304 203 —
COCO Google NICT°> 66.6 46.1 329 24.6 —
Log Bilinear® 70.8 489 344 243 20.03
Soft-Attention 70.7 49.2 344 243 23.90
Hard-Attention 71.8 504 35.7 25.0 23.04
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The Good

- o T,

A woman is throwing a frisbee in a park. A dog is standing on a hardwood floor. A stop sign is on a road with a
- B mountain in the background.

gy

A little girl sitting on a bed with A group of people sitting on a boat A giraffe standing in a forest with
a teddy bear. in the water. trees in the background.
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And the Bad

A man wearing a hat and
a hat on a skateboard.

A person is standing on a beach A woman is sitting at a tabl A man is talking on his cell phone

with a surfboard. with a large pizza. while another man watches.
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Attention through time for video
caption generation

* (Yao et al arXiv 1502.08029, 2015) Video Description Generation
Incorporating Spatio-Temporal Features and a Soft-Attention
Mechanism

I

!

——————

e Attention can be focused e

b <+ =

. . 02! 'V /
temporally, i.e., selecting AR RN
. ’ LNj < h e
input frames I v/
N
- alv' | mm R
; ! h == man
'
C.aption

Features-Extraction Soft-Attention Generation
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Attention through time for video
caption generation (Yao et al 2015)

e Attention is focused at I I
appropriate frames mn B B - o - - m
depending on which | I I I I
word is generated. *

cutting I I
paper = . I I
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Attention through time for video
caption generation (Yao et al 2015)

e Soft-attention worked best in this setting

Bleu Meteor | Perplexity
Model Feature | ) 3 4 mb
nonattention GNet 320 92 34 12|03 4.43 88.28
GNet+3DConvpop-att | 33.6 104 43 1.8 | 0.7 5.73 84.41
soft-attention GNet 310 77 30 12|03 4.05 66.63
GNet+3DConvy¢ 282 82 3.1 1307 5.6 65.44

Generated
captions
Corpus: Corpus: Corpus:
She rushes out. SOMEONE sits with his arm around SOMEONE. SOMEONE shuts the door.
Test_sample: He nuzzles her cheek, then kisses tenderly. Test_sample:
The woman turns away. Test_sample: as he turns on his way to the door , SOMEONE

SOMEONE sits beside SOMEONE. turns away.



Attention Mechanisms for Memory
Access

e Neural Turing Machines (Graves et al 2014)
e and Memory Networks (Weston et al 2014)

e Use a form of attention mechanism to
control the read and write access into a
memory

e The attention mechanism outputs a softmax
over memory locations

e For efficiency, the softmax should be sparse
(mostly 0’s), e.g. maybe using a hash-table
formulation.
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Sparse Access Memory for Long-Term
‘Depeudem:ies
e Whereas LSTM memories always decay exponentially (even if

slowly), a mental state stored in an external memory can stay
for arbitrarily long durations, until evoked for read or write.

e Need to replace the soft gater or softmax attention by hard one
that is 0 most of the time, and yet for which training works
(again, may use noisy decisions and/or REINFORCE).

e Different « threads » can run in parallel if we view the memory
as an associative one.
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Cownclusions

e Theory for deep learning has progressed substantially on several
fronts: why it generalizes better, why local minima are not the
issue people thought, and the probabilistic interpretation of
deep unsupervised learning.

e Attention mechanisms allow the learner to make a selection,
soft or hard

e They have been extremely successful for machine translation
and caption generation

e They could be interesting for speech recognition and video,
especially if we used them to capture multiple time scales

e They could be used to help deal with long-term dependencies,
allowing some states to last for arbitrarily long
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