RL for DL

Yoshua Bengio

December 11, 2015

PLUG: **Deep Learning**, MIT Press book in preparation, draft chapters online for feedback NIPS'2015 Deep Reinforcement Learning Workshop

Deep Learning: Beyond Pattern Recognition, towards AI

- Many researchers believed that neural nets could at best be good at pattern recognition
- And they are really good at it!
- But many more ingredients needed towards AI. Recent progress:
 - ATTENTION & REASONING:
 - Machine translation, Memory networks & Neural Turing Machine
 - PLANNING & REINFORCEMENT LEARNING:
 - DeepMind (Atari game playing) & Berkeley (Robotic control)

How to train neural nets to take internal discrete decisions?

- Can we approximate the gradient through discrete (possibly stochastic decisions) so as to extend the reach of back-prop?
- Usage:
 - Conditional computation / dynamically routed architectures
 - Attention (internal and external)
 - Alignment, (hierarchical) segmentation, etc.
 - Long-term dependencies through many nonlinearities: almost not differentiable
- Simple solution: REINFORCE (+ conditional baseline)

$$\frac{\partial}{\partial \theta} \sum_{a} p_{\theta}(a|x) L(a) = \sum_{a} p_{\theta}(a|x) L(a) \frac{\partial \log p_{\theta}(a|x)}{\partial \theta}$$

Conditional Computation

Computation / Capacity Ratio

- N-grams, decision trees, etc.: capacity (and memory) can grow a lot while computation remains constant or grows as log(capacity).
- Neural nets / deep learning: computation grows linearly with capacity (number of parameters). Each parameter is used for every example.
- To build much higher capacity models, we need to break that linear relationship.

Conditional Computation: only visit a small fraction of parameters / example

Bengio, Leonard & Courville arXiv 1305.2982

- Deep nets vs decision trees
- Hard mixtures of experts (Collobert, Bengio & Bengio 2002)
- Conditional computation for deep nets: sparse distributed gaters selecting combinatorial subsets of a deep net
- Challenges:
 - Credit assignment for hard decisions
 - Gated architectures exploration

New work: K-Y Cho & Y Bengio, arXiv 2015

E. Bengio, P.L. Bacon, J. Pineau & D. Precup arXiv 2015 & RLDM 2015.

Attention for MT, caption generation and Reasoning

Encoder-Decoder Framework

- Intermediate representation of meaning
 - = 'universal representation'
- Encoder: from word sequence to sentence representation
- Decoder: from representation to word sequence distribution

Attention Mechanism for Deep Learning

- Consider an input (or intermediate) sequence or image
- Consider an upper level representation, which can choose « where to look », by assigning a weight or probability to each input position, as produced by an MLP, applied at each position

Soft-Attention vs Stochastic Hard-Attention

- With soft-attention: input fed to higher level at location **i** is a softmax-weighted sum of states at locations **j** at lower level
 - Train by back-prop
 - Fast training
- With stochastic hard-attention: sample an input location according to the softmax output
 - Get a gradient on the decisions via REINFORCE baseline
 - Noisy gradient, slower training but works surprisingly well
 - Symmetry breaking

End-to-End Machine Translation with Recurrent Nets and Attention Mechanism

Reached the state-of-the-art in one year, from scratch

	NMT(A)	Google	P-SMT	
NMT	32.68	30.6*		
+Cand	33.28	_	27 ∩2●	
+UNK	33.99	32.7°	57.05	
+Ens	36.71	36.9 °		

(a) English→French (WMT-14)

(b) English \rightarrow German (WMT-15) (c) English \rightarrow Czech (WMT-15)

Model Note		Model	Note		
24.8	Neural MT	18.3	Neural MT		
24.0	U.Edinburgh, Syntactic SMT	18.2	JHU, SMT+LM+OSM+Sparse		
23.6	LIMSI/KIT	17.6	CU, Phrase SMT		
22.8	U.Edinburgh, Phrase SMT	17.4	U.Edinburgh, Phrase SMT		
22.7	KIT, Phrase SMT	16.1	U.Edinburgh, Syntactic SMT		

IWSLT 2015 - Luong & Manning (2015) TED talk MT, English-German

BLEU (CASED)

13

Image-to-Text: Caption Generation with Attention

Show, Attend and Tell: Neural Image Caption Generation with Visual Attention Results from (Xu et al, ICML 2015)

Table 1. BLEU-1,2,3,4/METEOR metrics compared to other methods, \dagger indicates a different split, (—) indicates an unknown metric, \circ indicates the authors kindly provided missing metrics by personal communication, Σ indicates an ensemble, *a* indicates using AlexNet

		BLEU				
Dataset	Model	B-1	B-2	B-3	B-4	METEOR
Flickr8k	Google NIC(Vinyals et al., 2014) ^{$\dagger \Sigma$}	63	41	27		—
	Log Bilinear (Kiros et al., 2014a)°	65.6	42.4	27.7	17.7	17.31
	Soft-Attention	67	44.8	29.9	19.5	18.93
	Hard-Attention	67	45.7	31.4	21.3	20.30
Flickr30k	Google NIC ^{$\dagger \circ \Sigma$}	66.3	42.3	27.7	18.3	
	Log Bilinear	60.0	38	25.4	17.1	16.88
	Soft-Attention	66.7	43.4	28.8	19.1	18.49
	Hard-Attention	66.9	43.9	29.6	19.9	18.46
COCO	CMU/MS Research (Chen & Zitnick, 2014) ^a					20.41
	MS Research (Fang et al., 2014) ^{$\dagger a$}					20.71
	BRNN (Karpathy & Li, 2014)°	64.2	45.1	30.4	20.3	
	Google NIC ^{$\dagger \circ \Sigma$}	66.6	46.1	32.9	24.6	
	Log Bilinear ^o	70.8	48.9	34.4	24.3	20.03
	Soft-Attention	70.7	49.2	34.4	24.3	23.90
	Hard-Attention	71.8	50.4	35.7	25.0	23.04

The Good

A woman is throwing a <u>frisbee</u> in a park.

A <u>dog</u> is standing on a hardwood floor.

A <u>stop</u> sign is on a road with a mountain in the background.

A little <u>girl</u> sitting on a bed with a teddy bear.

A group of <u>people</u> sitting on a boat in the water.

A giraffe standing in a forest with <u>trees</u> in the background.

And the Bad

A large white <u>bird</u> standing in a forest.

A woman holding a <u>clock</u> in her hand.

A man wearing a hat and a hat on a <u>skateboard</u>.

A person is standing on a beach with a <u>surfboard.</u>

A woman is sitting at a table with a large <u>pizza.</u>

A man is talking on his cell phone while another man watches.

Attention Mechanisms for Memory Access

- Neural Turing Machines (Graves et al 2014)
- and Memory Networks (Weston et al 2014)
- Use a form of attention mechanism to control the read and write access into a memory
- The attention mechanism outputs a softmax over memory locations
- For efficiency, the softmax should be sparse (mostly 0's), e.g. maybe using a hash-table formulation.
- Both soft and (stochastic) hard attention are used

Training a Critic

Alternatives to REINFORCE?

- Train a critic (estimate future reward) and backprop through it
 - *"Generative Adversarial Networks", Goodfellow et al, NIPS 2014*
 - *"Task Loss Estimation for Sequence Prediction", Bahdanau et al, 2015, arXiv 1511.06456*
 - NN estimates loss that would be obtained for any discrete choice of sequence of actions
 - At test-time, use beam-search (planning) to find approximately optimal seq. of actions
- Train a stochastic credit-assignment machine, e.g., by Reweighted Wake-Sleep (Bornschein & Bengio 2014), or Variational Auto-Encoder (Kingma et al 2014) which amounts to learning to predict the credit to attribute, given the future reward (observed outputs), in the form of a posterior probability distribution for the discrete latent variable

(Conditional) Reweighted Wake-Sleep

(Bornschein & Bengio ICLR 2015)

- If H is continuous, can use a conditional VAE framework
- Otherwise a conditional reweighted wake-sleep
- See also Ba et al NIPS'2015 for an application of similar idea to a recurrent attention model

Training a Critic for Generative Models

Maximizing the Probability of Passing a Turing Test for Generative Models

- Generate sample y (possibly given x) OR get (y,x) from data generating distribution
- Ask human if answer y | x comes from data generating distribution (good) or from the computer (bad)
- If human cannot statistically distinguish the two distributions, then the computer passes that Turing test
- Can we train a critic that predicts the human answer?

GAN: Generative Adversarial Networks

Goodfellow et al NIPS 2014

LAPGAN: Visual Turing Test

(Denton + Chintala, et al 2015)

• 40% of samples mistaken *by humans* for real photos

- Sharper images than max. lik. proxys (which min. KL(data|model)):
- GAN objective = compromise between KL(data|model) and KL(model|data)

Convolutional GANs

(Radford et al, arXiv 1511.06343)

Strided convolutions, batch normalization, only convolutional layers, ReLU and leaky ReLU

Biologically Plausible and Memory-Efficient Online Training of RNNs?

- The brain is a big RNN
- Backprop in a feedforward net may have plausible biological implementations (using the feedback weights to propagate credit information, targets or gradients)
 - Y. Bengio, "Early Inference in Energy-Based Models Approximates Back-Propagation", arXiv:1510.02777
- But what about backprop through time?
 - Requires storing the state of the network (i.e. the activations of all neurons) for an indefinitely long duration
 - Need to wait for the "end of the episode" (your life) to start learning
 - Some form of online learning is necessary
- If we had a strong critic trained to predict discounted future rewards (and we have it in our brain), then we would just need to backprop through it to update our policy
- Critic is missing information (intermediate actions and observations)

MILA: Montreal Institute for Learning Algorithms

