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Deep Learning: Beyond Pattern 
Recognition, towards AI 

•  Many	researchers	believed	that	neural	nets	could	at	best	be	
good	at	paFern	recogniGon	

•  And	they	are	really	good	at	it!	

•  But	many	more	ingredients	needed	towards	AI.	Recent	progress:	

•  ATTENTION	&	REASONING:		
•  Machine	translaGon,	Memory	networks	&	Neural	Turing	Machine	

•  PLANNING	&	REINFORCEMENT	LEARNING:		
•  DeepMind	(Atari	game	playing)	&	Berkeley	(RoboGc	control)	
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How to train neural nets to take 
internal discrete decisions? 

•  Can	we	approximate	the	gradient	through	discrete	(possibly	
stochasGc	decisions)	so	as	to	extend	the	reach	of	back-prop?	

•  Usage:	
•  CondiGonal	computaGon	/	dynamically	routed	architectures	
•  AFenGon	(internal	and	external)	
•  Alignment,	(hierarchical)	segmentaGon,	etc.	
•  Long-term	dependencies	through	many	nonlineariGes:	almost	
not	differenGable	

•  Simple	soluGon:	REINFORCE	(+	condiGonal	baseline)	

3	

@

@✓

X

a

p✓(a|x)L(a) =
X

a

p✓(a|x)L(a)
@ log p✓(a|x)

@✓



Conditional Computation 
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Computation / Capacity Ratio 

•  N-grams,	decision	trees,	etc.:		capacity	(and	memory)	can	grow	a	
lot	while	computaGon	remains	constant	or	grows	as	
log(capacity).	

•  Neural	nets	/	deep	learning:	computaGon	grows	linearly	with	
capacity	(number	of	parameters).	Each	parameter	is	used	for	
every	example.	

•  To	build	much	higher	capacity	models,	we	need	to	break	that	
linear	relaGonship.	
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Conditional Computation: only visit a 
small fraction of parameters / example 

•  Deep	nets	vs	decision	trees	
•  Hard	mixtures	of	experts	(Collobert,	Bengio	&	Bengio	

2002)	
•  CondiGonal	computaGon	for	deep	nets:	sparse	

distributed	gaters	selecGng	combinatorial	
subsets	of	a	deep	net	

•  Challenges:	
•  Credit	assignment	for	hard	decisions	
•  Gated	architectures	exploraGon	

	

Bengio,	Leonard	&	Courville		
arXiv	1305.2982	
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Credit Assignment for Discrete Actions 

•  GaGng	units	take	a	hard	decision	
•  Gradient	through	discrete	funcGon	=	0	
•  SoluGon	ideas	in	(Bengio	et	al	2013):	

•  HeurisGc	back-prop	(straight	through	
esGmator),	also	(Gregor	et	al	ICML	2014).	

•  Noisy	recGfier:	
•  Smooth	Gmes	StochasGc	b√p	
				with	b	~	Bin(√p)	
•  REINFORCE	with	variance	reducGon		
i.e.,	RL,	i.e.	correlate	with	loss,	no	
back-prop	for	gaters	
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GaGng	unit	
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(Bengio,	Leonard,	Courville	2013):	Es=ma=ng	or	Propaga=ng	Gradients	
Through	Stochas=c	Neurons	for		Condi=onal	Computa=on	
	

New	work:	K-Y	Cho	&	Y	Bengio,	arXiv	2015	
																				E.	Bengio,	P.L.	Bacon,	J.	Pineau	&	D.	Precup	arXiv	2015	&	RLDM	2015.	



Attention for MT, caption generation 
and Reasoning 
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Encoder-Decoder Framework 
•  Intermediate	representaGon	of	meaning		

=	‘universal	representaGon’	
•  Encoder:	from	word	sequence	to	sentence	representaGon	
•  Decoder:	from	representaGon	to	word	sequence	distribuGon	
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Attention Mechanism for Deep Learning 

•  Consider	an	input	(or	intermediate)	sequence	or	image	
•  Consider	an	upper	level	representaGon,	which	can	choose	

«	where	to	look	»,	by	assigning	a	weight	or	probability	to	each	
input	posiGon,	as	produced	by	an	MLP,	applied	at	each	posiGon	
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Soft-Attention vs  
Stochastic Hard-Attention 

•  With	sol-aFenGon:	input	fed	to	higher	level	at	locaGon	i	is	a	
solmax-weighted	sum	of	states	at	locaGons	j	at	lower	level	
•  Train	by	back-prop	
•  Fast	training	

•  With	stochasGc	hard-aFenGon:	sample	an	input	locaGon	
according	to	the	solmax	output	
•  Get	a	gradient	on	the	decisions	via	REINFORCE	-	baseline	
•  Noisy	gradient,	slower	training	but	works	surprisingly	well	
•  Symmetry	breaking	
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End-to-End Machine Translation with 
Recurrent Nets and Attention Mechanism 

•  Reached	the	state-of-the-art	in	one	year,	from	scratch	
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IWSLT 2015 – Luong & Manning (2015) 
TED talk MT, English-German 
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Image-to-Text: Caption Generation 
with Attention 
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Paying 
Attention to 
Selected Parts 
of the Image 
While Uttering 
Words 
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Show, Attend and Tell: Neural 
Image Caption Generation with 
Visual Attention 

Results	from	(Xu	et	al,	ICML	2015)	

16	

Neural Image Caption Generation with Visual Attention

Table 1. BLEU-1,2,3,4/METEOR metrics compared to other methods, † indicates a different split, (—) indicates an unknown metric, �
indicates the authors kindly provided missing metrics by personal communication, ⌃ indicates an ensemble, a indicates using AlexNet

BLEU
Dataset Model B-1 B-2 B-3 B-4 METEOR

Flickr8k

Google NIC(Vinyals et al., 2014)†⌃
Log Bilinear (Kiros et al., 2014a)�

Soft-Attention
Hard-Attention

63
65.6
67
67

41
42.4
44.8
45.7

27
27.7
29.9
31.4

—
17.7
19.5
21.3

—
17.31
18.93
20.30

Flickr30k

Google NIC†�⌃

Log Bilinear
Soft-Attention
Hard-Attention

66.3
60.0
66.7
66.9

42.3
38

43.4
43.9

27.7
25.4
28.8
29.6

18.3
17.1
19.1
19.9

—
16.88
18.49
18.46

COCO

CMU/MS Research (Chen & Zitnick, 2014)a
MS Research (Fang et al., 2014)†a

BRNN (Karpathy & Li, 2014)�
Google NIC†�⌃

Log Bilinear�
Soft-Attention
Hard-Attention

—
—

64.2
66.6
70.8
70.7
71.8

—
—

45.1
46.1
48.9
49.2
50.4

—
—

30.4
32.9
34.4
34.4
35.7

—
—

20.3
24.6
24.3
24.3
25.0

20.41
20.71

—
—

20.03
23.90
23.04

randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
(Bergstra et al., 2010) publicly available upon publication
to encourage future research in this area.

5. Experiments
We describe our experimental methodology and quantita-
tive results which validate the effectiveness of our model
for caption generation.

1https://www.whetlab.com/

5.1. Data

We report results on the popular Flickr8k and Flickr30k
dataset which has 8,000 and 30,000 images respectively
as well as the more challenging Microsoft COCO dataset
which has 82,783 images. The Flickr8k/Flickr30k dataset
both come with 5 reference sentences per image, but for the
MS COCO dataset, some of the images have references in
excess of 5 for consistency across our datasets. We applied
only basic tokenization to MS COCO so that it is consistent
with the tokenization present in Flickr8k and Flickr30k.

Results for our attention-based architecture are reported in
Table 4.2.1. We report results with the frequently used
BLEU metric2 which is the standard in the caption gen-
eration literature. We report BLEU from 1 to 4 with-
out a brevity penalty. There has been, however, criticism
of BLEU, so in addition we report another common met-
ric METEOR (Denkowski & Lavie, 2014), and compare
whenever possible.

5.2. Evaluation Procedures

A few challenges exist for comparison, which we explain
here. The first is a difference in choice of convolutional
feature extractor. For identical decoder architectures, us-
ing more recent architectures such as GoogLeNet or Ox-

2We verified that our BLEU evaluation code matches the au-
thors of Vinyals et al. (2014), Karpathy & Li (2014) and Kiros
et al. (2014b). For fairness, we only compare against results for
which we have verified that our BLEU evaluation code is the
same. With the upcoming release of the COCO evaluation server,
we will include comparison results with all other recent image
captioning models.



The Good 
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And the Bad 
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Attention Mechanisms for Memory 
Access 

•  Neural	Turing	Machines	(Graves	et	al	2014)	
•  and	Memory	Networks	(Weston	et	al	2014)	
•  Use	a	form	of	aFenGon	mechanism	to	

control	the	read	and	write	access	into	a	
memory	

•  The	aFenGon	mechanism	outputs	a	solmax	
over	memory	locaGons	

•  For	efficiency,	the	solmax	should	be	sparse	
(mostly	0’s),	e.g.	maybe	using	a	hash-table	
formulaGon.	

•  Both	sol	and	(stochasGc)	hard	aFenGon	are	
used	

19	
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Training a Critic 
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Alternatives to REINFORCE? 

•  Train	a	criGc	(esGmate	future	reward)	and	backprop	through	it	
-  “Genera=ve	Adversarial	Networks”,	Goodfellow	et	al,	NIPS	2014		
-  “Task	Loss	Es=ma=on	for	Sequence	Predic=on”,	Bahdanau	et	al,	2015,	

arXiv	1511.06456	

•  Train	a	stochasGc	credit-assignment	machine,	e.g.,	by	
Reweighted	Wake-Sleep	(Bornschein	&	Bengio	2014),	or	
VariaKonal	Auto-Encoder	(Kingma	et	al	2014)	which	amounts	to	
learning	to	predict	the	credit	to	aFribute,	given	the	future	
reward	(observed	outputs),	in	the	form	of	a	posterior	probability	
distribuGon	for	the	discrete	latent	variable	

21	

•  NN	esGmates	loss	that	would	be	obtained	for	any	discrete	choice	of	sequence	of	acGons	
•  At	test-Gme,	use	beam-search	(planning)	to	find	approximately	opGmal	seq.	of	acGons	



(Conditional) Reweighted Wake-Sleep 

•  If	H	is	conGnuous,	can	use	a	condiGonal	VAE	framework	
•  Otherwise	a	condiGonal	reweighted	wake-sleep	
•  See	also	Ba	et	al	NIPS’2015	for	an	applicaGon	of	similar	idea	to	a	

recurrent	aFenGon	model		
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(Bornschein	&	Bengio	ICLR	2015)	

visible	target	Y	

discrete	
stochasGc	
variable	H	

log	P(Y|X,H)=reward	

Q(H|X,Y)	=	how	H	should	be	in	
order	to	maximize	reward	

visible	input	X	

P(H|X)	=	
stochasGc	policy	



Training a Critic for Generative 
Models 
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Maximizing the Probability of Passing 
a Turing Test for Generative Models 

•  Generate	sample	y	(possibly	given	x)	OR	get	(y,x)	from	data	
generaGng	distribuGon	

•  Ask	human	if	answer	y	|	x	comes	from	data	generaGng	
distribuGon	(good)	or	from	the	computer	(bad)	

•  If	human	cannot	staGsGcally	disGnguish	the	two	distribuGons,	
then	the	computer	passes	that	Turing	test	

•  Can	we	train	a	criGc	that	predicts	the	human	answer?	
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Adversarial nets framework 

2
5

GAN: Generative Adversarial Networks 
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Goodfellow	et	al	NIPS	2014	



LAPGAN results •  40%	of	samples	mistaken	by	humans	for	real	photos	

•  Sharper	images	than	max.	lik.	proxys	(which	min.	KL(data|model)):		
•  GAN	objecGve	=	compromise	between	KL(data|model)	and	KL(model|data)	

26	

(Denton + Chintala, et al 2015)	

LAPGAN: Visual Turing Test 



Convolutional GANs 

Strided	convoluGons,	batch	normalizaGon,	only	convoluGonal	
layers,	ReLU	and	leaky	ReLU	
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(Radford	et	al,	arXiv		1511.06343)	

Under review as a conference paper at ICLR 2016

Figure 2: Generated bedrooms after one training pass through the dataset. Theoretically, the model
could learn to memorize training examples, but this is experimentally unlikely as we train with a
small learning rate and minibatch SGD. We are aware of no prior empirical evidence demonstrating
memorization with SGD and a small learning rate in only one epoch.

Figure 3: Generated bedrooms after five epochs of training. There appears to be evidence of visual
under-fitting via repeated textures across multiple samples.

4.3 IMAGENET-1K

We use Imagenet-1k (Deng et al., 2009) as a source of natural images for unsupervised training. We
train on 32⇥ 32 min-resized center crops. No data augmentation was applied to the images.
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Biologically Plausible and Memory-
Efficient Online Training of RNNs? 
•  The	brain	is	a	big	RNN	
•  Backprop	in	a	feedforward	net	may	have	plausible	biological	

implementaGons	(using	the	feedback	weights	to	propagate	
credit	informaGon,	targets	or	gradients)		
-  Y.	Bengio,	“Early	Inference	in	Energy-Based	Models	Approximates	Back-Propaga=on”,	

arXiv:1510.02777	

•  But	what	about	backprop	through	Gme?	
-  Requires	storing	the	state	of	the	network	(i.e.	the	acGvaGons	of	all	neurons)	for	an	

indefinitely	long	duraGon	
-  Need	to	wait	for	the	“end	of	the	episode”	(your	life)	to	start	learning	
-  Some	form	of	online	learning	is	necessary	

•  If	we	had	a	strong	criGc	trained	to	predict	discounted	future	
rewards	(and	we	have	it	in	our	brain),	then	we	would	just	
need	to	backprop	through	it	to	update	our	policy	

•  CriGc	is	missing	informaGon	(intermediate	acGons	and	observaGons)	
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MILA: Montreal Institute for Learning Algorithms 


