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Deep Motivations

� Brains have a deep architecture

� Humans organize their ideas hierarchically, through 

composition of simpler ideascomposition of simpler ideas

� Unsufficiently deep architectures can be exponentially 

inefficient

� Distributed (possibly sparse) representations are necessary to 

achieve non-local generalization

� Intermediate representations allow sharing statistical strength



Deep Architecture in the Brain
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Deep Architecture in our Mind

� Humans organize their ideas and concepts hierarchically

� Humans first learn simpler concepts and then compose them 

to represent more abstract onesto represent more abstract ones

� Engineers break-up solutions into multiple levels of abstraction 

and processing



Architecture Depth

Depth = 3
Depth = 4



Good News, Bad News

Theoretical arguments: deep architectures can be

2 layers of 

logic gates

formal neurons

RBF units
= universal approximator

RBF units

…

1 2 3 2n

1 2 3

…

n

Theorems for all 3:
(Hastad et al 86 & 91, Bengio et al 2007)

Functions representable 

compactly with k layers may 

require exponential size with 

k-1 layers



The Deep Breakthrough

� Before 2006, training deep architectures was unsuccessful, 

except for convolutional neural nets

� Hinton, Osindero & Teh « A Fast Learning Algorithm for Deep 

Belief Nets », Neural Computation, 2006Belief Nets », Neural Computation, 2006

� Bengio, Lamblin, Popovici, Larochelle « Greedy Layer-Wise 

Training of Deep Networks », NIPS’2006

� Ranzato, Poultney, Chopra, LeCun « Efficient Learning of 

Sparse Representations with an Energy-Based Model », 

NIPS’2006



Greedy Layer-Wise Pre-Training

Stacking Restricted Boltzmann Machines (RBM) � Deep Belief Network (DBN)



Stacking Auto-Encoders



Greedy Layerwise Supervised Training

Generally worse than unsupervised pre-training but better than 

ordinary training of a deep neural network (Bengio et al. 2007).



Supervised Fine-Tuning is Important

� Greedy layer-wise 

unsupervised pre-training 

phase with RBMs or auto-

encoders on MNISTencoders on MNIST

� Supervised phase with or 

without unsupervised 

updates, with or without 

fine-tuning of hidden 

layers



Denoising Auto-Encoder

� Corrupt the input

� Reconstruct the uncorrupted input

KL(reconstruction | raw input)
Hidden code (representation)

Corrupted input Raw input reconstruction



Denoising Auto-Encoder

� Learns a vector field towards higher 

probability regions

� Minimizes variational lower bound on a 

generative model

Corrupted input

generative model

� Similar to pseudo-likelihood

Corrupted input



Stacked Denoising Auto-Encoders

� No partition function, 

can measure training 

criterion

Encoder & decoder: � Encoder & decoder: 

any parametrization

� Performs as well or 

better than stacking 

RBMs for usupervised 

pre-training

Infinite MNIST



Deep Architectures and Sharing 

Statistical Strength, Multi-Task Learning

� Generalizing better to 

new tasks is crucial to 

approach AI

� Deep architectures 

task 1 output y1 task 3 output y3
task 2

output y2

� Deep architectures 

learn good 

intermediate 

representations that 

can be shared across 

tasks

� A good representation 

is one that makes sense 

for many tasks
raw input x

shared 

intermediate 

representation h



Why is Unsupervised Pre-Training 

Working So Well?

� Regularization hypothesis: 

� Unsupervised component forces model close to P(x)

� Representations good for P(x) are good for P(y|x)

� Optimization hypothesis:

� Unsupervised initialization near better local minimum of P(y|x)

� Can reach lower local minimum otherwise not achievable by 

random initialization

� Easier to train each layer using a layer-local criterion



Learning Trajectories in Function Space

� Each point a model 

in function space

� Color = epoch

� Top: trajectories w/o � Top: trajectories w/o 

pre-training

� Each trajectory 

converges in 

different local min.

� No overlap of 

regions with and w/o 

pre-training



Unsupervised learning as regularizer
� Adding extra 

regularization 

(reducing # hidden 

units) hurts more the 

pre-trained models

� Pre-trained models � Pre-trained models 

have less variance wrt 

training sample

� Regularizer = infinite 

penalty outside of 

region compatible 

with unsupervised pre-

training



Better optimization of online error

� Both training and online 

error are smaller with 

unsupervised pre-training

� As # samples �� As # samples �

training err. = online err. = 

generalization err.

� Without unsup. pre-

training: can’t exploit 

capacity to capture 

complexity in target 

function from training data



Learning Dynamics of Deep Nets

� As weights become larger, get 

trapped in basin of attraction 

(“quadrant” does not change)

Initial updates have a crucial 

Before fine-tuning After fine-tuning

� Initial updates have a crucial 

influence (“critical period”), 

explain more of the variance

� Unsupervised pre-training initializes 

in basin of attraction with good 

generalization properties

0



Restricted Boltzmann Machines

� The most popular building block for deep architectures

� Main advantage over auto-encoders: can sample from 

the model

� Bipartite undirected graphical model.

x=observed, h=hiddenx=observed, h=hidden

� P(h|x) and P(x|h) factorize:

Convenient Gibbs sampling x�h�x�h…

� In practice, Gibbs sampling does not always mix well



Boltzmann Machine Gradient

� Gradient has two components: 

‘positive phase’ and ‘negative phase’

� In RBMs, easy to sample or sum over h|x:

� Difficult part: sampling from P(x), typically with a Markov chain



Training RBMs

� Contrastive Divergence (CD-k): start negative Gibbs chain at 

observed x, run k Gibbs steps.

� Persistent CD (PCD): run negative Gibbs chain in background � Persistent CD (PCD): run negative Gibbs chain in background 

while weights slowly change

� Fast PCD: two sets of weights, one with a large learning rate 

only used for negative phase, quickly exploring modes

� Herding (see Max Welling’s ICML, UAI and workshop talks)



Deep Belief Networks

� Sampling:

� Sample from top RBM

� Sample from level k given k+1

h2

h3

Top-level RBM

� Estimating log-likelihood (not easy) 

(Salakhutdinov & Murray, 

ICML’2008, NIPS’2008)

� Training:

� Variational bound justifies greedy 

layerwise training of RBMs

� How to train all levels together?

observed x

h1

h2



Deep Boltzmann Machines
(Salakhutdinov et al, AISTATS 2009, Lee et al, ICML 2009)

� Positive phase: variational 

approximation (mean-field) 

� Negative phase: persistent chain

� Guarantees (Younes 89,2000; Yuille 2004)

� If learning rate decreases in 1/t, chain 
h2

h3

� If learning rate decreases in 1/t, chain 

mixes before parameters change too 

much, chain stays converged when 

parameters change.

� Can (must) initialize from stacked RBMs

� Salakhutdinov et al improved performance 

on MNIST from 1.2% to .95% error

� Can apply AIS with 2 hidden layers

observed x

h1

h2



Level-local learning is important

� Initializing each layer of an unsupervised deep Boltzmann 

machine helps a lot 

� Initializing each layer of a supervised neural network as an RBM 

helps a lot

� Helps most the layers further away from the target

� Not just an effect of unsupervised prior

� Jointly training all the levels of a deep architecture is difficult

� Initializing using a level-local learning algorithm (RBM, auto-

encoders, etc.) is a useful trick  



Estimating Log-Likelihood

� RBMs: requires estimating partition function

� Reconstruction error provides a cheap proxyReconstruction error provides a cheap proxy

� log Z tractable analytically for < 25 binary inputs or hidden

� Lower-bounded with Annealed Importance Sampling (AIS)

� Deep Belief Networks:

� Extensions of AIS (Salakhutdinov et al 2008)



Open Problems

� Why is it difficult to train deep architectures?

� What is important in the learning dynamics?

How to improve joint training of all layers?� How to improve joint training of all layers?

� How to sample better from RBMs and deep generative models?

� Monitoring unsupervised learning quality in deep nets?

� Other ways to guide training of intermediate representations?

� Getting rid of learning rates?



THANK YOU!

� Questions?

� Comments?


