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‘Dee.p Learhiv\%: Bevond Paklkern
Recognition, towards AI

e Many researchers believed that neural nets could at best be
good at pattern recognition

e And they are really good at it!
 But many more ingredients needed towards Al. Recent progress:

* ATTENTION & REASONING:

e Machine translation, Memory networks & Neural Turing Machine

* PLANNING & REINFORCEMENT LEARNING:
e DeepMind (Atari game playing) & Berkeley (Robotic control)



How to Erain neural weks to kalee
inkernal discrete decisions?

e Can we approximate the gradient through discrete (possibly
stochastic decisions) so as to extend the reach of back-prop?

* Usage:
e Conditional computation / dynamically routed architectures
* Attention (internal and external)
* Alignment, (hierarchical) segmentation, etc.

* Long-term dependencies through many nonlinearities: almost
not differentiable

e Simple solution: REINFORCE (+ conditional baseline)
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Conditional Compu&a&iov\



Compu&a&on / Capaxci.&v Rakio

e N-grams, decision trees, etc.: capacity (and memory) can grow a
lot while computation remains constant or grows as
log(capacity).

 Neural nets / deep learning: computation grows linearly with
capacity (humber of parameters). Each parameter is used for
every example.

e To build much higher capacity models, we need to break that
linear relationship.



Conditional Computation: only visit a
small fraction o{F parameters ? example

Bengio, Leonard & Courville * Iy
arXiv 1305.2982

* Deep nets vs decision trees -

e Hard mixtures of experts (Collobert, Bengio & Bengio®®
2002) - .

e Conditional computation for deep nets: sparse
distributed gaters selecting combinatorial
subsets of a deep net

e Challenges:
* Credit assignment for hard decisions
* Gated architectures exploration



Credilt Assignment for Discrete Actions

(Bengio, Leonard, Courville 2013): Estimating or Propagating Gradients
Through Stochastic Neurons for Conditional Computation Output softmax

e Gating units take a hard decision / \
Gated units (experts)

e Gradient through discrete function =0

Gater path

Gating units= ¢

e Solution ideas in (Bengio et al 2013):

e Heuristic back-prop (straight throug
estimator), also (Gregor et al ICML 2014).

* Noisy rectifier: »nmse\ / T

* Smooth times Stochasticbvp — > * — 2>
with b ~ Bin(Vp)

e REINFORCE with variance reduction
i.e., RL, i.e. correlate with loss, no

back-prop for gaters

HX

™\ main path
Gating unit

New work: K-Y Cho & Y Bengio, arXiv 2015
E. Bengio, P.L. Bacon, J. Pineau & D. Precup arXiv 2015 & RLDM 2015.



Attention for MT, caption generation
and Reasoning



Encoder-Decoder Framework

Intermediate representation of meaning

For bitext data

= ‘universal representation’
Encoder: from word sequence to sentence representation
Decoder: from representation to word sequence distribution

English sentence

French sentence

For unilingual data

English sentence

English sentence

Decoder

Encoder



Attention Mechanism for Deep Learning

e Consider an input (or intermediate) sequence or image

e Consider an upper level representation, which can choose
« where to look », by assigning a weight or probability to each
input position, as produced by an MLP, applied at each position
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S

oft-Attention vs

Stochastic Hard-Attention
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With soft-attention: input fed to higher level at locationiis a
softmax-weighted sum of states at locations j at lower level

* Train by back-prop
* Fast training

With stochastic hard-attention: sample an input location
according to the softmax output

* Get a gradient on the decisions via REINFORCE - baseline
* Noisy gradient, slower training but works surprisingly well
* Symmetry breaking



end-to-End Machine Translabkion with
Recurrent Nets and Attention Mechanism

e Reached the state-of-the-art in one year, from scratch

(a) English—French (WMT-14)

NMT(A) | Google | P-SMT

NMT 32.68 30.6"
+Cand 33.28 —

+UNK 33.99 32.7°
+Ens 36.71 36.9°

37.03°

(b) English—German (WMT-15) (c) English—Czech (WMT-15)

Model Note Model Note

24.8 Neural MT 18.3 Neural MT

24.0 U.Edinburgh, Syntactic SMT 18.2 JHU, SMT+4+LM+OSM+Sparse
23.6 LIMSI/KIT 17.6 CU, Phrase SMT

22.8 U.Edinburgh, Phrase SMT 17.4 U.Edinburgh, Phrase SMT
22.7 KIT, Phrase SMT 16.1 U.Edinburgh, Syntactic SMT
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IWSLT 2015 - Luony & sanning (2025) [
TED tallke MT, English-German REE
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Image-to-Text: Caption Greneration
with Attention

f=(a, man, is, jumping, into, a, lake, .)

Word

Recurrent
State

Attention
Mechanism

Adfnotation
Vectors

h.

J

Convolutional Neural Network

(Xu et al., 2015), (Yao et al., 2015)
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Show, Attend and Tell: Neural
Image Capltion Greneration with

Visual Attention
Results from (Xu et al, ICML 2015)

Table 1. BLEU-1,2,3, 4/METEOR metrics compared to other methods, T indicates a different split, (—) indicates an unknown metric, o
indicates the authors kindly provided missing metrics by personal communication, 3. indicates an ensemble, a indicates using AlexNet

BLEU
Dataset Model B-1 | B-2 | B-3 | B-4 | METEOR
Google NIC(Vinyals et al., 2014)7* 63 41 27 — —
FlickrSk Log Bilinear (Kiros et al., 2014a)° 656 424 277 17.7 17.31
Soft-Attention 67 448 299 195 18.93
Hard-Attention 67 45.7 314 213 20.30
Google NICT°* 66.3 423 277 183 —
. Log Bilinear 60.0 38 254 17.1 16.88
Fhickr30k Soft-Attention 667 434 288 19.1  18.49
Hard-Attention 669 439 296 199 18.46
CMU/MS Research (Chen & Zitnick, 2014)*  — — — — 20.41
MS Research (Fang et al., 2014)“‘ — — — — 20.71
BRNN (Karpathy & Li, 2014)° 64.2 45.1 304 203 —
COCO Google NICT°> 66.6 46.1 329 24.6 —
Log Bilinear® 70.8 489 344 243 20.03
Soft-Attention 707 49.2 344 243 23.90
Hard-Attention 71.8 504 35.7 25.0 23.04
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The Good

- o T,

A woman is throwing a frisbee in a park. A dog is standing on a hardwood floor. A stop sign is on a road with a
- B mountain in the background.

gy

A little girl sitting on a bed with A group of people sitting on a boat A giraffe standing in a forest with
a teddy bear. in the water. trees in the background.

17



And the Bad

A man wearing a hat and
a hat on a skateboard.

A person is standing on a beach A woman is sitting at a tabl A man is talking on his cell phone

with a surfboard. with a large pizza. while another man watches.
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Attention Mechanisms for Memory
Access

e Neural Turing Machines (Graves et al 2014)
e and Memory Networks (Weston et al 2014)

e Use a form of attention mechanism to
control the read and write access into a
memory

e The attention mechanism outputs a softmax
over memory locations

e For efficiency, the softmax should be sparse
(mostly 0’s), e.g. maybe using a hash-table
formulation.

Both soft and (stochastic) hard attention are

- used



Training a Critic
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Alternatives to REINFORCE?

e Train a critic (estimate future reward) and backprop through it
- “Generative Adversarial Networks”, Goodfellow et al, NIPS 2014

- “Task Loss Estimation for Sequence Prediction”, Bahdanau et al, 2015,
arXiv 1511.06456

* NN estimates loss that would be obtained for any discrete choice of sequence of actions
e At test-time, use beam-search (planning) to find approximately optimal seq. of actions

e Train a stochastic credit-assignment machine, e.g., by
Reweighted Wake-Sleep (Bornschein & Bengio 2014), or
Variational Auto-Encoder (Kingma et al 2014) which amounts to
learning to predict the credit to attribute, given the future
reward (observed outputs), in the form of a posterior probability
distribution for the discrete latent variable
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(Conditional) Reweighted Walce-Sleep

(Bornschein & Bengio ICLR 2015)

 |fHis continuous, can use a conditional VAE framework
e Otherwise a conditional reweighted wake-sleep

e See also Ba et al NIPS’2015 for an application of similar idea to a
recurrent attention model
discrete

stochastic
variable H

log P(Y|X,H)=reward

P(H|X) =
stochastic policy visible target Y

/Q(H |X,Y) = how H should be in

order to maximize reward

visible input X
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Training a Critic for Generative
Models
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Maximizing the ‘i’robabiti!::l of Passing
a Turing Test for Generative Models

e Generate sample y (possibly given x) OR get (y,x) from data
generating distribution

e Ask human if answer y | x comes from data generating
distribution (good) or from the computer (bad)

e |f human cannot statistically distinguish the two distributions,
then the computer passes that Turing test

e (Can we train a critic that predicts the human answer?

24



GAN: Grenerative Adversarial Networlkes

Goodfellow et al NIPS 2014

D tries to
output 0

D tries to

Differentiable
function D

Differentiable

function D

X sampled
from data

X sampled
from model

Differentiable

Generator function G

Network

Randorm
Vector

iscriminator
Network

Yo

Input noise
74

Random,| Training Real
Index Set Image




LAPGAN: Visual Turing Test

(Denton + Chintala, et al 2015)
* 40% of samples mistaken by humans for real photos

e Sharper images than max. lik. proxys (which min. KL(data| model)):
e GAN objective = compromise between KL(data| model) and KL(model|data)

26



Convolutional GANs

(Radford et al, arXiv 1511.06343)

Strided convolutions, batch normalization, only convolutional
layers, ReLU and leaky ReLU

ol 4 ——



Biologically Plausible and Memory-
Efficient Online Training of RNNs?
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The brain is a big RNN

Backprop in a feedforward net may have plausible biological
implementations (using the feedback weights to propagate

credit information, targets or gradients)

Y. Bengio, “Early Inference in Energy-Based Models Approximates Back-Propagation”,
arXiv:1510.02777

But what about backprop through time?

Requires storing the state of the network (i.e. the activations of all neurons) for an
indefinitely long duration

Need to wait for the “end of the episode” (your life) to start learning
Some form of online learning is necessary

If we had a strong critic trained to predict discounted future
rewards (and we have it in our brain), then we would just
need to backprop through it to update our policy

Critic is missing information (intermediate actions and observations)
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