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Brealkthrough

Deep Learning: machine
learning algorithms based on
learning multiple levels of
representation / abstraction.

Amazing improvements in error rate in object recognition, object
detection, speech recognition, and more recently, in natural language

processing / understanding



Machine Learning,
Al & No Free Lunch

* Four key ingredients for ML towards Al
1. Lots & lots of data
2. Very flexible models

3. Enough computing power

4. Powerful priors that can defeat the curse of
dimensionality



Bypassing the curse of
d?rﬁv\ev\si’.avmi.i&v

We need to build compositionality into our ML models

Just as human languages exploit compositionality to give
representations and meanings to complex ideas

Exploiting compositionality gives an exponential gain in
representational power
(1) Distributed representations / embeddings: feature learning

(2) Deep architecture: multiple levels of feature learning

Additional prior: compositionality is useful to
describe the world around us efficiently

4



Classical Symbolic AI vs
Leariing Distributed Representations

e Two symbols are equally far from each other

e Concepts are not represented by symbols in our
brain, but by patterns of activation

(Connectionism, 1980’s)

Geoftrey Hinton

Output units

Hidden units
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cat

person

Input
units

5 David Rumelhart



Exponential advantage of distributed
representations
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Learning a set of parametric features that are not |
mutually exclusive can be exponentially more statistically
efficient than having nearest-neighbor-like or clustering-
like models



Hidden Uniks Discover Semahh.catuv
Meaningful Concepts

e Zhou et al & Torralba, arXivi412.6856 submitted to ICLR 2015
e Network trained to recognize places, not objects
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Each feature can be discovered
without the need for seeing the
exponentially large humber of
confiqurations ofs the other features

e Consider a network whose hidden units discover the following
features:

* Person wears glasses
* Person is female

* Personis a child

* Etc.

If each of n feature requires O(k) parameters, need O(nk) examples

Non-parametric methods would require O(n¢) examples
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Exponential advantage of distributed
representations

e Bengio 2009 (Learning Deep Architectures for Al, F & T in ML)

e Montufar & Morton 2014 (When does a mixture of products
contain a product of mixtures? SIAM J. Discr. Math)

e Longer discussion and relations to the notion of priors: Deep
Learning, to appear, MIT Press.

e Prop. 2 of Pascanu, Montufar & Bengio ICLR’2014: number of
pieces distinguished by 1-hidden-layer rectifier net with n units
and d inputs (i.e. O(nd) parameters) is



Deep Learning:

Automating

Feabure ‘Di’.scove.rj
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Exponential advantage of depth

Theoretical arguments:

Logic gates

2 layers of = Formal neurons = universal approximator
RBF units

RBMs & auto-encoders = universal approxima
Theorems on advantage of depth:
(Hastad et al 86 & 91, Bengio et al 2007, Bengio
& Delalleau 2011, Martens et al 2013, Pascanu
1 2 3 2n

et al 2014, Montufar et al NIPS 2014)

Some functions compactly
represented with k layers may
require exponential size with 2
layers




ka does ik work? No Free Lunch

e |t only works because we are making some assumptions about
the data generating distribution

e Worse-case distributions still require exponential data

e But the world has structure and we can get an exponential gain
by exploiting some of it
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Exponential advantage of depth
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Expressiveness of deep networks with piecewise linear activation
functions: exponential advantage for depth (Montufar et al,
NIPS 2014)

Number of pieces distinguished for a network with depth L and n,

units per layer is at least
L—-1 N no no ng
(1:1 L%_OJ ) 2 ( j )

3=0

or, if hidden layers have width n and input has size n,

Q (7o) e
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Y LeCun

Typical Multilayer Neural Net Architectute

C(X,Y,0
( ) « Complex learning machines can be

built by assembling modules into
Squared Distance networks

i

Linear Module

W3, B3 Linear « Out = W.In+B
1 . RelLU Module (Rectified Linear Unit)
RelLU « Out, = 0 if In.<0
1 . Out; = In, otherwise
W2, B2 Linear « Cost Module: Squared Distance
1 . C = ||In1 - In2]||?

Objective Function

F . L(©)=1/p 2, C(XX,Y*,0)
. ® = (W1,B1,W2,B2,W3,B3)

A
(>)
—
cC
°

(input) Y (desired output)



Building a Network by Assembling Modules

Y LeCun

 All major deep learning frameworks use modules (inspired by SN/Lush, 1991)

. Torch7, Theano, TensorFlow.... -- sizes
ninput = 28*28 -- e.g. for MNIST
nhiddenl = 1000
C(X.Y,0) noutput = 10
T -- network module
NegativelLogLikelihood net = nn.Sequential()
f net:add(nn.Linear(ninput, nhidden))
net:add(nn.Threshold())
L0953{UWax net:add(nn.Linear(nhidden, noutput))
. net:add(nn.LogSoftMax()))
w2,B2LInear
f -- cost module
Ritu cost = nn.ClassNLLCriterion()
w1,B1Linear -- get a training sample
input = trainingset.data[k]
target = trainingset. labels[k]
X Y

_ -- run through the model
input Label output = net:forward(input)
c = cost:forward(output, target)



Y LeCun

Computing Gradients by Back-Propagati(ﬁ'l |

C(X,Y,0)

A practical Application of Chain Rule
Cost

i1

Whn ZI Fn(Xn-1,Wn)
dC/dWn

Backprop for the state gradients:
dC/dXi-1 = dC/dXi . dXi/dXi-1

- . dC/dXi-1 = dC/dXi . dFi(Xi-1,Wi)/dXi-1
dC/dXi: = Xi
\ A
Wi \ Fi (Xi-1. Wi) « Backprop for the weight gradients:
dC/dwi — . dC/dWi = dC/dXi . dXi/dWi
dC/dXi-1: & Xior . dC/dwi = dC/dXi . dFi(Xi-1,Wi)/dWi
¥

ZI F1(X0,W1)

]

X (input) Y (desired output)




Running Backpfop

« Torch7 example

 Gradtheta contains the gradient

C(X,Y,0)

NegativelLoglikelihood

$

LogSoftMax

L

->{Ww2 B2Linear

1
© ReLU

L

w1,B1Linear

1

X
input

Y
Label

Y LeCun

-- network module

net = nn.Sequential()
net:add(nn.Linear(ninput, nhidden))
net:add(nn.Threshold())
net:add(nn.Linear(nhidden, noutput))
net:add(nn.LogSoftMax()))

-- cost module
cost = nn.ClassNLLCriterion()

-- gather the parameters in a vector
theta, gradtheta = net:getParameters()

-- get a training sample
input = trainingset.data[k]
target = trainingset. labels[Kk]

-- run through the model
output = net:forward(input)
c = cost:forward(output, target)

-- run backprop

gradtheta:zero()

gradoutput = cost:backward(output, target)
net:backward(input, gradoutput)



Y LeCun

Moc'lu[e' Classes

WX ; dodXx=w'.dc/dyY ; dC/dw = dc/dy . (dC/dX)T

Linear e Y

RelU « y=RelLU(x) ; if (x<0) dC/dx =0 else dC/dx = dC/dy
Duplicate e Y1=X,Y2=X ; dC/dX=dC/dY1 + dC/dY2
Add e Y=X1+X2 ; dC¢/dX1=dC/dyY ; dC/dX2 =dC/dY
Max . Y =max(x1,x2); if (x1>x2) dC/dx1 = dC/dy else dC/dx1=0
LogSoftMax | « Yi = Xi - log [Zj exp(Xj)] ; --.--




Moc'lu[e‘ Classes

Y LeCun

Many more basic module classes

Cost functions:
« Squared error
 Hinge loss
« Ranking loss

Non-linearities and operators
« RelLU, “leaky” RelU, abs,....
. Tanh, logistic
. Just about any simple function (log, exp, add, mul,....)

Specialized modules
 Multiple convolutions (1D, 2D, 3D)
 Pooling/subsampling: max, average, Lp, log(sum(exp())), maxout
« Long Short-Term Memory, attention, 3-way multiplicative interactions.
« Switches
« Normalizations: batch norm, contrast norm, feature norm...
« inception



Any ‘Architecture works

Y LeCun

# Any connection graph is permissible

t » Directed acyclic graphs (DAG)

» Networks with loops must be
“unfolded in time”.

# Any module is permissible

» As long as it is continuous and

t /7N differentiable almost everywhere with
respect to the parameters, and with
respect to non-terminal inputs.

# Most frameworks provide automatic

T t differentiation
— » Theano, Torch7+autograd,...

T » Programs are turned into
‘ computation DAGs and automatically
differentiated.




Backprop in Practice

Y LeCun

# Use ReLU non-linearities

# Use cross-entropy loss for classification

# Use Stochastic Gradient Descent on minibatches

& Shuffle the training samples (< very important)

# Normalize the input variables (zero mean, unit variance)
# Schedule to decrease the learning rate

# Use a bit of L1 or L2 regularization on the weights (or a combination)
» But it's best to turn it on after a couple of epochs

# Use “dropout” for regularization
# Lots more in [LeCun et al. “Efficient Backprop” 1998]

# Lots, lots more in “Neural Networks, Tricks of the Trade” (2012 edition)
edited by G. Montavon, G. B. Orr, and K-R Miller (Springer)

# More recent: Deep Learning (MIT Press book in preparation)



Convolutional
Networks




Deep Learning = Training M

ultistageMaﬁhines R
| "ol =\

.’/‘

& Traditional Pattern Recognition: Fixed/Handcrafted Feature Extractor

Y LeCun

Feature Trainable
>
Extractor Classifier
# Mainstream Pattern Recognition 9until recently)
Feature Mid-Level Trainable
—
Extractor Features Classifier
# Deep Learning: Multiple stages/layers trained end to end
Low-Level Mid-Level High-Level Trainable
- —
Features Features Features Classifier




Overall Architecture: multiple ftages of

b

Normallzatlon — Filter Bank 2 Non Lmeantyj—) Poollng Y LeCun

_.Fllter R Non- A feature Filter] | Non- L feature

PI Norm [t >

. . , , Classifier
Bank | |Linear| |Pooling Bank | |Linear| |Pooling

v

# Normalization: variation on whitening (optional)

— Subtractive: average removal, high pass filtering

— Divisive: local contrast normalization, variance normalization
4 Filter Bank: dimension expansion, projection on overcomplete basis

# Non-Linearity: sparsification, saturation, lateral inhibition....
— Rectification (ReLU), Component-wise shrinkage, tanh,..

# Pooling: aggregation over space or feature type

v

— Max, Lp norm, log prob.




ConvNet Architécture

/;., ;

Y LeCun
/0 /7Ll 7

Filter Bank +non-linearity

Bl -7 -~4% /) g4 4
Pooling

ﬂ =TT LT
Fllter Bank +non-linearity
Z ; Pooling

Filter Bank +non-linearity
O

o

M LeNet1 [LeCun et al. NIPS 1989]



Y LeCun

Input Volume (+pad 1) (7x7x3) Filter W1 (3x3x3) Output Volume (3x3x2)
x[z,:,0] wl[:,:,0] ol[:,:,0]
0 0 0 0 0 -1 -1 =23 B3 2
Bl =23 |1 [0 o -1 -1 4 ||
0 0 2 0 -1 O 1 6 7 2
0 1 1 0 wl[:z,:,1] o[z, =11
) o | > 0 -1 -1 -3 -5 -2
o 0 1 > 1 1 0 -8 -1 0
0 0 0 0 -1 1 -1 -7 -10 -3
x[z,:,1] wll:,:,2]

o 0 0 O o O IS

o 1 1 o i =

aE [o8 23 [ s el

0 0 1 1 Bias bl (1x1x1)

0 1 74 2 i s, 5,00

o 0o 1 0 0

O O o0 o

x[:,:,2) toggle movement

0O o o0 o

0 2 2 1

0 0 1 0

0o 2 1 0

0 0 0 1

SN 2 MO 12

O O o0 o

Animation: Andrej Karpathy http://cs231n.github.io/convolutional-networks/
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Convolutional Networks (vintage 1990)
Y LeCun

4 filters = tanh — average-tanh — filters = tanh — average-tanh — filters = tanh

)
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Example: 1D (Temporal) convolutional net : A
TP | R\ Y LeCun
# 1D (Temporal) ConvNet, aka Timed-Delay Neural Nets

# Groups of units are replicated at each time step.
# Replicas have identical (shared) weights.




LeNet5

# Simple ConvNet
4 for MNIST
# [LeCun 1998]

-- LeNet5
-- stage 1 :

model:add(nn.
model:add(nn.
model:add(nn.

-- stage 2 :
model:add(nn

model:add(nn.
model:add(nn.

-- stage 3 :

.SpatialConvolutionMM(6,

filter bank -> squashing -> max pooling
SpatialConvolutionMM(1l, 6, 5, 5))
Tanh())

SpatialMaxPooling(2, 2, 2, 2))

filter bank -> squashing -> max pooling
12, 5, 5))
Tanh())

SpatialMaxPooling(2, 2, 2, 2))

standard 2-layer MLP:

model:add(nn.Reshape(12*5%*5))
model:add(nn.Linear(12*5*5, 100))
model:add(nn.Tanh())
model:add(nn.Linear (100, nclasses))
L i Layer 3 Laver 4 Layer 5
input Layer | ayer R@loxl0 > 100@]1x1
1@32x32 6@28x28  6@14x14 12@5x5
Layer 6: 10
10
—¥o
7-- _—— — —
5%5 2x2 SX5 - 2x2 convolution
: convolution :
convolution pooling/ pooling/
subsampling subsampling
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Applying a ConvNet with a Sliding Window:
= Y LeCun

& Every layer is a convolution

# Sometimes called “fully convolutional nets”

# There is no such thing as a “fully connected layer”

AN\

Single
Character
Recognizer
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Sliding Window ConvNet + Weighted FSM {Fixed Post=Proc)
- Y LeCun

[Matan, Burges, LeCun, Denker NIPS 1991] [LeCun, Bottou, Bengio, Haffner, Proc IEEE 1998]

‘%KM’[ feNet 5 | pesearcu

answer: 5§

HHESSef IH
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Sliding Window ConvNet + Weighted FSM &
. Y LeCun
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Why Multiple Layers? The World.is Compbsitional
= Y LeCun

# Hierarchy of representations with increasing level of abstraction

# Each stage is a kind of trainable feature transform

# Tmage recognition: Pixel = edge — texton = motif = part = object

# Text: Character - word = word group — clause — sentence — story

# Speech: Sample — spectral band = sound — ... = phone = phoneme — word

Low-Level| |Mid-Level| |High-Level Trainable
Feature Feature Feature Classifier
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Yes, ConvNets are somewhat inspired by tﬁe Visual'Cortex
, " . \ Y LeCun

# The ventral (recognition) pathway in the visual cortex has multiple stages
# Retina - LGN - V1 - V2 - V4 - PIT - AIT ....

WHERE? (Motion,
Spatial Relationships) WHAT? (Form., Color}
[Panetal stream] [lnferotemporal stream] M°t°r command

: - Categorical judgments,
PP | /é\ decision making Haaer 190 e Simple visual forms
b A edges, corners
I — 120-160 ms 2
MSTd! = T
Cille S, / /
— N d 4
100-130 ms 4 &
r——-’ , PFC . p
— A | MD ;%eam X }4060 s
MTLE Wi i? ‘E imagnac-dem .'\
(i e ie @ © 60-80ms o
[—‘—-‘ Fbrll'):r;:a:n ne - V4 « 50-70 ms
4.5" <8 R : 3 :
1607 ¢ s . \Dstream Retina ‘ Intermediate visual
e , {irterb oo-don 20-40 ms ' AIT /jo;m:,sfeez::)ure
tripe 3 . roups, .
o Biob <3 Inter- /80/-100 ms : : Nt 'g
biob High level object

descriptions,
faces, objects

1 4A
N | 4Cb

V1 4Bl v’ A -
4Caj —* ¢

Retina, § i\t on

LGN SoX ~————— To spinal cord
G - K < To finger muscle <« ___——160-220 ms
M 180-260 ms
_~1  Orientation — Direction {44, Pettern (olaid) e PLrel 1 r fr m lm n Th

' X Spat.al ’50/ Disparity "W mctior @ mMOvE [p Ctu e O S O Orpe]
Aoy requency e f'} Non-Cartesian
VX (high/low) @ wavelength Oy MOT-* [ ]
At Tomporal e subjective koo Gallant & Van Essen
nt frequancy ¢ ? coniour - (g) Faces

(high/low} gattern



What' are ConvNets Good For

Y LeCun

# Signals that comes to you in the form of (multidimensional) arrays.
# Signals that have strong local correlations

# Signals where features can appear anywhere

# Signals in which objects are invariant to translations and distortions.

# 1D ConvNets: sequential signals, text

— Text Classification

— Musical Genre Recognition

— Acoustic Modeling for Speech Recognition
— Time-Series Prediction

# 2D ConvNets: images, time-frequency representations (speech and audio)
— Object detection, localization, recognition

# 3D ConvNets: video, volumetric images, tomography images
— Video recognition / understanding
— Biomedical image analysis
— Hyperspectral image analysis
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Recurrent Neural Nebworlks




Recurrent Neural Nebtworlkes

e Selectively summarize an input sequence in a fixed-size state
vector via a recursive update

St = Fe(St—l,mt)

St+1

unfold Fg ’(T) Fo .(T\/FQ

Lt+1

St = Gt(ﬂﬁt, Lt—1yLt—245+++49L2, $1)

38



Recurrent Neural Networles

e Can produce an output at each time step: unfolding the graph
tells us how to back-prop through time.

2 Or—1 Ot Qt+1

VI WV V |4 V
S ' W St—1 St St+1
told W W W>
unto [7 [7 [7

X Lt—1 Lt Lt+1

39



Grenerative RNNs

e An RNN can represent a fully-connected directed generative
model: every variable predicted from all previous ones.

T
P(x) = P(x1,...z7) = HP(xt|xt_1,xt_2, ... X1)
t=1

Ly Lyiq




Maximum Lilkelihood =

Teacher Forcing -

, o Yt ~ P(Yt ’ h

* During training, past y )

in input is from training
data

At generation time,
past y in input is
generated

T —
N—

—

Py, | hyja

e Mismatch can cause
”compounding error”

(¢, y¢) : next input/output training pair
41



Increasing the Expressi.ve Power of
RNNs m.&k more Depth

e |CLR 2014, How to construct deep recurrent neural networks

+ deep hid-to-out Vi< >
+ deep hid-to-hid

+deep in-to-hid

Ordinary RNNs Vi Ve
4
Zg1 t %
+ stacking — h/ hy
he §
- t

42

+ skip connections for
creating shorter paths



Lohg-Term Dependencies

43

The RNN gradient is a product of Jacobian matrices, each
associated with a step in the forward computation. To store

information robustly in a finite-dimensional state, the dynamics
must be contractive [Bengio et al 1994].

L = L(ST(ST—l(- . 3t—|—1(3t7 o ))))
0L OL aST 8St+1 Storing bits

Os,  DsrOspa T Os e

sing. values<1

Problems:

Gradient
* sing. values of Jacobians > 1 = gradients explode == clipping
* or sing. values < 1 = gradients shrink & vanish  (yochreiter 1991)

e or random -2 variance grows exponentially



Gradient Norm Clipping

(Mikolov thesis 2012;
Pascanu, Mikolov, Bengio, ICML 2013)

g « 8error
if ||g|| > threshold then
threshold ~

g < gl 8
end if



RNN Tricks

(Pascanu, Mikolov, Bengio, ICML 2013; Bengio, Boulanger & Pascanu, ICASSP 2013)

e Clipping gradients (avoid exploding gradients)

e Leaky integration (propagate long-term dependencies)

e Momentum (cheap 2"9 order)

e |nitialization (start in right ballpark avoids exploding/vanishing)
e Sparse Gradients (symmetry breaking)

e Gradient propagation regularizer (avoid vanishing gradient)

e LSTM self-loops (avoid vanishing gradient)

0.35
0.30
'0.25
o
0.20 &
Q
0.15
0.10
0.05

eIrror

: -2.0
. o6 —24 "22
45 (9 % -2.8 726 e ofb




Grated Recurrent Onits & LSTM

output

e Create a path where
gradients can flow for
longer with self-loop

self-loop

e Corresponds to an
eigenvalue of Jacobian
slightly less than 1

e LSTM is heavily used
(Hochreiter & Schmidhuber

1997)
 GRU light-weight version input pput gate forget gate  \output gate
(Cho et al 2014) a a a

46



NN Tricks

e Delays and multiple time scales, Elhihi & Bengio NIPS 1996
Q 0r—1 O Ot +1

" v P Fe S ow

_____________>

47



48

Backprap i Practice

Other tricks: see Deep Learning book (in preparation, online)




The Convergencerof Gradient Descent :

\\

BE\ gradient of
) W—M % objective function

&

E(®) E(w)
A A
#Batch Gradient
#There is an optimal learning \
rate nd o ®
#Equal to inverse 2 derivative . .
n<n opt N =N opt

E E
((13) (30) \

T'|>ﬂnopt Tl>2nopt



Let's'Look at a single linear unit

#Single unit, 2 inputs

#Quadratic loss woO

"E(W) = 1/p 2 (Y - WX )

W1 W2
#Dataset: classification: Y=-1 for blue, +1 for red.
L . L. X1 X2

#Hessian is covariance matrix of input vectors

"H=1/p 2 X X T |
#aTo avoid ill conditBnir%: normalize the inputs T

»Zero mean
»Unit variance for all variable
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Convergence is Slow When Hessian has Different Eigenvalues

#Batch Gradient, small learning rate

Learning
rate:

n=15

Hessian
largest
eigenvalue:

A =0.84

max

Maximum
admissible
Learning
rate:

Nma= 2-38

Weight space

Log MSE (dB)

T
'“'.k
¢
T

epochs

\\

Batch Gradient, large learning rate

Learning
rate:

n=2.5

Hessian
largest
eigenvalue:

A =0.84

max

Maximum
admissible
Learning
rate:

Nma= 2-38

Weight space

fog MSE (dB)

epochs
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Convergence is Stow When Hessian has Dii?ferent Eigenvalues

#Batch Gradient, small learning rate

Weight space

Learning
rate:

n=15

Hessian
largest
eigenvalue:

A =0.84

max

Maximum Log MSE (dB)
admissible

Learning
rate:

MNmax 2.38 ;:\\\\-~‘__

epochs

#Stochastic Gradiet: Much Faster
#But fluctuates near the minimum

Learning
rate:

n=0.2

(equivalent
to a batch
learning rate
of 20)

Hessian
largest
eigenvalue:

A_=0.84

max

Maximum
admissible
Learning
rate

(for batch):

Mmar 2-38

\\

Weight space

> = o o . - . .
o ~N r EN x - N & > ©

P

&

s

= 3

N

o

N

©

o /

- //

Log MSE (dB)

epochs



Mul{iléyer Nets'Have Non-Convex Objeclive Funcﬁons

#1-1-1 network
PY = WI1*¥W2*X

# trained to compute the identity function with quadratic loss W2
»Single sample X=1, Y=1 L(W) = (1-W1*W2)"2

# Solution: W2 = 1/W2 hyperbola.

Weight space

\

7 ///
)
Solution

V.

&

y
Saddle point  Solution

8> /%
& )
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Deep Nets with ReLUs and Max Pooling :

\

#Stack of linear transforms interspersed with Max operators
#Point-wise RelUs:

3

W31,22

© @0

. W22,14
#Max Pooling O O O O
»“switches” from one layer to the next W14.3
alnput-output function ’

»Sum over active paths O Q @ O

»Product of all weights along the path
»Solutions are hyperbolas 73
#0bjective function is full of saddle points



A M:j&k Has Been Debuniced: Local
Minima in Neural Nets

> C.onvexi.bj is not needed

e (Pascanu, Dauphin, Ganguli, Bengio, arXiv May 2014): On the
saddle point problem for non-convex optimization

e (Dauphin, Pascanu, Gulcehre, Cho, Ganguli, Bengio, NIPS’ 2014):
Identifying and attacking the saddle point problem in high-
dimensional non-convex optimization

e (Choromanska, Henaff, Mathieu, Ben Arous & LeCun,
AISTATS'2015): The Loss Surface of Multilayer Nets

55



Training error (%)

Walfram Global Problem

Saddle Poinks

Local minima dominate in low-D, but—;‘ ::_f::.
saddle points dominate in high-D 0 LA
Most local minima are close to the
bottom (global minimum error)

= R N N W
.o u O U
LY

'\

0700 0.05 0.10 0.15 0.20 0.25
Index of critical point

56



Saddle Points During Training

57

Oscillating between two behaviors:

* Slowly approaching a saddle point

* Escaping it

Training error (MSE)
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— Training error (MSE)
e—e Norm of the gradients
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Low Index Critical Poinks

Choromanska et al & LeCun 2014, ‘The Loss Surface of Multilayer Nets’
Shows that deep rectifier nets are analogous to spherical spin-glass models

The low-index critical points of large models concentrate in a band just
above the global minimum

60 -

40 -

count

20 -

I |
0.08 0.09 0.10

loss
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Piecewise Linear Nov\tme.ari.&j

Jarreth, Kavukcuoglu, Ranzato & LeCun ICCV 2009: absolute value
rectification works better than tanh in lower layers of convnet

Nair & Hinton ICML 2010: Duplicating sigmoid units with same |
weights but different bias in an RBM approximates a rectified *|
linear unit (ReLU)

softplus
f(x)=log(1+exp

3
Q
=
o
=

Glorot, Bordes and Bengio AISTATS 2011: Using a rectifier non- |
linearity (ReLU) instead of tanh of softplus allows for the first time
to train very deep supervised networks without the need for  Neuroscience motivations
unsupervised pre-training; was biologically motivated Leaky integrate-and-fire model

Krizhevsky, Sutskever & Hinton NIPS 2012:|
rectifiers one of the crucial ingredients in [y
ImageNet breakthrough
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black widow
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Stochastic Neurons as Reqularizer:
Improving neural networks by preventing co-adaptation

of feature detectors (Hinkon et al 2012, arXiv)

e Dropouts trick: during training multiply neuron output by random
bit (p=0.5), during test by 0.5

e Used in deep supervised networks
e Similar to denoising auto-encoder, but corrupting every layer

e Works better with some non-linearities (rectifiers, maxout)
(Goodfellow et al. ICML 2013)

e Equivalent to averaging over exponentially many architectures
e Used by Krizhevsky et al to break through ImageNet SOTA
e Also improves SOTA on CIFAR-10 (182> 16% err)
e Knowledge-free MNIST with DBMs (.95-2>.79% err)
* TIMIT phoneme classification (22.72>19.7% err)
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pout Regularizer: Super-Efficient

Dro
Bagging




Bakch Normalization

(loffe & Szegedy ICML 2015)

e Standardize activations (before nonlinearity) across minibatch

e Backprop through this operation
e Regularizes & helps to train
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Early Stopping

» Beautiful FREE LUNCH (no need to launch many different
training runs for each value of hyper-parameter for #iterations)

e Monitor validation error during training (after visiting # of
training examples = a multiple of validation set size)

e Keep track of parameters with best validation error and report
them at the end

e If error does not improve enough (with some patience), stop.
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Random Sampling of vaerparame&ers
(Bergstra & Bengio 2012) ‘ ﬂ
e Random search: simple & efficient

* Independently sample each HP, e.g. l.rate~exp(U[log(.1),log(.0001)])

e Common approach: manual + grid search
e Grid search over hyperparameters: simple & wasteful

e Each training trial is iid
* Ifa HPisirrelevant grid search is wasteful
* More convenient: ok to early-stop, continue further, etc.

Grid Layout Random Layout

Unimportant parameter
O
O
O
Unimportant parameter
O
O

“O @) @)

” Important parameter Important parameter



Se;que.vx&mt Model-Based Opéimiz.a!:i.ov\
of Hyper-Parameters

30

25

20

(Hutter et al JAIR 2009; Bergstra et al NIPS 2011; Thornton et al
arXiv 2012; Snoek et al NIPS 2012)

lterate

Estimate P(valid. err | hyper-params config x, D)

choose optimistic x, e.g. max, P(valid. err < current min. err | x)

train with config x, observe valid. err. v, D < D U {(x,v)}

— GP mean|
o o data

o U.1v
0.08f
1 0.06f
0.04}
1 0.02f
1 0.00




Distributed Training

e Minibatches

e Large minibatches + 2" order & natural gradient methods

e Asynchronous SGD (Bengio et al 2003, Le et al ICML 2012, Dean et al NIPS 2012)
* Data parallelism vs model parallelism

* Bottleneck: sharing weights/updates among nodes, to avoid
node-models to move too far from each other

e EASGD (zhang et al NIPS 2015) works well in practice
e Efficiently exploiting more than a few GPUs remains a challenge
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Vision

(switch laptops)
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Speech Recognition




The dramatic impact of Dee
Learning on Speech Recognition
%acco ding ko Microsoft)

100% A

Using DL
10%

4%

Word error rate on Switchboard

2%

1% >
1990 2000 2010




#Multilingual recognizer [ Softmax || Softmax

aaaaaaaa
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#Multiscale input

Context1+/-5 |
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Context +/-110, stride 2 |
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Speech Recognition with Convolutional Nets (NYU/IBM)i

( Max-Norm )
AN
.Q@@
& a¥ae N aYa alaTlaYaTalaYatRia
%
2 . o : 5 5 5 5
C ° = o vl i9] o n o
2 313 £ 3|3 gl| gl|= AEIEG 2iy o
= 8 3 8 3 5 HIRIE =l =
- re s e o e =4
: B
W U v WAV, JuUl UUI UUU \
3x40x40 9x9 64x32x32 4x1 64x8x32 4x4  64x5x29 1024 1024 1024 3000

#Acoustic Model: ConvNet with 7 layers. 54.4 million parameters.
#Classifies acoustic signal into 3000 context-dependent subphones categories

#Rel U units + dropout for last layers
#Trained on GPU. 4 days of training
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Speech Recognition with Convolutional/Nets, (NYU/BM)§ -
\ eCun

#Training samples.
»40 MEL-frequency Cepstral Coefficients
»Window: 40 frames, 10ms each




-

V|

Speech Recognition with Convolutional Nets (NYU/IBM)

A
i

-

#Convolution Kernels at Layer 1:
»64 kernels of size 9x9




E“d"‘&o.g“d Tra E‘,\E‘“g igr;ajtgr((%?éiations:
with Search v

cat (1.4)
Hybrid systems, neural nets +
HMMSs (Bengio 1991, Bottou 1991)
Neural net outputs scores for
each arc, recognized output =
labels along best path; trained
discriminatively (LeCun et al 1998)
Connectionist Temporal
Classification (Graves 2006)
DeepSpeech and attention-
based end-to-end RNNs

grammar graph

Graph Composition

(Hannun et al 2014; Graves & Recogniton
Jaitly 2014; Chorowski et al Graph
NIPS 2015)
1 H R1

g | '_||. l| ]  : ||/-1|| <

o) 1 ¥ 1)
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Natural Langquage
Re.presen&a&'mus




Neural Language Models: fi.'gk!:iv\g onhe

exponential bv anolther one’

H )
o (BenglO et aI NIPS 2000) i—th output = P(w(t) =1l context)
Output softmax

Ce ./. S— X0 < (XX D)
EXponenl'ially large set Of' // most| computation here \\
generalizations: semantically close Y

1

sequences ' \

! ! tanh !

' Ceooe °e) |

R(wi) R(wz) R(ws) R(ws) R(ws) R(we) — qupe |o. . Matrix C
lo Oé{_up ......................... : -ﬂg;fe;c-l-r;;;;ameters
n across words
w1 w2 w3 Wy We We index for w(t-n+1) index for w(t=2)

--------

index for w(t—1)

input sequence Exponentially large set of possible contexts



Neural word embeddings: visualization
directions = Learned Attributes

need help
come
go
take
give keep
make get
meet cee continue
expect want become
think
say remain
are .
IS
be
wergas
being
been
haq\as
have
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Analogical Refresen&alzions for Free
(Mikolov et al, ICLR 2013)

e Semantic relations appear as linear relationships in the space of
learned representations

e King —Queen = Man—-Woman
e Paris — France + Italy = Rome

France

a

Paris

Rome
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Handling Large Output Spaces

 Sampling “negative” examples: increase score of
correct word and stochastically decrease all the
others

*  Uniform sampling (coliobert & Weston, ICML 2008)

°* Importance Sampling, (Bengio & Senecal AISTATS 2003; Dauphin et al ICML
2011); GPU friendly implementation (Jean et al ACL 2015)

 Decompose output probabilities hierarchically wvorin &
Bengio 2005; Blitzer et al 2005; Mnih & Hinton 2007,2009; Miko tal 2011)

categories

. words within each category



Encoder-Decoder Frameworke

80

Intermediate representation of meaning
= ‘universal representation’
Encoder: from word sequence to sentence representation

Decoder: from representation to word sequence distribution

Decoder

English sentence English sentence
©
©
S ©
© —_—
Ne) ©
+— )
x o0
v c
= =
! I=
— >
2 S
L

French sentence English sentence

Encoder

(Cho et al EMNLP 2014, Sutskever et al NIPS 2014)



Attention Mechanism for Deep
Learnhing

e Consider an input (or intermediate) sequence or image

e Consider an upper level representation, which can choose
« where to look », by assigning a weight or probability to each
input position, as produced by an MLP, applied at each position

Q0000000000000 0000
Higher-level
Softmax over lower

locations conditioned e Soft attention (backprop) vs

on context at lower a » Stochastic hard attention (RL)
higher locations

000000V00000000000

Lower-level

(Bahdanau, Cho & Bengio, arXiv sept. 2014) following up on (Graves 2013) and
g1  (Larochelle & Hinton NIPS 2010)



End-to-End Machine Translation with
Recurrenkt Nels and Atktewbtion Mechanism

(Bahdanau et al 2014, Jean et al 2014, Gulcehre et al 2015, Jean et al 2015)
e Reached the state-of-the-art in one year, from scratch

(a) English—French (WMT-14)

NMT(A) | Google | P-SMT

NMT 32.68 30.6"
+Cand 33.28 —

+UNK 33.99 32.7°
+Ens 36.71 36.9°

37.03°

(b) English—German (WMT-15) (c) English—Czech (WMT-15)

Model Note Model Note

24.8 Neural MT 18.3 Neural MT

24.0 U.Edinburgh, Syntactic SMT 18.2 JHU, SMT+LM+OSM+Sparse
23.6 LIMSI/KIT 17.6 CU, Phrase SMT

22.8 U.Edinburgh, Phrase SMT 17.4 U.Edinburgh, Phrase SMT
22.7 KIT, Phrase SMT 16.1 U.Edinburgh, Syntactic SMT
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IWSLT 2015 - Luong & Manning (2015)
TED tallke MT, English-German
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Image-to-Text: Caption Generation

with Attention
(Xu et al, ICML 2015)

f=(a, man, is, jumping, into, a, lake, .)

Following many papers
on caption generation,
including (Kiros et al
2014; Mao et al 2014;

Word
Ssample

Recurrent
State

_ Vinyals et al 2014;
g Donahue et al 2014,
22 Karpathy & Li 2014;

Fang et al 2014)

-
-
-

Adfnotation
Vectors

-
- 4
- v .
-
4
4
4
4
7’

J

Convolutional Neural Network

(Xu et al., 2015), (Yao et al., 2015)
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zebra(0.23) standing(0.20)

-' ‘Pavi.hg
Attention to
Selected Parts
of the Image
While Uttering

Words

field(0.24) of(0.24)

o (0.18)

tall(0.19) grass(0.22)

A
bird

flying
over

14x14 Feature Map

a
body
of
water
1. Input 2. Convolutional 3. RNN with attention 4. Word by
Image  Feature Extraction over the image word

generation
\_ J
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The Good

S e S TR

A woman is throwing a frisbee in a park. A dog is standing on a hardwood floor. A stop sign is on a road with a
— mountain in the background.

A little girl sitting on a bed with A group of people sitting on a boat A giraffe standing in a forest with
a teddy bear. in the water. trees in the background.

86



And the Bad

A man wearing a hat and
a hat on a skateboard.

Las®
D

i = R
i T

A person is standing on a beach A woman is sitting at a table A man is talking on his cell phone

with a surfboard. with a large pizza. while another man watches.
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But How can Néural Nets Remember Thiﬁgs?

#Recurrent networks cannot remember things for very long
»The cortex only remember things for 20 seconds
#We need a “hippocampus” (a separate memory module)
»LSTM [Hochreiter 1997], registers
»Memory networks [Weston et 2014] (FAIR), associative memory
»NTM [Graves et al. 2014], “tape”.

Attention
mechanism

Recurrent net < q memory




#Add a short-term memory to a network

I:

F o4

(input feature map) — converts the incoming input to the internal feature
representation.

(generalization) — updates old memories given the new input.

(output feature map) — produces a new output (in the feature representation
space), given the new input and the current memory.

(response) — converts the output into the response format desired. For ex-

ample, a textual response or an action.

http://arxiv.org/abs/1410.3916

Bilbo travelled to the cave.

Gollum dropped the ring there.
Bilbo took the ring.

Bilbo went back to the Shire.

Bilbo left the ring there.

Frodo got the ring.

Frodo journeyed to Mount-Doom.
Frodo dropped the ring there.
Sauron died.

Frodo went back to the Shire.

Bilbo travelled to the Grey-havens.
The End.

Where is the ring? A: Mount-Doom
Where is Bilbo now? A: Grey-havens
Where is Frodo now? A: Shire

Fig. 2. An example story with questions correctly answered by a MemNN. The MemNN
was trained on the simulation described in Section[4.2]land had never seen many of these

words before, e.g. Bilbo, Frodo and Gollum.

Method B F1
(Fader et al., 2013) [4] 0.54
(Bordes et al., 2014) [3] 0.73
MemNN 0.71
MemNN (with BoW features)|0.79
Results on
Question Answering

Task

(Weston, Chopra,
Bordes 2014)



#[Sukhbataar, Szlam, Weston, Fergus NIPS 2015, ArXiv:1503.08895]
#Weakly-supervised MemNN: no need to tell which memory location to use.

Embedding C
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Embedding A
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[T | 1 1 [T 11 |[Ve)
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aner Product
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Stack Augmented RNN: learnlng algoritilmic” se"ﬁuences
~ — )

#[Joulin & Mlkolov ArXiv:1503.01 007]

input hidden output
Memorization Binary addition
100 100 R
Xt [— hi >yt 805“'”",:I “ * 80?“I|
P D = 2o 3|3y
< 0 & ll ] £ 401
E ' tack RNN . “\‘
st-1[0] lA st[0] 20+ =: \‘\ Iﬁlﬁ]tNRNN I 20! :“ \‘. R}\Elll(ilk RNN/|
at > LN Y =1 L L e N tSTM
il o o 0 105" %040 50 0 165030 40 50
stack(t-1) stack(t)
method a™b"™  abc™  a™b"cd™  a™b*™  a"b ™
RNN 25% 23.3% 13.3% 23.3% 33.3%
LSTM 100% 100% 68.3% 75% 100%
List RNN 40+5 100%  33.3% 100% 100% 100%
Stack RNN 40+10 100% 100% 100% 100% 43.3%
Stack RNN 40+10 + rounding | 100%  100% 100% 100% 100%




Sparse Access Memory for Long-Term
Dependencies

A mental state stored in an external memory can stay for
arbitrarily long durations, until evoked for read or write

Forgetting = vanishing gradient.
Memory = larger state, reducing the need for forgetting/vanishing

'"ffffffffﬁffﬁ. "'ﬁfﬁﬁff]ffff] paSS'Veo e ' '
A (0
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How do humans generalize
from very few examples?

* They transfer knowledge from previous learning:
Representations

Explanatory factors

* Previous learning from: unlabeled data

+ labels for other tasks

* Prior: shared underlying explanatory factors, in
particular between P(x) and P(Y|x)
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Unsupervised and Transfer Learning Challenge
+ Transfer Learning Challenge: Won by
vasugﬂyised Deep Learning

A VALID: ALC=0.7878

NIPS’2011
Transfer
Learning
Challenge
; Paper:
| o | e ICML’2012
ICML’2011 asef SYLVESTER VALID: ALC=0.8316
workshop on 1 o . * . *
Unsup. & o N
Transfer Learning%":: 3 layers .

'/ Raw data

2 layers

4 layers




Multi-Task Learning

* Generalizing better to new tasks (tens
of thousands!) is crucial to approach Al

e Example: speech recognition, sharing
across multiple languages

e Deep architectures learn good
intermediate representations that can
be shared across tasks

(Collobert & Weston ICML 2008,
Bengio et al AISTATS 2011)

e Good representations that disentangle
underlying factors of variation make

sense for many tasks because E.g. dictionary, with intermediate
concepts re-used across many definitions

Prior: shared underlying explanatory factors between tasks
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Google Image Search
Joint EMdedf.V\g: different

object types represented in same space

DOLPHIN
— OBAMA
—EIFFEL TOWER

"Google:

'S. Bengio, J.
Weston & N.
Usunier

ToF (1ICAI 2011,
NIPS’2010,

JMLR 2010,
. ML J 2010)

o(EQ)

100-dim
embedding space

WSABIE objective function: Learn ®(+) and ®,[(-) to optimize precision@k.



Combining Multiple Sources of Evidence
with Shared Represev\&at:&ov\s

e Traditional ML: data = matrix

history
e Relational learning: multiple sources,
different tuples of variables
* Share representations of same types

* Shared learned representations help event _url person \

across data sources
propagate information among data " history words _url
sources: e.g., WordNet, XWN,

Wikipedia, FreeBase, ImageNet...
(Bordes et al AISTATS 2012, ML J. 2013)

e FACTS = DATA -
e Deduction = Generalization » %%

P(person,url,event)

P(url,words,history)
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Multi-Task / Multimodal Le;ammi)
with Different Inputs for Differ

Tasks
Y

E.g. speaker adaptation, QOOOO00OODO
multimodal input...

QOO0OO0000O0O0OD

Unsupervised multimodal case:
selection switch

(Srivastava & Salakhutdinov NIPS 2012) :

©O00O0LOOO0O09
hl 2 h3

X1 Xo X3
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Maps Bebween "=-% hy = 1,(y)
Represev\&akiov\s S

x and y represent
different modalities, e.g.,
image, text, sound...

Can provide 0-shot
generalization to new
categories (values of y) — — - (@, y) pairs in the training set

—— I-representation (encoder) function f,
= = = Y -representation (encoder) function f,

S » relationship between embedded points
within one of the domains

<« maps between representation spaces
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Uv\supe.rvi.se.d erreseu&a&ion
Learining
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Why Dnsupervised Learning?

e Recent progress mostly in supervised DL
e Real challenges for unsupervised DL
e Potential benefits:

e Exploit tons of unlabeled data

* Answer new questions about the variables observed
* Regularizer — transfer learning — domain adaptation
* Easier optimization (divide and conquer)

 Joint (structured) outputs
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Why Latent Factors & Unsupervised
Representation Learning? Because of

Causaiééy.

On causal and anticausal learning, (Janzing et al ICML 2012)

e |fYsof interest are among the causal factors of X, then
P(X|\Y)P(Y
P(X)
is tied to P(X) and P(X|Y), and P(X) is defined in terms of P(X]Y), i.e.

e The best possible model of X (unsupervised learning) MUST
involve Y as a latent factor, implicitly or explicitly.

e Representation learning SEEKS the latent variables H that explain
the variations of X, making it likely to also uncover Y.
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If ¥ is a Cause of X, Semi-Supervised
Learning Worlkes

e Just observing the x-density reveals the causes y (cluster ID)

e After learning p(x) as a mixture, a single labeled example per class
suffices to learn p(y/x)

Mixture model

I

0.1}

0.0
0
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Invariance & Disentangling
Uv\dertji.hg Fackors

* |nvariant features

e Which invariances?

e Alternative: learning to disentangle factors, i.e.
keep all the explanatory factors in the
representation

e Good disentangling =2
avoid the curse of dimensionality

¢ Emerges from representation Iearning
(Goodfellow et al. 2009, Glorot et al. 2011)
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Bolkzmann Machines /
Undirected Grapki.cat Models

e Boltzmann machines:

_ le—Energy(m) _ lecTa:-l—mTWx _ lezz Ci$i+zi,j Wiz

(Hinton 84)
P
(@) =7 7 7

e |terative sampling scheme =
stochastic relaxation,
Monte-Carlo Markov chain

NN

e Training requires sampling:
might take a lot of time to
converge if there are well-
separated modes

N



Restricted Boltzmann Machine
(RBM) (Smolensky 1986, Hinton et al 2006)

P(z,h) = lebT}H—(;—P:I"_{_}LTVV:”" = lezz bih""'Zj cjmj+2i,j hiWijz;
y 7 7
e A building block .. S . b hidden
(single-layer) for N/
deep architectures

e Bipartite undirected

: observed
graphical model ¥

h~P(h|x) h~P(h|x)

A

) ( ) sampling




Ef:urm q the Shape of the
Distribution: Posikive & Negative
Sampte_s

&
Boltzmann machines, undirected graphical models, PT(CIZ’) _
RBMs, energy-based models

e Observed (+) examples push the energy down

e Generated / dream / fantasy (-) samples / particles push
the energy up

—Energy(x)
A




Eigﬁt .Strategies to Shape thew EnergyFurﬁ:tiqn
: , e < :

# 1. build the machine so that the volume of low energy stuff is constant
»PCA, K-means, GMM, square ICA

# 2. push down of the energy of data points, push up everywhere else
»Max likelihood (needs tractable partition function)

# 3. push down of the energy of data points, push up on chosen locations

» contrastive divergence, Ratio Matching, Noise Contrastive Estimation,
Minimum Probability Flow

# 4. minimize the gradient and maximize the curvature around data points
»score matching

4 5. train a dynamical system so that the dynamics goes to the manifold
»denoising auto-encoder, diffusion inversion (nonequilibrium dynamics)

# 6. use a reqularizer that limits the volume of space that has low energy
»Sparse coding, sparse auto-encoder, PSD

a7.if E)Y) =1lY - G(Y)lI"2, make G(Y) as "constant" as possible.
»Contracting auto-encoder, saturating auto-encoder

# 8. Adversarial training: generator tries to fool real/synthetic classifier.



* [terative sampling / undirected models:
A“&Q“E\'\Cﬁd-ers RBM, denoising auto-encoder

* Ancestral sampling / directed models
Helmholtz machine, VAE, etc.

P(x|h) (Hinton et al 1995)
reconstruction r

Decoder g Probabilistic reconstruction criterion:
Reconstruction log-likelihood =
-log P(x | h)
P(h)
code h
Q(h|x)

Denoising auto-encoder:

During training, input is corrupted
stochastically, and auto-encoder must
learn to guess the distribution of the
missing information.

Encoder f

input x
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Predictive Sparse Decomposition (PSD) d .
i . LeCun

[Kavukcuoglu, anzato, LeCun, re ected by every onfeence, 2008-2009]

#Train a “simple” feed-forward function to predict the result of a complex
optimization on the data points of interest

Generative Model

Factor B

LATENT

INPUT VARIABLE

Fast Feed-Forward Model

1. Find optimal Zi for all Yi;
2. Train Encoder to predict
Zi from Yi

Energy = reconstruction_error + code prediction_error + code_sparsity



Probabilistic interpretation of auto-
encoders

e Manifold & probabilistic interpretations of auto-encoders
* Denoising Score Matching as inductive principle

(Vincent 2011)
e Estimating the gradient of the energy function
(Alain & Bengio ICLR 2013)

e Sampling via Markov chain

(Bengio et al NIPS 2013; Sohl-Dickstein et al ICML 2015)
* Variational auto-encoders

(Kingma & Welling ICLR 2014)
(Gregor et al arXiv 2015)
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Denoising Auto-Encoder

e Learns a vector field pointing towards higtﬁ

prior: examples

probability direction (Alain & Bengio 2013) concentrate near a
. Olo T lower dimensional
reconstruction(z) —x — o’ gwp( ) “manifold”

 Some DAEs correspond to a kind of :

RBM with regularized Score Matching (¥
2011)

[equivalent when noise—>0] Corrupted input

/~

VAR

\ ||
/ S




teld that Estimates a
(Alain & Bengio ICLR 2013)

Reqularized Auto-Encoders Learn a

Vector £
Gradient Field
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Denoising Auto-Encoder Markov Chain

corrunt

C(X|X)

X t X t+1 X t+2

The corrupt-encode-decode-sample Markov chain associated with a DAE
samples from a consistent estimator of the data generating distribution
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Preference for Locally Constant Features

 Denoising or contractive auto-encoder on 1-D mput

i o - 22

Ellr(z +02) — 2| = Elllr(z) — ol ) + | P22 3
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HQLM"\Q’.&& MQCkLV\QS (Hinton et al 1995) Q‘f\d
Variational Auto-Encoders (VAESs)

(Kingma & Welling 2013, ICLR 2014)
(Gregor et al ICML 2014; Rezende et al ICML 2014) P(hs)
(Mnih & Gregor ICML 2014; Kingma et al, NIPS 2014) f4

 Parametric approximate

inference P(

>
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Q( )

>
hadl
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inference

e Successors of Helmholtz
machine (Hinton et al 95)

generator

P(hi|h2)

/N
>
>
>
Y

e Maximize variational lower
bound on log-likelihood:

min K L(Q(x, h)||P(x, h))
where ()(x) = data distr. L
or equivalently Q(x)

maxz Q(h|x) log g((fz]z)) = maxz Q(h|x)log P(x|h) + KL(Q(h|x)||P(h))
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Decoder
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Greomebric Ih&erpre&a&&ov\
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Encoder: map input to a new space
where the data has a simpler
distribution

Add noise between encoder output
and decoder input: train the
decoder to be robust to mismatch
between encoder output and prior
output.

flx

A

W

contractive
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DRAW: Se;que.v\!:ml. Variational Auto-
Encoder with Attention

(Gregor et al of Google DeepMind, arXiv 1502.04623, 2015)

e Even for a static input, the encoder and decoder are now
recurrent nets, which gradually add elements to the answer,
and use an attention mechanism to choose where to do so.
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DRAW Samples of SVHN Images:
generated samples vs training v\eare.sl:
neighbor
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GAN: Grenerative Adversarial Nebworlks

Goodfellow et al NIPS 2014
/@,\\ D tries to D tries to A
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LAPCGAN: Laptacmv\ ?Zranmid
Grenerative Adversaridl Nebtworlkes

(Denton + Chintala, et al 2015) http://soumith.ch/eyescream/
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CIFAR-8

CIFAR-16

Imagenet-32

Imagenet-32
Real/Generated? mag

(recursive)

Imagenet-32

(recursive)



LAPGAN: Visual Turing Test

(Denton + Chintala, et al 2015)
e 40% of samples mistaken by humans for real photos

' 4 e
N
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*  GAN objective = compromise between KL(data| model) and KL(model|data)
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Convolutional G-ANs

(Radford et al, arXiv 1511.06343)

Strided convolutions, batch normalization, only convolutional layers,
ReLU and leaky RelLU

#
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Space-Filling in Representation-Space

Deeper representations =» abstractions = disentangling (Bengio et al ICML 2013)

Manifolds are expanded and flattened
X-space

Linear interpolation at layer 2
ﬂ.

Linear interpolation at layer 1

9’s manifold -
1
®

Linear mterpolatlon in pixel space



GAN: Interpolating in Latent Space

If the model is good (unfolds the manifold), interpolating between
latent values yields plausible images.

man woman
125 with glasses without glasses without glasses

woman with glasses



Supervised and Unsupervised in One Learning Rule?

#Boltzmann Machines have all the right properties [Hinton 1831] [OK, OK 1983 ;-]
»Sup & unsup, generative & discriminative in one simple/local learning rule
»Feedback circuit reconstructs and propagates virtual hidden targets
»But they don't really work (or at least they don't scale).

#Problem: the feedforward path eliminates information

dlIf the feedforward path is invariant, then

#the reconstruction path is a one-to-many mapping
»Usual solution: sampling. But I'm allergic.

Predicted Whab «_ what > @redicted w what >

A 4

Many One Many One
To To To To
One Many One Many

< input onstruc’@ < input onstruc’@



Deep Semi-Supervised Learning

e Unlike unsupervised pre-training, modern approaches optimize
jointly the supervised and unsupervised objective

e Discriminative RBMs (Larochelle & Bengio, ICML 2008)
e Semi-Supervised VAE (Kingma et al, NIPS 2014)

e Ladder Network (Rasmus et al, NIPS 2015)
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Semisupervised Learning with Ladder
NQ&NO\” (Rasmus et al, NIPS 2015)

e Jointly trained stack of denoising auto-encoders with gated
lateral connections and semi-supervised objective

Semi-supervised objective:
~log P(y = t(n) | x)

2
+ ZZL:1 A ||z - i](Bll)\IH

/

They also use
Batch Normalization

1% error on PI-MNIST with 100 labeled examples (Pezeshki et al arXiv 1511.06430)
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Stacked What-Where

Auto-Encoder (SWWAE)

[Zhao, Mathieu, LeCun arXiv:1506.023
Stacked What-Where Auto-Encoder
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Conclusions & Challenges
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Learning « How the world ticks »

131

So long as our machine learning models « cheat » by relying only
on surface statistical regularities, they remain vulnerable to out-
of-distribution examples

Humans generalize better than other animals by implicitly having
a more accurate internal model of the underlying causal
relationships

This allows one to predict future situations (e.g., the effect of
planned actions) that are far from anything seen before, an
essential component of reasoning, intelligence and science



Learning Multiple Levels of
Abskraction

 The big payoff of deep learning is to allow learning
higher levels of abstraction

 Higher-level abstractions disentangle the factors of
variation, which allows much easier generalization and

transfer

Organizational Maturity
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Challenges & Open Problems

A More Scientific Approach is Needed, not Just Building Better Systems

e Unsupervised learning
* How to evaluate?
 Long-term dependencies
 Natural language understanding & reasoning
e More robust optimization (or easier to train architectures)
e Distributed training (that scales) & specialized hardware
e Bridging the gap to biology
e Deep reinforcement learning
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