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From AI to Deep Learning 

§  Intelligence requires knowledge 
§  Knowledge can be implicit 
§  Explicitly providing knowledge failed (expert 

systems) 
§  Learning captures knowledge from data 
§  Real-world distributions have convoluted 

unknown structure, not all captured by the 
principle of local generalization 

§  Deep Learning: a way to address this by the 
discovery of multiple levels of representation 
capturing the underlying factors of variation 



What is Generalizing? 

§  Capturing dependencies between random 
variables 

§  Spreading out the probability mass from 
the empirical distribution. Where??? 

§  Discovering underlying abstractions / 
explanatory factors  



Shallow learning architecture 

… 

… 

1-layer NNet, SVM, GP predictor, decision 
tree, boosted stumps, etc. 



Deep learning architecture 

… 

… 

… 

… 

… 

Output: is this bob? 
 

Highest-level features: 
Faces 

Abstract features: 
Shapes 

 
Primitive features: 

Edges 

 
Input: Raw pixels 



Visual System 



Auditory System 



Deep Motivations  
 
§ Brains have a deep architecture 
§ Humans’ ideas composed from 
simpler ones 

§ Insufficient depth can be 
exponentially inefficient 

§ Distributed (possibly sparse) 
representations necessary for non-
local generalization, exponentially 
more efficient than 1-of-N 
enumeration of latent variable values 

§ Multiple levels of latent variables 
allow combinatorial sharing of 
statistical strength 

raw input x 

task 1  task 3  task 2 
 

shared 
intermediate 
representations  



Deep Architecture in our Mind 

§ Humans organize their ideas and concepts 
hierarchically 

§ Humans first learn simpler concepts and 
then compose them to represent more 
abstract ones 

§ Engineers break-up solutions into multiple 
levels of abstraction and processing 

§  It would be nice to learn / discover these 
concepts  

  (knowledge engineering failed because of 
limits of introspection?) 



Deep Learning Hypotheses 

§  Hypothesis 1:  deep hierarchy of features  useful to 
efficiently represent and learn complex abstractions needed 
for AI and mammal intelligence.  
�  Computational & statistical efficiency 

§  Hypothesis 2: unsupervised learning of representations is 
a crucial component of the solution.  
�  Optimization & regularization. 

§  Theoretical and ML-experimental support for both. 
 



Challenge #1: Non-local learning of 
the interactions of many factors of 
variation 



Easy Learning 



Principle of Local Generalization 



The Curse of 
Dimensionality 
   To generalize 

locally, need 
representative 
examples for all 
relevant 
variations! 

 
Classical solution: 

hope for a 
smooth enough 
target function 



Limits of Local Generalization: 
Theoretical Results 

§  Theorem: Gaussian kernel machines need at least k 
examples to learn a function that has 2k zero-
crossings along some line 

 
 
 
 
 
§  Theorem: For a Gaussian kernel machine to learn 

some maximally varying functions  over d inputs 
requires O(2d) examples 

 

(Bengio, Delalleau & Le Roux 2007) 

e.g. Gaussian (RBF) SVM 



Curse of Dimensionality When Generalizing 
Locally on a Manifold         (Bengio et al 2006) 

O(d rd) examples are needed 

d=manifold dim. 
r=radius of curvature 



How to Beat the Curse of Many 
Factors of Variation? 
 
Compositionality: exponential gain in 
representational power 

•  Distributed representations / embeddings: feature learning 

•  Deep architecture: multiple levels of feature learning 

Can generalize to new configurations 

 
 



Distributed Representations 

§  Many neurons active simultaneously 
§  Input represented by the activation of a set 

of features that are not mutually exclusive 
§  Can be exponentially more efficient than 

local representations 
§  = FEATURE LEARNING instead of only 

manual feature-engineering 



Local vs Distributed Latent Variables 

Multi-clustering Clustering 



RBM Hidden Units Carve Input Space 

h1 h2 h3 

x1 x2 



Boltzman Machines and MRFs 

¡  Boltzmann machines: 
   (Hinton 84) 

¡ Markov Random Fields: 

    
      

                                                        

 

 

 

 

¡ More interesting with latent variables! 

                                                       

          

                                                        

 

 

 



Restricted Boltzmann Machine 

¡  The most popular 
building block for deep 
architectures 

 

¡  Bipartite undirected 
graphical model 

¡  Inference is trivial: 

P(h|x) & P(x|h) factorize 

                                                       

    
      

                                                        

 

 

 

Visible 
units 

Hidden 
units 



RBM Conditionals Factorize 



RBM Energy Gives Binomial Neurons 



¡  Free Energy = equivalent energy when marginalizing 

  

¡ Can be computed exactly and efficiently in RBMs 

 

¡ Marginal likelihood P(x) tractable up to partition function Z 

RBM Free Energy 



Factorization of the Free Energy 
Let the energy have the following general form: 

 
Then 



Energy-Based Models Gradient 



RBM with (image, label) visible units 

¡ Can predict a subset y 
of the visible units 
given the others x 

¡  Exactly if y takes only 
few values 

¡ Gibbs                 
sampling o/w  

                                                       

    
      

                                                        

 

 

 

label 

hidden 

y   0   0   0  1

y

x

h

U W

image 



Boltzmann Machine Gradient 

¡ Gradient has two components: 

¡  In RBMs, easy to sample or sum over h|x 
¡ Difficult part: sampling from P(x), typically with a Markov chain 

 “negative phase”  “positive phase” 



Positive & Negative Samples 

¡ Observed (+) examples push the energy down 

¡ Generated / dream / fantasy (-) samples / particles push 
the energy up 

X+ 

X- 



Gibbs Sampling in RBMs 

P(h|x) and P(x|h) factorize 

 

 h1 ~ P(h|x1)  

 x2 ~ P(x|h1)   x3 ~ P(x|h2)   x1 

 h2 ~ P(h|x2)   h3 ~ P(h|x3)  

¡  Easy inference 

¡ Convenient Gibbs sampling 
xàhàxàh…  

 



Training RBMs 
Contrastive Divergence:  

(CD-k) 
start negative Gibbs chain at  
observed x, run k Gibbs steps 
 

Persistent CD: 
(PCD)  

run negative Gibbs chain in  
background while weights slowly  
change 

Fast PCD: two sets of weights, one with a large 
learning rate only used for negative  
phase, quickly exploring modes 

Herding: Deterministic near-chaos dynamical  
system defines both learning and sampling 

Tempered MCMC: use higher temperature to escape  
modes 



Contrastive Divergence 
Contrastive Divergence (CD-k): start negative phase block 
Gibbs chain at observed x, run k Gibbs steps (Hinton 2002) 

  

Sampled x’ 
negative phase 

Observed x 
positive phase 

 h ~ P(h|x)  h’ ~ P(h|x’) 

k = 2 steps 

x x’ 

Free Energy 

push down 

push up 



Persistent CD (PCD) 
Run negative Gibbs chain in background while weights slowly 
change (Younes 2000, Tieleman 2008): 

  

Observed x 
(positive phase) 

new x’ 

 h ~ P(h|x) 

previous x’ 

•  Guarantees (Younes 89, 2000; Yuille 2004) 

•  If learning rate decreases in 1/t,  

   chain mixes before parameters change too much,  

   chain stays converged when parameters change 



Negative phase samples quickly push up the energy of 
wherever they are and quickly move to another mode 

  

x 

x’ 

FreeEnergy 
push 
down 

push 
up 

Persistent CD with large learning rate 



Persistent CD with large step size 

Negative phase samples quickly push up the energy of 
wherever they are and quickly move to another mode 

  

x 

x’ 

FreeEnergy 
push 
down 



Negative phase samples quickly push up the energy of 
wherever they are and quickly move to another mode 

  

x 

x’ 

FreeEnergy 
push 
down 

push 
up 

Persistent CD with large learning rate 



Challenge #2: Understanding the 
expressive power of deep 
architectures 



RBMs are Universal Approximators 

¡ Adding one hidden unit (with proper choice of parameters) 
guarantees increasing likelihood  

¡ With enough hidden units, can perfectly model any discrete 
distribution 

¡  RBMs with variable nb of hidden units = non-parametric 

(Le Roux & Bengio 2008, Neural Comp.) 
 



Unsupervised and Semi-Supervised 
Deep Feature Learning 

¡ Classical: pre-process data with PCA = leading factors 

¡ New: learning multiple levels of features/factors,                    
often over-complete 

¡ Greedy layer-wise strategy: 

raw input x 

unsupervised 
unsupervised 

unsupervised 

raw input x 

P(y|x) 
Supervised fine-tuning 

(Hinton et al 2006, Bengio et al 2007, Ranzato et al 2007) 

raw input x raw input x 



Deep Convolutional Architectures 
Mostly from Le Cun’s group (NYU), also Ng (Stanford):  
state-of-the-art on MNIST digits, Caltech-101 objects, faces 



Deep Belief Nets and Deep 
Boltzmann Machines 
¡ DBN: Stack RBMs; top k of n 

layers = prior for last hidden 
of bottom n-k 

¡ DBM: top levels modify the 
prior of last hidden of 
bottom n-k 

DBN DBM 



Convolutional DBNs 
(Lee et al, ICML’2009) 

 



Tiled Convolutional Networks  

   Tiled Convolutional Neural Networks    Tiled Convolutional Neural Networks 
7

Tied 
Weights 

Pooling Units 

Simple Units 
 

Input 

CNN 

Pooling Size = 3 

Number  
of Maps = 3 

Tiled CNN with multiple feature maps 
(Our model) 

Tile Size (k) = 2 
Tied 
Weights 

Tiled CNN 

Weight  
untying 

Multiple 
maps 

Quoc et al NIPS 2010 
Like convolutional but without the sharing, allows to increase capacity 
without increasing computation much (but increases memory) 



Parts Are Composed to Form Objects 

Layer 1: edges 

Layer 2: parts 

Lee et al. ICML’2009 

Layer 3: objects 



Shallow versus Deep Sum-Product 
Networks, Bengio & Delalleau, Learning 
Workshop 2011.  Delalleau & Bengio paper 
submitted to NIPS 2011. 

Representational Power of 
Deep Architectures 



Architecture Depth 

Depth = 3 Depth = 4 



Deep Architectures are More Expressive 

Theoretical arguments: 

… 
1 2 3 2n 

1 2 3 
… 

n 

= universal approximator 2 layers of 
Logic gates 
Formal neurons 
RBF units 

Theorems on advantage of depth: 
(Hastad et al 86 & 91, Bengio et al 2007, Bengio & 
Delalleau 2011, Braverman 2011) 

Functions compactly represented 
with k layers may require 
exponential size with 2 layers 

RBMs & auto-encoders = universal approximator 



main 

sub1 sub2 sub3 

subsub1 subsub2 subsub3 

subsubsub1 subsubsub2 
subsubsub3 

“Deep” computer program 



main 

subroutine1 includes 
subsub1 code and 
subsub2 code and 
subsubsub1 code 

“Shallow” computer program 

subroutine2 includes 
subsub2 code and 
subsub3 code and 
subsubsub3 code and … 



“Deep” circuit 



“Shallow” circuit 

input 

… 
? 

1 2 3 
… 

n 

output 

Falsely reassuring theorems: one can approximate any 
reasonable (smooth, boolean, etc.) function with a 2-layer 
architecture 

1 2 3 



Sharing Components in a Deep Architecture 
Polynomial expressed with shared components: 
advantage of depth may grow exponentially  
 

Sum-
product 
network 



•  Depth 2 suffices to represent any finite 
polynomial (sum of products) 

•  (Poon & Domingos 2010) use deep sum-
product networks to efficiently 
parametrize partition functions 

Sum-Product Networks 



•  Need O(n) nodes with depth log(n) circuit 
•  Need O(2√n) nodes with depth-2 circuit 

Polynomials that Need Depth 



•  Need O(dn) nodes with depth d circuit 
•  Need O(nd) nodes with depth-2 circuit 

More Polynomials that Need Depth 



Poly-logarithmic Independence Fools 
Bounded-Depth Boolean Circuits, 
Braverman, CACM 54(4), April 2011. 
 
If all marginals of the input distribution 
involving at most k variables are uniform, 
higher depth makes it exponentially easier to 
distinguish the joint from the uniform. 

More Deep Theory 



Deep Architectures and Sharing Statistical 
Strength, Multi-Task Learning 

§  Generalizing better to 
new tasks is crucial to 
approach AI 

§  Deep architectures learn 
good intermediate 
representations that can 
be shared across tasks 

§  Good representations 
make sense for many 
tasks 

raw input x 

task 1  
output y1 

task 3  
output y3 

task 2 
output y2 

shared 
intermediate 
representation h 



Parts Are Re-Used to 
Form Different Objects 

Layer 1: edges 

Layer 2: parts 

Lee et al. ICML’2009 

Layer 3: objects 



Feature and Sub-Feature Sharing 

§  Different tasks can 
share the same high-
level features 

§  Different high-level 
features can be built 
from the same set of 
lower-level features 

§  More levels = up to 
exponential gain in 
representational 
efficiency 

… 

… 

… 

… 

… 

task 1  
output y1 

task N  
output yN 

High-level features 

Low-level features 

… 

… 

… 

… 

… 

task 1  
output y1 

task N  
output yN 

High-level features 

Low-level features 

Sharing intermediate features 

Not sharing intermediate features 



Challenge #3: training deep 
architectures 



Gradient descent 

… 

… 

… 

Input X 

Output 
f(X) six 

Target 
Y 

two! = 
? 
= 
? 



Problem on deep architectures 

… 

… 

… 

… 

… 



   Before 2006 
 

   Failure of deep architectures 



Breakthrough! 
   2006 



Montréal 
Toronto 

Bengio 

Hinton 
Le Cun 
New York 

•  Before 2006, training deep 
architectures was 
unsuccessful, except for 
convolutional neural nets 

•  Hinton, Osindero & Teh « A 
Fast Learning Algorithm for 
Deep Belief Nets », Neural 
Computation, 2006 

•  Bengio, Lamblin, Popovici, 
Larochelle « Greedy Layer-
Wise Training of Deep 
Networks », NIPS’2006 

•  Ranzato, Poultney, 
Chopra, LeCun « Efficient 
Learning of Sparse 
Representations with an 
Energy-Based Model », 
NIPS’2006 

2006: The Deep Breakthrough 



Deep training 

… input 



Layer-Wise Unsupervised Pre-training 

… 

… 

input 

features 



Layer-Wise Unsupervised Pre-training 

… 

… 

… 

input 

features 

reconstruction 
of input = 

? 
… input 



Layer-Wise Unsupervised Pre-training 

… 

… 

input 

features 



Layer-Wise Unsupervised Pre-training 

… 

… 

input 

features 

… More abstract 
features 



… 

… 

input 

features 

… More abstract 
features 

reconstruction 
of features = 

? 
… … … … 

Layer-Wise Unsupervised Pre-training 



… 

… 

input 

features 

… More abstract 
features 

Layer-Wise Unsupervised Pre-training 



Layer-Wise Unsupervised Pre-training 

… 

… 

input 

features 

… More abstract 
features 

… 
Even more abstract 

features 



Supervised Fine-Tuning 

… 

… 

input 

features 

… More abstract 
features 

… 
Even more abstract 

features 

Output 
f(X) six 

Target 
Y 

two! = 
? 



Greedy Layer-Wise Pre-Training 

Stacking Restricted Boltzmann Machines (RBM) à Deep Belief Network (DBN) 



Stacking Auto-Encoders 



Greedy Layerwise Supervised Training 

Generally worse than unsupervised pre-training but better than 
ordinary training of a deep neural network (Bengio et al. 2007). 



Effect of Unsupervised Pre-training 
AISTATS’2009+JMLR 2010, with Erhan, Courville, Manzagol, Vincent, S. Bengio   

 



Effect of Depth 

w/o pre-training with pre-training 



Level-Local Learning is Important 

§  Initializing each layer of an unsupervised deep Boltzmann 
machine helps a lot  

§  Initializing each layer of a supervised neural network as an 
RBM, auto-encoder, denoising auto-encoder, etc helps a 
lot 

§  Helps most the layers further away from the target 

§  Not just an effect of unsupervised prior 

§  Jointly training all the levels of a deep architecture is 
difficult 

§  Initializing using a level-local learning algorithm is a useful 
trick   



Why is Unsupervised Pre-Training 
Working So Well? 
(with Erhan, Courville, Manzagol, Vincent, Bengio: JMLR, 2010) 

§  Regularization hypothesis:  
•  Unsupervised component forces model close to P(x) 
•  Representations good for P(x) are good for P(y|x)  
 

§  Optimization hypothesis: 
•  Unsupervised initialization near better local minimum of 

supervised training error 
•  Can reach lower local minimum otherwise not achievable by 

random initialization 



Learning Trajectories in Function Space 
(Erhan et al, JMLR, 2010) 
§  Each point is a 

model in function 
space 

§  Color = epoch 

§  Top: trajectories      
w/o pre-training 

§  Each trajectory 
converges in 
different local min. 

§  No overlap of 
regions with and     
w/o pre-training 



Visualization in Function Space 

§  Using ISOMAP 
instead of t-
SNE, preserve 
distances 

§  Pre-training: 
small volume 
compared to 
without. 



Unsupervised Learning as 
Regularizer 
¡ Adding extra regularization 

(reducing # hidden units) 
hurts more the pre-trained 
models 

¡  Pre-trained models have 
less variance wrt training 
sample 

¡  Regularizer = infinite 
penalty outside of region 
compatible with 
unsupervised pre-training 



Unsupervised Disentangling of 
Factors of Variation 

§  (Untested) Explanatory theory: 
 

•  Stacked RBMs & DAE disentangle factors 
of variation in P(x) (Goodfellow et al, NIPS’09) 

•  Most salient factors are unrelated to y, but 
some factors are highly predictive of y 

à RBMs with too few units learn features 
worse at predicting y than randomly 
initialized networks 

à RBMs with many hidden units are much 
more predictive of y 

 



Better Optimization of Online Error 

¡  Both training and online error 
are smaller with unsupervised 
pre-training 

¡ As # samples à            
training err. = online err. = 
generalization err. 

¡ Without unsup. pre-training: 
can’t exploit capacity to 
capture complexity in target 
function from training data 

Denoising auto-encoder 



Initial Examples Matter More 
(critical period?) 

Vary 10% of the 
training set at the 
beginning, middle, 
or end of the 
online sequence. 
Measure the effect 
on learned 
function.  

 



Learning Dynamics of Deep Nets 

Before fine-tuning After fine-tuning 

0 
¡ As weights become larger, get trapped in 

basin of attraction (sign does not change) 

¡ Critical period. Initialization matters. 



Order & Selection of Examples Matters 
(with Louradour, Collobert & Weston, ICML’2009) 

§  Curriculum learning  
(Bengio et al, ICML’2009; Krueger & Dayan 2009)   
§  Start with easier examples 
§  Faster convergence to a 

better local minimum in 
deep architectures 

§  Also acts like a regularizer 
with optimization effect? 

§  Influencing learning 
dynamics can make a big 
difference 

!"#$%

&%

&"!$%

&"$%

'% $''% ('''% ($''%

!"
#
$%
&
'
(
)'
*
+
,)
-
"
%.
/)

01!!1"'))

23.&,*4)

)*++,)*-*.%

/01)*++,)*-*.%

!"#$%

&%

&"!$%

&"$%

'% $''% ('''% ($''%

!"
#
$%
&
'
(
)'
*
+
,)
-
"
%.
/)

01!!1"'))

23.&,*4)

)*++,)*-*.%

/01)*++,)*-*.%



New Developments in Optimizing 
Deep Architectures 

§  Hessian-Free (HF) optimization 
ú  Applied to deep auto-encoders (Martens, 

ICML 2010) 
ú  Applied to recurrent nets & modeling text 

(Martens & Sutskever (& Hinton), ICML 2011) 
§  Large minibatches (also at Stanford) 
§  High-curvature directions correlated with 

small (but important) components of 
gradient 



Unsupervised Learning: 
Disentangling Factors of Variation 
§  (Goodfellow et al NIPS’2009): some hidden units 

more invariant (with more depth) to input 
geometry variations 

§  (Glorot et al ICML’2011): some hidden units 
specialize on one aspect (domain) while others 
on another (sentiment) 

§  We don’t want invariant representations because 
it is not clear to what aspects, but disentangling 
factors would help a lot 

§  Sparse/saturated units seem to help 
§  Why? 
§  How to train more towards that objective? 



Temporal Coherence and Scales 

§  One of the hints from nature about different 
explanatory factors: 
ú  Rapidly changing factors (often noise) 
ú  Slowly changing (generally more abstract) 
ú  Different factors at different time scales 

§  We should exploit those hints! 
§  (Becker & Hinton 1993, Wiskott & Sejnowski 2002, 

Hurri & Hyvarinen 2003, Berkes & Wiskott 2005, 
Mobahi et al 2009, Bergstra & Bengio 2009) 



Advantages of Sparse Representations 

•  Information disentangling (compare to dense 
compression). 

  
•  More likely to be linearly separable (high-

dimensional space). 

•  Locally low-dimensional representation = local chart 
  
•  Efficient variable size representation. 

 
Few bits of information                            Many bits of information 



Sparsity as a Disentangling Hint 

§  Look for a few ‘explanations’ 
§  Mixing a sparse signal = entangling 
§  Sparse representations: add a sparsity 

penalty 
§  Group sparsity with different Lp,q on 

different types of coefficients can be used 
to induce a separation between them 
(Kowalski) 



Challenge #4: What criteria or 
gradient estimators to train 
unsupervised non-linear feature 
extractors (since straight 
maximum-likelihood is not 
straightforward at all) 



The Partition Function Gradient 

§  Untractable sum (or integral) 
§  Positive example (observed x) vs negative example 

(sampled x) 



Positive & Negative Samples 

§  Observed (+) examples push the energy down 
§  Generated / dream / fantasy (-) samples / particles push 

the energy up 

X+ 

X- 



Palette of Tricks to Train Energy-
Based Models 
 Partition function expensive (vocab.) or intractable 

ú  Contrastive Divergence 
ú  PCD  / SML      + MCMC tricks 

�  Tempering 
�  Mean-field / variational, etc. 

ú  (regularized) Score Matching / denoising 
ú  Sparse coding / Sparse Predictive Decomposition 
ú  Ratio Matching 
ú  Pseudo-likelihood 
ú  Ranking / margin-based criteria 
ú  Noise contrastive estimation 

§  Most rely on + vs – examples contrast 
See my book / review paper (F&TML 2009): Learning Deep Architectures for AI 



Auto-Encoders 
§  Reconstruction=decoder(encoder(input)),   e.g. 
 

§  Probable inputs have small reconstruction error 
§  Linear decoder/encoder = PCA up to rotation 
§  Minimizing reconstruction error ensures that hidden units capture 

the directions of largest variation 
§  Can be stacked successfully (Bengio et al 2006) to form highly non-

linear representations, sparse ones increasing disentangling 
(Goodfellow et al, NIPS 2009) 

§  What is the corresponding probabilistic model? 

… 

 code= latent features 

… 

 encoder  decoder 

 input  reconstruction 



Sparse Auto-Encoders 

§  Successfully used by Andrew Ng’s group 
at Stanford (e.g. ICML 2011) 

§  Used by Google in their Google Goggles 
vision system 

§  Sparsity penalty = binomial KL div. 
between mean output prob. (over 
minibatch) and small target prob. (0.05), 
which works also on RBMs 

§  Prevents units from becoming always 
stuck at 0 



Link Between Contrastive Divergence and 
Auto-Encoder Reconstruction Error Gradient 

§  (Bengio & Delalleau 2009):  
ú  CD-2k estimates the log-likelihood gradient 

from 2k diminishing terms of an expansion that 
mimics the Gibbs steps 

ú  reconstruction error gradient looks only at the 
first step, i.e., is a kind of mean-field 
approximation of CD-0.5 



Denoising Auto-Encoder 
(Vincent et al 2008, 2010) 

§  Stochastically corrupt the input 
§  Reconstruction target = clean input 

Clean input x Corrupted input z 

Code h=tanh(b+Wz) 

Reconstruction r=tanh(c+W’h) 

Reconstruction error 



Denoising Auto-Encoder 

•  Learns a vector field 
towards higher probability 
regions 

•  Minimizes variational 
lower bound on a 
generative model 

•  Similar to pseudo-
likelihood 

•  A form of regularized 
score matching 

Corrupted input 

Corrupted input 



Stacked Denoising Auto-
Encoders 

•  No partition function, 
can measure training 
criterion 

•  Encoder & decoder:       
any parametrization 

•  Performs as well or 
better than stacking 
RBMs for 
unsupervised pre-
training 

Infinite MNIST 



Stacked Denoising Auto-Encoders 

•  Layerwise unsupervised pre-training (Vincent et al, ICML’08) 

•  Corrupt the input 
•  Try reconstructing the clean (uncorrupted) input 
•  Better results with noise variance away from 0 
•  Use uncorrupted encoding as input to next level 

Hidden code (representation) 

Corrupted input Clean input Reconstruction 



Score Matching    (Hyvarinen 2005) 

•  Score of model p: dlogP(x)/dx   does not contain partition fn Z 

•  Matching score of p to target score: 

•  Hyvarinen shows it equals 

•  and proposes to minimize corresponding empirical mean 

•  Shown to be asymptotically unbiased to estimate parameters  
•  Requires O(#parameters x #inputs) computation!   

? 



Denoising Auto-Encoders doing Score 
Matching on Gaussian RBMs 

P. Vincent, 2010 

•  clean input - corrupted input  = direction of increasing log-likelihood               
    in generating density 

•  reconstruction – input = direction of increasing log-likelihood        
         according to auto-encoder 

corrupted input in low-density region 

original input 

data near high-density manifold 

¡  Denoising error =  



Sparse Predictive Decomposition 

•  From LeCun’s group over last 5 years 
•  Sparse coding + parametric encoder + 

penalty between output of parametric 
encoder and non-parametric sparse code: 
       ||x – W z||2 + λ1 |z|1 + λ2 ||z – W’x||2 

•  Initialize FISTA with W’x: much faster 
encoding than sparse coding, much faster 
dictionary learning 

•  Successful (deep) representation learning in 
object recognition (MNIST, Caltech, 
pedestrian detection)  



Representations as Coordinate Systems 
•  PCA: removing low-variance directions à easy but what if 

signal has low variance? We would like to disentangle 
factors of variation, keeping them all. 

•  Overcomplete representations: richer, even if underlying 
distribution concentrates near low-dim manifold.  

•  Sparse/saturated features: allows for variable-dim 
manifolds. Different few sensitive features at x = local 
chart coordinate system. 



Deep Sparse Rectifier Neural Networks 
X. Glorot, A. Bordes and Y. Bengio, following up on (Nair & Hinton 2010) 

Leaky integrate-and-fire model 

Rectifier Commonly used functions 

One-sided 

Real zeros 

“default” regime at 0 

Neuroscience motivations 

Machine learning motivations 

Sparse representations 

Sparse and linear gradients 

f(x)=max(0,x) 



Deep Sparse Rectifier Neural Nets: Results 
 

Experiments and results 

Stacked denoising  autoencoder 

4 image recognition and 1 sentiment analysis datasets 

Better generalization than hyperbolic tangent networks 

Rectifier networks achieve their best performance without 
needing unsupervised pre-training 

Unsupervised pre-training  is beneficial in the semi-
supervised setting 

NORB 

NISTP 

Kavukcuoglu Kavukcuoglu 



Sparse Auto-Encoders & Sparse 
Predictive Decomposition 

•  Sparsity penalty on the intermediate codes 
•  Like sparse coding but with efficient run-time encoder 
•  Sparsity penalty pushes up the free energy of all 

configurations (proxy for minimizing the partition 
function) 

•  Impressive results in object classification (convolutional 
nets): 

•  MNIST             .4% error      = record-breaking 
•  Caltech-101 65% correct = state-of-the-art (Jarrett et al, ICCV 2009)     

•  Similar results obtained with a convolutional DBN (Lee et al, 
ICML’2009) 

(Ranzato et al, 2007; Ranzato et al 2008, Kavukcuoglu et al 2009, 2010) 



•  Contractive Auto-Encoders: Explicit Invariance 
During Feature Extraction, Rifai, Vincent, 
Muller, Glorot & Bengio, ICML 2011. 

•  Higher Order Contractive Auto-Encoders, Rifai, 
Mesnil, Vincent, Muller, Bengio, Dauphin, 
Glorot, ECML 2011. 

•  Part of winning toolbox in final phase of the 
Unsupervised & Transfer Learning Challenge 
2011 

 

Contractive Auto-Encoders 



Contractive Auto-Encoders 

Training criterion: 
 

wants contraction in all 
directions 

cannot afford contraction 
in manifold directions 

•  Few active units 
represent the active 
subspace (local chart) 

•  Jacobian’s spectrum is 
peaked = local low-
dimensional 
representation / relevant 
factors 



Contractive Auto-Encoders 

•  Most hidden units saturate  
•  One a few are active and represent the active 

subspace (local chart) 
•  Jacobian’s spectrum is peaked = local low-

dimensional representation / relevant factors 
 



Distributed vs Local 
(CIFAR-10 unsupervised) 

•  CAE manifold directions 

•  Local PCA directions 



Learned Tangent Prop: the 
Manifold Tangent Classifier 

3 hypotheses: 
1.  Semi-supervised hypothesis (P(x) related to P(y|x))  
2.  Unsupervised manifold hypothesis (data concentrates 

near low-dim. manifolds) 
3.  Manifold hypothesis for classification (low density 

between class manifolds) 
Algorithm: 
1.  Estimate local principal directions of variation U(x) by 

CAE (principal singular vectors of dh(x)/dx) 
2.  Penalize f(x)=P(y|x) predictor by || df/dx U(x) || 



Manifold Tangent Classifier Results 
•  Leading singular vectors on MNIST, CIFAR-10, RCV1: 

•  Knowledge-free MNIST: 0.81% error 
 
•  Semi-sup.   

•  Forest (500k examples) 
 



•  5 datasets, 73 entrants, knowledge-free 

•  Goal: learning good representations from 
unlabeled examples of training classes so that 
they generalize well to unknown test classes. 

•  Protocol: given 4096 test inputs, provide their 
representation. Server’s Hebbian classifier 
trained on top. No label of test classes given. 

Unsupervised and Transfer 
Learning Challenge 



Unsupervised and Transfer Learning 
Challenge: 1st Place in Final Phase 

Raw data 

1 layer 2 layers 

4 layers 

3 layers 

ICML’2011 
workshop 
on UTL 



Opportunity #1: DL Applications 
and Architectures 



Recent DL Highlights 
•  Google Goggles uses stacked sparse auto-encoders (Hartmut 

Neven @ ICML 2011) 
•  UofT breaks old accuracy ceiling in TIMIT phoneme detection 
•  Microsoft (Li Deng) breaks speech recognition records (WER) 

using deep architectures 
•  Stanford breaks records in video / gesture classification 
•  NYU breaks records in traffic sign class. 
•  Montreal wins Unsupervised & Transfer Learning Challenge 
•  IBM working with LeCun’s lab on DBNs for speech 
•  Mikolov (Czech Rep. + JHU & Microsoft people) RNN LM reduces 

Broadcast News WER by 10% vs 4-gram (13.1à11.8%) 
•  DARPA Deep Learning program (LeCun, Bengio, Ng) 



•  A Spike and Slab Restricted Boltzmann Machine, 
Courville, Bergstra & Bengio, AISTATS 2011. 

•  Unsupervised Models of Images by Spike-and-
Slab RBMs, Courville, Bergstra & Bengio, ICML 2011. 

•  Latent = binary r.v. (spike) x cont. r.v (slab) 
•  Much better than Gaussian RBM to deal with 

continuous-valued inputs 
•  Part of our winning entry to Unsupervised and 

Transfer Learning Challenge. 

Spike & Slab RBMs 



•  Model conditional covariance of pixels 
(given hidden units) 

•  Hidden representation decomposed into 
a product s*h, h is binary, s is real 

•  s*h is often 0 (naturally sparse) 
 

Spike & Slab RBMs 



•  Can use efficient 3-way Gibbs sampling 

Spike & Slab RBMs 



Spike & Slab RBMs 
CIFAR-10 Filters 



Convolutionally Trained Spike & Slab RBMs Samples 



ssRBM is not Cheating 



Deep & Distributed NLP 

•  See “Neural Net 
Language 
Models” 
Scholarpedia 
entry 

•  NIPS’2000 and 
JMLR 2003 “A 
Neural Probabilistic 
Language Model” 
•  Each word represented 

by a distributed 
continuous-valued code 

•  Generalizes to sequences 
of words that are 
semantically similar to 
training sequences 



Generalization through distributed 
semantic representation 

•  Training sentence 
The cat is walking in the bedroom

•  can generalize to 
A dog was running in a room

•  because of the similarity between 
distributed representations for (a,the), 
(cat,dog), (is,was), etc. 

•  Word classes help but are too coarse. 



Nearby Words in Semantic Space 

France Jesus XBOX Reddish Scratched 
Spain Christ Playstation Yellowish Smashed 

Italy God Dreamcast Greenish Ripped 

Russia Resurrection PS### Brownish Brushed 

Poland Prayer SNES Bluish Hurled 

England Yahweh WH Creamy Grabbed 

Denmark Josephus NES Whitish Tossed 

Germany Moses Nintendo Blackish Squeezed 

Portugal Sin Gamecube Silvery Blasted 

Sweden Heaven PSP Greyish Tangled 

Austria Salvation Amiga Paler Slashed 

Collobert & Weston, ICML’2008 
France

Spain

ItalyEngland

Denmark
Germany

Jesus
ChristGod

PrayerSin



t-SNE of Embeddings 



t-SNE of Embeddings: zoom 1 



t-SNE of Embeddings: zoom 2 



t-SNE of Embeddings: zoom 3 



Joint Image-Query Embedding Space 

S. Bengio, 
J. Weston 
et al @ 
Google 
 
(NIPS’2010, 
JMLR 2010, 
MLJ 2010, 
NIPS’2009) 



Some results with deep distributed 
representations for NLP 

•  (Bengio et al 2001, 2003): beating n-grams on small datasets 
(Brown & APNews), but much slower 

•  (Schwenk et al 2002,2004,2006): beating state-of-the-art large-
vocabulary speech recognizer using deep & distributed NLP model, 
with *real-time* speech recognition 

•  (Morin & Bengio 2005, Blitzer et al 2005, Mnih & Hinton 2007,2009): 
better & faster models through hierarchical representations 

•  (Collobert & Weston 2008): reaching state-of-the-art in multiple NLP 
tasks (SRL, POS, NER, chunking) thanks to unsupervised pre-
training and multi-task learning  

•  (Bai et al 2009): ranking & semantic indexing (info retrieval). 
•  (Collobert 2010): Deep Learning for Efficient Discriminative Parsing 
•  (S. Bengio, J. Weston et al @ Google, 2009,2010,2011): joint 

embedding space for images and keywords, Google image search 
•  (Sutskever & Martens 2011): beating SOA in text compression. 
•  (Socher et al 2011): parsing with recursive nets, ICML 2011 

distinguished application paper award 
•  (Mikolov et al 2011): beating the SOA in perplexity with recurrence 



•  Small (4-domain) Amazon benchmark: 
we beat the state-of-the-art handsomely  

Domain Adaptation (ICML 2011) 

•  Sparse rectifiers 
Stacked Denoising 
Autoencoders find 
more features that 
tend to be useful 
either for predicting 
domain or sentiment, 
not both 



Sentiment Analysis: Transfer Learning 

•  25 Amazon.com 
domains: toys, 
software, video, books, 
music, beauty, … 

•  Unsupervised pre-
training of input space 
on all domains 

•  Supervised SVM on 1 
domain, generalize out-
of-domain 

•  Baseline: bag-of-words 
+ SVM 

                                  



•  Deep Sparse Rectifier Neural Networks, 
Glorot, Bordes & Bengio, AISTATS 2011. 

•  Sampled Reconstruction for Large-Scale 
Learning of Embeddings, Dauphin, Glorot & 
Bengio, ICML 2011. 

Representing 
Sparse High-

Dimensional Stuff 

… 

 code= latent features 

… 
 sparse input  dense output probabilities 

 cheap  expensive 



Representing Sparse High-
Dimensional Stuff: Sampled 

Reconstruction 

Sample which 
inputs to 
reconstruct 

Importance sampling 
reweighting 

Minimum-variance: guess 
wrong reconstructions 

As many randomly 
chosen other bits 

Stochastic reweighted loss 



Speedup from Sampled Reconstruction 



Deep Self-Taught Learning for Handwritten 
Character Recognition 

Y. Bengio  & 16 others  
(IFT6266 class project & AISTATS 2011 paper) 

•  discriminate 62 character classes (upper, 
lower, digits), 800k to 80M examples 

•  Deep learners beat state-of-the-art on NIST 
and reach human-level performance 

•  Deep learners benefit more from perturbed 
(out-of-distribution) data 

•  Deep learners benefit more from multi-task 
setting  
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Learning Structured 
Embeddings of Knowledge 
Bases, Bordes, Weston, 
Collobert & Bengio,  AAAI 
2011  
 
 
+ ongoing work (submitted) 

Modeling Semantics 



Model (lhs, relation, rhs) 
Each concept = 1 embedding vector 
Each relation = 2 matrices 
Ranking criterion 
Energy = …. 

Modeling Relations with Matrices 

lhs relation 

energy 

rhs 

choose vector choose matrices 

|| . ||1 



Verb = relation. Too many to have a matrix each. 
Each concept = 1 embedding vector 
Each relation = 1 embedding vector 
Can handle relations on relations on relations 

Allowing Relations on Relations 

lhs relation 

energy 

rhs 

choose vector 

|| . ||1 

mlp mlp 



à Use SENNA (Collobert 2010) = embedding-based NLP 
tagger for Semantic Role Labeling, breaks sentence into  

 (subject part, verb part, object part) 
à Use max-pooling to aggregate embeddings of words 
inside each part 

Training on Full Sentences 

Subj. words Verb words 

energy 

Obj. words 

|| . ||1 

mlp mlp 

Element-wise max. Element-wise max. Element-wise max. 

black__2 eat__2cat__1 white__1 mouse_2



Combining Multiple Sources of 
Evidence with Shared Embeddings 

•  The undirected graphical model version of 
relational learning 

•  With embeddings (shared representations) to 
help propagate information among data sources: 
here WordNet, XWN, Wikipedia, FreeBase,… 

•  Different energy functions can be used for 
different types of relations, or a generic 
representation and generic relation symbols 
used for everything 



Generalizing 
WordNet or 
Freebase, 
exploiting 
Wikipedia 

Question Answering 



Question Answering: Ranking Score 



Word Sense Disambiguation 
•  Senseval-3 results 
 

MFS=most frequent sense 
All=training from all sources 
Gamble=Decadt et al 2004 

(Senseval-3 SOA) 

•  XWN results 
XWN = eXtended WN 

 



Recursive Application of 
Relational Operators 

Bottou 2011: ‘From machine learning to 
machine reasoning’, also Socher ICML2011. 
 



Relations on Multiple Data Types 

•  Add energy terms associated to relations from 
different data sources, shared embeddings 

energy(object image, is-a, object label) + 
energy(part image, is-a, part label) + 
energy(part image, image-part-of, object image) 
+ energy(part label, label-part-of, object label) 



Recurrent and Recursive Nets 
•  Replicate a parametrized function over different 

time steps or nodes of a DAG  
•  Output state at one time-step / node is used as 

input for another time-step / node 
•  Very deep once unfolded! 

xt-1 xt xt+1 

zt-1 zt zt+1 



Combining RBMs and Temporal 
Recurrence 

•  RTRBM (Sutskever, Hinton & Taylor, NIPS 2008) 
•  One RBM per time step, modeling visible at t 
•  Hidden units biases are function of mean-field of 

previous hidden units, thus introducing a recurrence. 

 

 



 










 



RNN-RBM 
(Boulanger, Vincent & Bengio) 

Expanding parametrization of RTRBM to remove constraint that recurrent 
weights correspond to link from recurrent state to RBM hiddens and that 
visible-hidden weights correspond to recurrent net input weights. 

 

 






 



 


 

  





Experiments with RNN-RBM 

•  Bouncing balls dataset: RNN-RBM is twice 
more accurate (MSE 0.005) than RTRBM 
(MSE 0.01) at predicting next ball position 

•  Motion capture dataset: RNN-RBM (MSE 
0.33) vs RTRBM (MSE 0.41) 

Training example RTRBM-generated sample 



Music Transcription 
Map acoustic 
signal to sequence 
of chords (note 
tuples over time 
intervals)  



Acoustic Models Comparison      
Pitch Detection 

Data from 6 SoundFont 2.0 banks, used for training/validation/test  



RNN-RBMs for Music Transcription 

•  up to 5 notes at a time 
•  Combine pitch detection + music language model 

with RNN-RBM with a product of expert model: 
log Plang(notes sequence)+a*log Paudio(notes|acoustic) 

•  RNN-RBM predicts next chord given previous 
ones 

•  Improves state-of-the-art (Mozer dataset) from 
68.6% to 77.8% accuracy 



Acoustic Transcription: 
Comparison 



Generating Music with RNN-RBM 

RBM (no 
temporal 
modeling) 

RNN-RBM 

RNN (no 
joint model 
of notes = 
chords) 

RNN-
RBM, 
sample 
with 
repetitions 



Conclusions 

•  Deep Learning: powerful arguments & 
generalization principles 

•  Unsupervised Feature Learning is crucial: 
many new algorithms and applications in 
recent years 

•  DL particularly suited for multi-task 
learning, transfer learning, domain 
adaptation, self-taught learning, and semi-
supervised learning with few labels 



Deep Questions 
•  Generic learning algorithms (large-spectrum priors) vs e.g. vision-

specific or language-specific architectures? 
•  Try to filter the noise out vs keep all the information but separate the 

explanatory factors? 
•  Why are RBMs and various sparse (auto-en) coding disentangling to 

some extent? 
•  What criteria to disentangle the factors of variation? 
•  Why is sparsity working and helping the disentangling? 
•  How to avoid the partition fn? Strengths and weaknesses of existing 

proxys for likelihood? 
•  How to represent and train recursive / relational learners? 
•  How could the brain possibly do the equivalent of back-prop through 

time?  
•  Are 2nd-order optimization methods really needed when N is large? 

(e.g. Polyak averaging converges as quickly asymptotically) 



http://deeplearning.net/software/theano : numpy à GPU 
 

http://deeplearning.net 



Merci! Questions? 
LISA team: 


