
Tutorial:

Learning Deep ArchitecturesLearning Deep Architectures
Yoshua Bengio, U. Montreal

Yann LeCun, NYU

ICML Workshop on Learning Feature Hierarchies,

June 18th, 2009, Montreal

Deep Motivations

� Brains have a deep architecture

� Humans organize their ideas hierarchically, through

composition of simpler ideascomposition of simpler ideas

� Unsufficiently deep architectures can be exponentially

inefficient

� Distributed (possibly sparse) representations are necessary to

achieve non-local generalization

� Intermediate representations allow sharing statistical strength

Deep Architecture in the Brain

Area V2

Area V4

Primitive shape detectors

Higher level visual

abstractions

Retina

Area V1

pixels

Edge detectors

Deep Architecture in our Mind

� Humans organize their ideas and concepts hierarchically

� Humans first learn simpler concepts and then compose them

to represent more abstract onesto represent more abstract ones

� Engineers break-up solutions into multiple levels of abstraction

and processing

Architecture Depth

Depth = 3
Depth = 4

Good News, Bad News

Theoretical arguments: deep architectures can be

2 layers of

logic gates

formal neurons

RBF units
= universal approximator

RBF units

…

1 2 3 2n

1 2 3

…

n

Theorems for all 3:
(Hastad et al 86 & 91, Bengio et al 2007)

Functions representable

compactly with k layers may

require exponential size with

k-1 layers

The Deep Breakthrough

� Before 2006, training deep architectures was unsuccessful,

except for convolutional neural nets

� Hinton, Osindero & Teh « A Fast Learning Algorithm for Deep

Belief Nets », Neural Computation, 2006Belief Nets », Neural Computation, 2006

� Bengio, Lamblin, Popovici, Larochelle « Greedy Layer-Wise

Training of Deep Networks », NIPS’2006

� Ranzato, Poultney, Chopra, LeCun « Efficient Learning of

Sparse Representations with an Energy-Based Model »,

NIPS’2006

Greedy Layer-Wise Pre-Training

Stacking Restricted Boltzmann Machines (RBM) � Deep Belief Network (DBN)

Stacking Auto-Encoders

Greedy Layerwise Supervised Training

Generally worse than unsupervised pre-training but better than

ordinary training of a deep neural network (Bengio et al. 2007).

Supervised Fine-Tuning is Important

� Greedy layer-wise

unsupervised pre-training

phase with RBMs or auto-

encoders on MNISTencoders on MNIST

� Supervised phase with or

without unsupervised

updates, with or without

fine-tuning of hidden

layers

Denoising Auto-Encoder

� Corrupt the input

� Reconstruct the uncorrupted input

KL(reconstruction | raw input)
Hidden code (representation)

Corrupted input Raw input reconstruction

Denoising Auto-Encoder

� Learns a vector field towards higher

probability regions

� Minimizes variational lower bound on a

generative model

Corrupted input

generative model

� Similar to pseudo-likelihood

Corrupted input

Stacked Denoising Auto-Encoders

� No partition function,

can measure training

criterion

Encoder & decoder: � Encoder & decoder:

any parametrization

� Performs as well or

better than stacking

RBMs for usupervised

pre-training

Infinite MNIST

Deep Architectures and Sharing

Statistical Strength, Multi-Task Learning

� Generalizing better to

new tasks is crucial to

approach AI

� Deep architectures

task 1 output y1 task 3 output y3
task 2

output y2

� Deep architectures

learn good

intermediate

representations that

can be shared across

tasks

� A good representation

is one that makes sense

for many tasks
raw input x

shared

intermediate

representation h

Why is Unsupervised Pre-Training

Working So Well?

� Regularization hypothesis:

� Unsupervised component forces model close to P(x)

� Representations good for P(x) are good for P(y|x)

� Optimization hypothesis:

� Unsupervised initialization near better local minimum of P(y|x)

� Can reach lower local minimum otherwise not achievable by

random initialization

� Easier to train each layer using a layer-local criterion

Learning Trajectories in Function Space

� Each point a model

in function space

� Color = epoch

� Top: trajectories w/o � Top: trajectories w/o

pre-training

� Each trajectory

converges in

different local min.

� No overlap of

regions with and w/o

pre-training

Unsupervised learning as regularizer
� Adding extra

regularization

(reducing # hidden

units) hurts more the

pre-trained models

� Pre-trained models � Pre-trained models

have less variance wrt

training sample

� Regularizer = infinite

penalty outside of

region compatible

with unsupervised pre-

training

Better optimization of online error

� Both training and online

error are smaller with

unsupervised pre-training

� As # samples �� As # samples �

training err. = online err. =

generalization err.

� Without unsup. pre-

training: can’t exploit

capacity to capture

complexity in target

function from training data

Learning Dynamics of Deep Nets

� As weights become larger, get

trapped in basin of attraction

(“quadrant” does not change)

Initial updates have a crucial

Before fine-tuning After fine-tuning

� Initial updates have a crucial

influence (“critical period”),

explain more of the variance

� Unsupervised pre-training initializes

in basin of attraction with good

generalization properties

0

Restricted Boltzmann Machines

� The most popular building block for deep architectures

� Main advantage over auto-encoders: can sample from

the model

� Bipartite undirected graphical model.

x=observed, h=hiddenx=observed, h=hidden

� P(h|x) and P(x|h) factorize:

Convenient Gibbs sampling x�h�x�h…

� In practice, Gibbs sampling does not always mix well

Boltzmann Machine Gradient

� Gradient has two components:

‘positive phase’ and ‘negative phase’

� In RBMs, easy to sample or sum over h|x:

� Difficult part: sampling from P(x), typically with a Markov chain

Training RBMs

� Contrastive Divergence (CD-k): start negative Gibbs chain at

observed x, run k Gibbs steps.

� Persistent CD (PCD): run negative Gibbs chain in background � Persistent CD (PCD): run negative Gibbs chain in background

while weights slowly change

� Fast PCD: two sets of weights, one with a large learning rate

only used for negative phase, quickly exploring modes

� Herding (see Max Welling’s ICML, UAI and workshop talks)

Deep Belief Networks

� Sampling:

� Sample from top RBM

� Sample from level k given k+1

h2

h3

Top-level RBM

� Estimating log-likelihood (not easy)

(Salakhutdinov & Murray,

ICML’2008, NIPS’2008)

� Training:

� Variational bound justifies greedy

layerwise training of RBMs

� How to train all levels together?

observed x

h1

h2

Deep Boltzmann Machines
(Salakhutdinov et al, AISTATS 2009, Lee et al, ICML 2009)

� Positive phase: variational

approximation (mean-field)

� Negative phase: persistent chain

� Guarantees (Younes 89,2000; Yuille 2004)

� If learning rate decreases in 1/t, chain
h2

h3

� If learning rate decreases in 1/t, chain

mixes before parameters change too

much, chain stays converged when

parameters change.

� Can (must) initialize from stacked RBMs

� Salakhutdinov et al improved performance

on MNIST from 1.2% to .95% error

� Can apply AIS with 2 hidden layers

observed x

h1

h2

Level-local learning is important

� Initializing each layer of an unsupervised deep Boltzmann

machine helps a lot

� Initializing each layer of a supervised neural network as an RBM

helps a lot

� Helps most the layers further away from the target

� Not just an effect of unsupervised prior

� Jointly training all the levels of a deep architecture is difficult

� Initializing using a level-local learning algorithm (RBM, auto-

encoders, etc.) is a useful trick

Estimating Log-Likelihood

� RBMs: requires estimating partition function

� Reconstruction error provides a cheap proxyReconstruction error provides a cheap proxy

� log Z tractable analytically for < 25 binary inputs or hidden

� Lower-bounded with Annealed Importance Sampling (AIS)

� Deep Belief Networks:

� Extensions of AIS (Salakhutdinov et al 2008)

Open Problems

� Why is it difficult to train deep architectures?

� What is important in the learning dynamics?

How to improve joint training of all layers?� How to improve joint training of all layers?

� How to sample better from RBMs and deep generative models?

� Monitoring unsupervised learning quality in deep nets?

� Other ways to guide training of intermediate representations?

� Getting rid of learning rates?

THANK YOU!

� Questions?

� Comments?

