Deep Learning: Progress in Theory and Attention Mechanisms

Yoshua Bengio

June 11, 2015

Deep Vision CVPR Workshop, Boston, USA

Progress in Deep Learning Theory

- Exponential advantage of distributed representations
- · Exponential advantage of depth
- Myth-busting : non-convexity & local minima
- Probabilistic interpretation of auto-encoders

Exponential advantage of distributed representations

Learning a **set of features** that are not mutually exclusive can be **exponentially more statistically efficient** than having nearest-neighbor-like or clustering-like models

Exponential advantage of distributed representations

- Bengio 2009 (Learning Deep Architectures for AI, Foundations & Trends in ML)
- *Montufar & Morton 2014* (When does a mixture of products contain a product of mixtures? SIAM J. Discr. Math)
- Longer discussion and relations to the notion of priors: *Deep Learning*, Bengio, Goodfellow & Courville, to appear, MIT Press.

Exponential advantage of depth

Theoretical arguments:

2 layers of - Logic gates Formal neurons RBF units

= universal approximator

RBMs & auto-encoders = universal approximator

Theorems on advantage of depth:

(Hastad et al 86 & 91, Bengio et al 2007, Bengio & Delalleau 2011, Braverman 2011, Pascanu et al 2014, Montufar et al **NIPS 2014**)

Some functions compactly represented with k layers may require exponential size with 2 layers

Exponential advantage of depth

- Expressiveness of deep networks with piecewise linear activation functions: exponential advantage for depth (Montufar et al, NIPS 2014)
- They can split the input space in many more (not-independent) linear regions, with constraints, e.g., with abs units, each unit creates mirror responses, folding the input space:

A Myth is Being Debunked: Local Minima in Neural Nets → Convexity is not needed

- (Pascanu, Dauphin, Ganguli, Bengio, arXiv May 2014): On the saddle point problem for non-convex optimization
- (Dauphin, Pascanu, Gulcehre, Cho, Ganguli, Bengio, NIPS' 2014): Identifying and attacking the saddle point problem in highdimensional non-convex optimization
- (Choromanska, Henaff, Mathieu, Ben Arous & LeCun, AISTATS'2015): *The Loss Surface of Multilayer Nets*

Saddle Points

- Local minima dominate in low-D, but⁴
 saddle points dominate in high-D
- Most local minima are close to the bottom (global minimum error)

Saddle Points During Training

- Oscillating between two behaviors:
 - Slowly approaching a saddle point
 - Escaping it

Low Index Critical Points

Choromanska et al & LeCun 2014, 'The Loss Surface of Multilayer Nets' Shows that deep rectifier nets are analogous to spherical spin-glass models The low-index critical points of large models concentrate in a band just above the global minimum

The Next Challenge: Unsupervised Learning

- Recent progress mostly in supervised DL
- Real technical challenges for unsupervised DL
- Potential benefits:
 - Exploit tons of unlabeled data
 - Answer new questions about the variables observed
 - Regularizer transfer learning domain adaptation
 - Easier optimization (local training signal)
 - Structured outputs

Why Latent Factors & Unsupervised Representation Learning? Because of *Causality*.

• If Ys of interest are among the causal factors of X, then $P(Y|X) = \frac{P(X|Y)P(Y)}{P(X)}$

is tied to P(X) and P(X|Y), and P(X) is defined in terms of P(X|Y), i.e.

- The best possible model of X (unsupervised learning) MUST involve Y as a latent factor, implicitly or explicitly.
- Representation learning SEEKS the latent variables H that explain the variations of X, making it likely to also uncover Y.

Probabilistic interpretation of autoencoders

- Manifold & probabilistic interpretations of auto-encoders
- Denoising Score Matching as inductive principle

(Vincent 2011)

- Estimating the gradient of the energy function (Alain & Bengio ICLR 2013)
- Sampling via Markov chain

(Bengio et al NIPS 2013)

Variational auto-encoder breakthrough

(Kingma & Welling ICLR 2014) (Gregor et al arXiv 2015)

Regularized Auto-Encoders Learn a Vector Field that Estimates a Gradient Field (Alain & Bengio ICLR 2013)

15

Denoising Auto-Encoder Markov Chain

The corrupt-encode-decode-sample Markov chain associated with a DAE samples from a consistent estimator of the data generating distribution

Attention Mechanism for Deep Learning

- Consider an input (or intermediate) sequence or image
- Consider an upper level representation, which can choose

 where to look », by assigning a weight or probability to each
 input position, as produced by an MLP, applied at each position

Applying an attention mechanism to

- Translation
- Speech
- Images
- Video
- Memory

End-to-End Machine Translation

- Classical Machine Translation: several models separately trained by max. likelihood, brought together with logistic regression on top, based on n-grams
- Neural language models already shown to outperform n-gram models in terms of generalization power
- Why not train a neural translation model end-to-end to estimate P(target sentence | source sentence)?

2014: The Year of Neural Machine Translation Breakthrough

- (Devlin et al, ACL'2014)
- (Cho et al EMNLP'2014)
- (Bahdanau, Cho & Bengio, arXiv sept. 2014)
- (Jean, Cho, Memisevic & Bengio, arXiv dec. 2014)
- (Sutskever et al NIPS'2014)

Earlier work: (Kalchbrenner & Blunsom et al 2013)

Encoder-Decoder Framework

- Intermediate representation of meaning
 - = 'universal representation'
- Encoder: from word sequence to sentence representation
- Decoder: from representation to word sequence distribution

Bidirectional RNN for Input Side

• Following Alex Graves' work on handwriting

Attention: Many Recent Papers

- (Xu et al 2015, caption generation, U. Montreal + U. Toronto)
- (Ba et al 2014, Mnih et al 2014, visual attention, Google DeepMind)
- (Chorowski et al 2014, speech recognition, U. Montreal)
- (Bahdanau et al 2014, machine translation, U. Montreal)

And Older Papers

- (Larochelle & Hinton 2010, MNIST, U. Toronto)
- (Graves 2013, handwriting generation)
- (Denil et al 2014, visual tracking)
- (Tang et al 2014, generative models of images)

Soft-Attention vs Stochastic Hard-Attention

- With soft-attention: input fed to higher level at location **i** is a softmax-weighted sum of states at locations **j** at lower level
 - Train by back-prop
 - Fast training
- With stochastic hard-attention: sample an input location according to the softmax output
 - Get a gradient on the decisions via REINFORCE baseline
 - Noisy gradient, slower training but works
 - Symmetry breaking

Attention-Based Neural Machine Translation

Related to earlier Graves 2013 for generating handwriting

- (Bahdanau, Cho & Bengio, arXiv sept. 2014)
- (Jean, Cho, Memisevic & Bengio, arXiv dec. 2014)

(b)

equipment means that

2

the

Ъ

Destruction

La

de P

destruction

équipement

signifie

que

Syrie

peut plus produire

la

ne

de

nouvelles armes

chimiques

<end>

Predicted Alignments

En-Fr & En-De Alignments

Improvements over Pure AE Model

- RNNenc: encode whole sentence
- RNNsearch: predict alignment
- BLEU score on full test set (including UNK)

And, the rest is history..

	NMT(A)	NMT(A)-LV	Google	P-9	SMT
Basic NMT	29.48	32.68	30.6*		
+Candidate List	_	33.28	_	22.2*	37.03•
+UNK Replace	32.49	33.99	32.7°	55.5	
+Ensemble	-	36.71	36.9°		

(a) English \rightarrow French

	NMT(A)	NMT(A)-LV	P-SMT
Basic NMT	16.02	16.95	
+Candidate List	_	17.51	20 67◊
+UNK Replace	18.27	18.87	20.07
+Ensemble	-	20.98	

(b) **English**→**German**

NMT(A): (Bahdanau et al., 2014), NMT(A)-LV: (Jean et al., 2014),

- (*): (Sutskever et al., 2014), (°): (Luong et al., 2014),
- (●): (Durrani et al., 2014), (*): (Cho et al., 2014), (◊): (Buck et al., 2014) = ∽ <<

Translating from Other Sources?

- Speech
- Images
- Video

attention architecture can be shorter than the lower-level one Frames (100 per second c.a. 8 per phone) Sub-phonemic units (3 per phone) Phones (5 per word) Words

Acoustic-to-Phones Attention Alignment

32

3 Inputs to Attention Mechanism

- Higher-level RNN state at current output location
- Lower-level RNN state at all input locations
- Previous attention pattern (for previous output location)
- All three were necessary to apply attention-based models to speech recognition (Chorowski et al, 2014, 2015)

Left-to-Right Soft Constraint

- Whereas with translation the word order can change a lot, the acoustic
 -> phonetic mapping is mostly left-to-right.
- The strength of that prior can be learned by structuring the attention location probability distribution:

End-to-end Continuous Speech Recognition using Attention-based Recurrent NN: First Results

(Chorowski, Bahdanau, Cho & Bengio, arXiv Dec. 2014)

(Chorowski et al, NIPS submission, 2015)

Image-to-Text: Caption Generation

(Xu et al., 2015), (Yao et al., 2015)

▲□▶ ▲□▶ ▲ □▶ ▲ □▶

Speaking about what one sees

A(0.97)

is(0.22)

the(0.21)

background(0.11)

a(0.21)

mountain(0.44)

.(0.13)

road(0.26)

in(0.37)

Let's go back 2.5 years back in time.. (Mitchell et al., 2012)

	stuff:	skv	.999	
		id:	1	
		atts:	clear:0.432, grev:0.853,	blue:0.945 white:0.501
		b. box:	$(1.1\ 440.141)$	
	stuff:	road	.908	
		id:	2	
4320		atts:	wooden:0.722	clear:0.020
		b. box:	(1,236 188,94))
	object:	bus	.307	
The bus by the road with a clear blue sky		id:	3	
	a otae sky	atts:	black:0.872,	red:0.244
		b. box:	(38,38 366,293	3)
	preps:	id 1, id 2: by	id 1, id 3: by	id 2, id 3: below
 Group the Nouns Order the Nouns Filter Incorrect Attribut Group Plurals Gather Local Sub-(particle) Create Full Trees Get Final Tree, Clear In Prenominal Modifier 	utes rse) tree Mark-U Ordering	s p		

And in 2015... End-to-End Neural A woman in a bikini holding a surfboard. 🔿 Net

bikini(0.44)

The neural nets successfully learned to

- map a phrase in one language to that in another language
- extract semantics [and syntax] of a sentence
- separate different objects in an image
- separate the background from foreground objects
- create a syntactically and semantically correct sentence

a(0.32)

holding(0.40)

Show, Attend and Tell: Neural Image Caption Generation with Visual Attention

Results from (Xu et al, arXiv Jan. 2015,

ICML 2015)

Table 1. BLEU-1,2,3,4/METEOR metrics compared to other methods, \dagger indicates a different split, (—) indicates an unknown metric, \circ indicates the authors kindly provided missing metrics by personal communication, Σ indicates an ensemble, *a* indicates using AlexNet

		BLEU				
Dataset	Model	B-1	B-2	B-3	B-4	METEOR
	Google NIC(Vinyals et al., 2014) ^{†Σ}	63	41	27		
Flickr8k	Log Bilinear (Kiros et al., 2014a)°	65.6	42.4	27.7	17.7	17.31
	Soft-Attention	67	44.8	29.9	19.5	18.93
	Hard-Attention	67	45.7	31.4	21.3	20.30
Flickr30k	Google NIC ^{$\dagger \circ \Sigma$}	66.3	42.3	27.7	18.3	
	Log Bilinear	60.0	38	25.4	17.1	16.88
	Soft-Attention	66.7	43.4	28.8	19.1	18.49
	Hard-Attention	66.9	43.9	29.6	19.9	18.46
	CMU/MS Research (Chen & Zitnick, 2014) ^a					20.41
COCO	MS Research (Fang et al., 2014) ^{$\dagger a$}					20.71
	BRNN (Karpathy & Li, 2014)°	64.2	45.1	30.4	20.3	
	Google NIC ^{$\dagger \circ \Sigma$}	66.6	46.1	32.9	24.6	
	Log Bilinear ^o	70.8	48.9	34.4	24.3	20.03
	Soft-Attention	70.7	49.2	34.4	24.3	23.90
	Hard-Attention	71.8	50.4	35.7	25.0	23.04

The Good

A woman is throwing a <u>frisbee</u> in a park.

A <u>dog</u> is standing on a hardwood floor.

A <u>stop</u> sign is on a road with a mountain in the background.

A little <u>girl</u> sitting on a bed with a teddy bear.

A group of <u>people</u> sitting on a boat in the water.

A giraffe standing in a forest with <u>trees</u> in the background.

And the Bad

A large white <u>bird</u> standing in a forest.

A woman holding a <u>clock</u> in her hand.

A man wearing a hat and a hat on a <u>skateboard</u>.

A person is standing on a beach with a <u>surfboard.</u>

A woman is sitting at a table with a large <u>pizza.</u>

A man is talking on his cell phone while another man watches.

Attention through time for video caption generation

- (Yao et al arXiv 1502.08029, 2015) Video Description Generation Incorporating Spatio-Temporal Features and a Soft-Attention Mechanism
- Attention can be focused temporally, i.e., selecting input frames

Attention through time for video caption generation (Yao et al 2015)

А

is

Attention is focused at appropriate frames depending on which word is generated.

Attention through time for video caption generation (Yao et al 2015)

• Soft-attention worked best in this setting

Madal	Feature	Bleu					Meteor	Perplexity
Model		1	2	3	4	mb		
non-attention	GNet	32.0	9.2	3.4	1.2	0.3	4.43	88.28
	GNet+3DConv _{non-att}	33.6	10.4	4.3	1.8	0.7	5.73	84.41
soft-attention	GNet	31.0	7.7	3.0	1.2	0.3	4.05	66.63
	GNet+3DConvatt	28.2	8.2	3.1	1.3	0.7	5.6	65.44

Corpus: She rushes out. Test_sample: The woman turns away.

Generated captions

Corpus: SOMEONE sits with his arm around SOMEONE. He nuzzles her cheek, then kisses tenderly. Test_sample: SOMEONE sits beside SOMEONE. Corpus: SOMEONE shuts the door. Test_sample: as he turns on his way to the door , SOMEONE turns away.

Attention Mechanisms for Memory Access

- Neural Turing Machines (Graves et al 2014)
- and Memory Networks (Weston et al 2014)
- Use a form of attention mechanism to control the read and write access into a memory
- The attention mechanism outputs a softmax over memory locations
- For efficiency, the softmax should be sparse (mostly 0's), e.g. maybe using a hash-table formulation.

Sparse Access Memory for Long-Term Dependencies

- Whereas LSTM memories always decay exponentially (even if slowly), a mental state stored in an external memory can stay for arbitrarily long durations, until evoked for read or write.
- Need to replace the soft gater or softmax attention by hard one that is 0 most of the time, and yet for which training works (again, may use noisy decisions and/or REINFORCE).
- Different « threads » can run in parallel if we view the memory as an associative one.

Conclusions

- Theory for deep learning has progressed substantially on several fronts: why it generalizes better, why local minima are not the issue people thought, and the probabilistic interpretation of deep unsupervised learning.
- Attention mechanisms allow the learner to make a selection, soft or hard
- They have been extremely successful for machine translation and caption generation
- They could be interesting for speech recognition and video, especially if we used them to capture multiple time scales
- They could be used to help deal with long-term dependencies, allowing some states to last for arbitrarily long

MILA: Montreal Institute for Learning Algorithms

