
APPRENTISSAGE NON-
SUPERVISÉ DE
REPRÉSENTATIONS PROFONDES

Yoshua Bengio
Statistical Learning Algorithms Canada Research Chair, U. Montreal

ERMITES 2011
Ecole de Recherche Multimodale d'Information - Techniques & Sciences
27-29 septembre 2011, Ile de Porquerolles, France

From AI to Deep Learning

§  Intelligence requires knowledge
§  Knowledge can be implicit
§  Explicitly providing knowledge failed (expert

systems)
§  Learning captures knowledge from data
§  Real-world distributions have convoluted

unknown structure, not all captured by the
principle of local generalization

§  Deep Learning: a way to address this by the
discovery of multiple levels of representation
capturing the underlying factors of variation

What is Generalizing?

§  Capturing dependencies between random
variables

§  Spreading out the probability mass from
the empirical distribution. Where???

§  Discovering underlying abstractions /
explanatory factors

Shallow learning architecture

…

…

1-layer NNet, SVM, GP predictor, decision
tree, boosted stumps, etc.

Deep learning architecture

…

…

…

…

…

Output: is this bob?

Highest-level features:
Faces

Abstract features:
Shapes

Primitive features:

Edges

Input: Raw pixels

Visual System

Auditory System

Deep Motivations

§ Brains have a deep architecture
§ Humans’ ideas composed from
simpler ones

§ Insufficient depth can be
exponentially inefficient

§ Distributed (possibly sparse)
representations necessary for non-
local generalization, exponentially
more efficient than 1-of-N
enumeration of latent variable values

§ Multiple levels of latent variables
allow combinatorial sharing of
statistical strength

raw input x

task 1 task 3 task 2

shared
intermediate
representations

Deep Architecture in our Mind

§ Humans organize their ideas and concepts
hierarchically

§ Humans first learn simpler concepts and
then compose them to represent more
abstract ones

§ Engineers break-up solutions into multiple
levels of abstraction and processing

§  It would be nice to learn / discover these
concepts

 (knowledge engineering failed because of
limits of introspection?)

Deep Learning Hypotheses

§  Hypothesis 1: deep hierarchy of features useful to
efficiently represent and learn complex abstractions needed
for AI and mammal intelligence.
�  Computational & statistical efficiency

§  Hypothesis 2: unsupervised learning of representations is
a crucial component of the solution.
�  Optimization & regularization.

§  Theoretical and ML-experimental support for both.

Challenge #1: Non-local learning of
the interactions of many factors of
variation

Easy Learning

Principle of Local Generalization

The Curse of
Dimensionality
 To generalize

locally, need
representative
examples for all
relevant
variations!

Classical solution:

hope for a
smooth enough
target function

Limits of Local Generalization:
Theoretical Results

§  Theorem: Gaussian kernel machines need at least k
examples to learn a function that has 2k zero-
crossings along some line

§  Theorem: For a Gaussian kernel machine to learn

some maximally varying functions over d inputs
requires O(2d) examples

(Bengio, Delalleau & Le Roux 2007)

e.g. Gaussian (RBF) SVM

Curse of Dimensionality When Generalizing
Locally on a Manifold (Bengio et al 2006)

O(d rd) examples are needed

d=manifold dim.
r=radius of curvature

How to Beat the Curse of Many
Factors of Variation?

Compositionality: exponential gain in
representational power

•  Distributed representations / embeddings: feature learning

•  Deep architecture: multiple levels of feature learning

Can generalize to new configurations

Distributed Representations

§  Many neurons active simultaneously
§  Input represented by the activation of a set

of features that are not mutually exclusive
§  Can be exponentially more efficient than

local representations
§  = FEATURE LEARNING instead of only

manual feature-engineering

Local vs Distributed Latent Variables

Multi-clustering Clustering

RBM Hidden Units Carve Input Space

h1 h2 h3

x1 x2

Boltzman Machines and MRFs

¡  Boltzmann machines:
 (Hinton 84)

¡ Markov Random Fields:

¡ More interesting with latent variables!

Restricted Boltzmann Machine

¡  The most popular
building block for deep
architectures

¡  Bipartite undirected
graphical model

¡  Inference is trivial:

P(h|x) & P(x|h) factorize

Visible
units

Hidden
units

RBM Conditionals Factorize

RBM Energy Gives Binomial Neurons

¡  Free Energy = equivalent energy when marginalizing

¡ Can be computed exactly and efficiently in RBMs

¡ Marginal likelihood P(x) tractable up to partition function Z

RBM Free Energy

Factorization of the Free Energy
Let the energy have the following general form:

Then

Energy-Based Models Gradient

RBM with (image, label) visible units

¡ Can predict a subset y
of the visible units
given the others x

¡  Exactly if y takes only
few values

¡ Gibbs
sampling o/w

label

hidden

y 0 0 0 1

y

x

h

U W

image

Boltzmann Machine Gradient

¡ Gradient has two components:

¡  In RBMs, easy to sample or sum over h|x
¡ Difficult part: sampling from P(x), typically with a Markov chain

 “negative phase” “positive phase”

Positive & Negative Samples

¡ Observed (+) examples push the energy down

¡ Generated / dream / fantasy (-) samples / particles push
the energy up

X+

X-

Gibbs Sampling in RBMs

P(h|x) and P(x|h) factorize

 h1 ~ P(h|x1)

 x2 ~ P(x|h1) x3 ~ P(x|h2) x1

 h2 ~ P(h|x2) h3 ~ P(h|x3)

¡  Easy inference

¡ Convenient Gibbs sampling
xàhàxàh…

Training RBMs
Contrastive Divergence:

(CD-k)
start negative Gibbs chain at
observed x, run k Gibbs steps

Persistent CD:
(PCD)

run negative Gibbs chain in
background while weights slowly
change

Fast PCD: two sets of weights, one with a large
learning rate only used for negative
phase, quickly exploring modes

Herding: Deterministic near-chaos dynamical
system defines both learning and sampling

Tempered MCMC: use higher temperature to escape
modes

Contrastive Divergence
Contrastive Divergence (CD-k): start negative phase block
Gibbs chain at observed x, run k Gibbs steps (Hinton 2002)

Sampled x’
negative phase

Observed x
positive phase

 h ~ P(h|x) h’ ~ P(h|x’)

k = 2 steps

x x’

Free Energy

push down

push up

Persistent CD (PCD)
Run negative Gibbs chain in background while weights slowly
change (Younes 2000, Tieleman 2008):

Observed x
(positive phase)

new x’

 h ~ P(h|x)

previous x’

•  Guarantees (Younes 89, 2000; Yuille 2004)

•  If learning rate decreases in 1/t,

 chain mixes before parameters change too much,

 chain stays converged when parameters change

Negative phase samples quickly push up the energy of
wherever they are and quickly move to another mode

x

x’

FreeEnergy
push
down

push
up

Persistent CD with large learning rate

Persistent CD with large step size

Negative phase samples quickly push up the energy of
wherever they are and quickly move to another mode

x

x’

FreeEnergy
push
down

Negative phase samples quickly push up the energy of
wherever they are and quickly move to another mode

x

x’

FreeEnergy
push
down

push
up

Persistent CD with large learning rate

Challenge #2: Understanding the
expressive power of deep
architectures

RBMs are Universal Approximators

¡ Adding one hidden unit (with proper choice of parameters)
guarantees increasing likelihood

¡ With enough hidden units, can perfectly model any discrete
distribution

¡  RBMs with variable nb of hidden units = non-parametric

(Le Roux & Bengio 2008, Neural Comp.)

Unsupervised and Semi-Supervised
Deep Feature Learning

¡ Classical: pre-process data with PCA = leading factors

¡ New: learning multiple levels of features/factors,
often over-complete

¡ Greedy layer-wise strategy:

raw input x

unsupervised
unsupervised

unsupervised

raw input x

P(y|x)
Supervised fine-tuning

(Hinton et al 2006, Bengio et al 2007, Ranzato et al 2007)

raw input x raw input x

Deep Convolutional Architectures
Mostly from Le Cun’s group (NYU), also Ng (Stanford):
state-of-the-art on MNIST digits, Caltech-101 objects, faces

Deep Belief Nets and Deep
Boltzmann Machines
¡ DBN: Stack RBMs; top k of n

layers = prior for last hidden
of bottom n-k

¡ DBM: top levels modify the
prior of last hidden of
bottom n-k

DBN DBM

Convolutional DBNs
(Lee et al, ICML’2009)

Tiled Convolutional Networks

 Tiled Convolutional Neural Networks Tiled Convolutional Neural Networks
7

Tied
Weights

Pooling Units

Simple Units

Input

CNN

Pooling Size = 3

Number
of Maps = 3

Tiled CNN with multiple feature maps
(Our model)

Tile Size (k) = 2
Tied
Weights

Tiled CNN

Weight
untying

Multiple
maps

Quoc et al NIPS 2010
Like convolutional but without the sharing, allows to increase capacity
without increasing computation much (but increases memory)

Parts Are Composed to Form Objects

Layer 1: edges

Layer 2: parts

Lee et al. ICML’2009

Layer 3: objects

Shallow versus Deep Sum-Product
Networks, Bengio & Delalleau, Learning
Workshop 2011. Delalleau & Bengio paper
submitted to NIPS 2011.

Representational Power of
Deep Architectures

Architecture Depth

Depth = 3 Depth = 4

Deep Architectures are More Expressive

Theoretical arguments:

…
1 2 3 2n

1 2 3
…

n

= universal approximator 2 layers of
Logic gates
Formal neurons
RBF units

Theorems on advantage of depth:
(Hastad et al 86 & 91, Bengio et al 2007, Bengio &
Delalleau 2011, Braverman 2011)

Functions compactly represented
with k layers may require
exponential size with 2 layers

RBMs & auto-encoders = universal approximator

main

sub1 sub2 sub3

subsub1 subsub2 subsub3

subsubsub1 subsubsub2
subsubsub3

“Deep” computer program

main

subroutine1 includes
subsub1 code and
subsub2 code and
subsubsub1 code

“Shallow” computer program

subroutine2 includes
subsub2 code and
subsub3 code and
subsubsub3 code and …

“Deep” circuit

“Shallow” circuit

input

…
?

1 2 3
…

n

output

Falsely reassuring theorems: one can approximate any
reasonable (smooth, boolean, etc.) function with a 2-layer
architecture

1 2 3

Sharing Components in a Deep Architecture
Polynomial expressed with shared components:
advantage of depth may grow exponentially

Sum-
product
network

•  Depth 2 suffices to represent any finite
polynomial (sum of products)

•  (Poon & Domingos 2010) use deep sum-
product networks to efficiently
parametrize partition functions

Sum-Product Networks

•  Need O(n) nodes with depth log(n) circuit
•  Need O(2√n) nodes with depth-2 circuit

Polynomials that Need Depth

•  Need O(dn) nodes with depth d circuit
•  Need O(nd) nodes with depth-2 circuit

More Polynomials that Need Depth

Poly-logarithmic Independence Fools
Bounded-Depth Boolean Circuits,
Braverman, CACM 54(4), April 2011.

If all marginals of the input distribution
involving at most k variables are uniform,
higher depth makes it exponentially easier to
distinguish the joint from the uniform.

More Deep Theory

Deep Architectures and Sharing Statistical
Strength, Multi-Task Learning

§  Generalizing better to
new tasks is crucial to
approach AI

§  Deep architectures learn
good intermediate
representations that can
be shared across tasks

§  Good representations
make sense for many
tasks

raw input x

task 1
output y1

task 3
output y3

task 2
output y2

shared
intermediate
representation h

Parts Are Re-Used to
Form Different Objects

Layer 1: edges

Layer 2: parts

Lee et al. ICML’2009

Layer 3: objects

Feature and Sub-Feature Sharing

§  Different tasks can
share the same high-
level features

§  Different high-level
features can be built
from the same set of
lower-level features

§  More levels = up to
exponential gain in
representational
efficiency

…

…

…

…

…

task 1
output y1

task N
output yN

High-level features

Low-level features

…

…

…

…

…

task 1
output y1

task N
output yN

High-level features

Low-level features

Sharing intermediate features

Not sharing intermediate features

Challenge #3: training deep
architectures

Gradient descent

…

…

…

Input X

Output
f(X) six

Target
Y

two! =
?
=
?

Problem on deep architectures

…

…

…

…

…

 Before 2006

 Failure of deep architectures

Breakthrough!
 2006

Montréal
Toronto

Bengio

Hinton
Le Cun
New York

•  Before 2006, training deep
architectures was
unsuccessful, except for
convolutional neural nets

•  Hinton, Osindero & Teh « A
Fast Learning Algorithm for
Deep Belief Nets », Neural
Computation, 2006

•  Bengio, Lamblin, Popovici,
Larochelle « Greedy Layer-
Wise Training of Deep
Networks », NIPS’2006

•  Ranzato, Poultney,
Chopra, LeCun « Efficient
Learning of Sparse
Representations with an
Energy-Based Model »,
NIPS’2006

2006: The Deep Breakthrough

Deep training

… input

Layer-Wise Unsupervised Pre-training

…

…

input

features

Layer-Wise Unsupervised Pre-training

…

…

…

input

features

reconstruction
of input =

?
… input

Layer-Wise Unsupervised Pre-training

…

…

input

features

Layer-Wise Unsupervised Pre-training

…

…

input

features

… More abstract
features

…

…

input

features

… More abstract
features

reconstruction
of features =

?
… … … …

Layer-Wise Unsupervised Pre-training

…

…

input

features

… More abstract
features

Layer-Wise Unsupervised Pre-training

Layer-Wise Unsupervised Pre-training

…

…

input

features

… More abstract
features

…
Even more abstract

features

Supervised Fine-Tuning

…

…

input

features

… More abstract
features

…
Even more abstract

features

Output
f(X) six

Target
Y

two! =
?

Greedy Layer-Wise Pre-Training

Stacking Restricted Boltzmann Machines (RBM) à Deep Belief Network (DBN)

Stacking Auto-Encoders

Greedy Layerwise Supervised Training

Generally worse than unsupervised pre-training but better than
ordinary training of a deep neural network (Bengio et al. 2007).

Effect of Unsupervised Pre-training
AISTATS’2009+JMLR 2010, with Erhan, Courville, Manzagol, Vincent, S. Bengio

Effect of Depth

w/o pre-training with pre-training

Level-Local Learning is Important

§  Initializing each layer of an unsupervised deep Boltzmann
machine helps a lot

§  Initializing each layer of a supervised neural network as an
RBM, auto-encoder, denoising auto-encoder, etc helps a
lot

§  Helps most the layers further away from the target

§  Not just an effect of unsupervised prior

§  Jointly training all the levels of a deep architecture is
difficult

§  Initializing using a level-local learning algorithm is a useful
trick

Why is Unsupervised Pre-Training
Working So Well?
(with Erhan, Courville, Manzagol, Vincent, Bengio: JMLR, 2010)

§  Regularization hypothesis:
•  Unsupervised component forces model close to P(x)
•  Representations good for P(x) are good for P(y|x)

§  Optimization hypothesis:
•  Unsupervised initialization near better local minimum of

supervised training error
•  Can reach lower local minimum otherwise not achievable by

random initialization

Learning Trajectories in Function Space
(Erhan et al, JMLR, 2010)
§  Each point is a

model in function
space

§  Color = epoch

§  Top: trajectories
w/o pre-training

§  Each trajectory
converges in
different local min.

§  No overlap of
regions with and
w/o pre-training

Visualization in Function Space

§  Using ISOMAP
instead of t-
SNE, preserve
distances

§  Pre-training:
small volume
compared to
without.

Unsupervised Learning as
Regularizer
¡ Adding extra regularization

(reducing # hidden units)
hurts more the pre-trained
models

¡  Pre-trained models have
less variance wrt training
sample

¡  Regularizer = infinite
penalty outside of region
compatible with
unsupervised pre-training

Unsupervised Disentangling of
Factors of Variation

§  (Untested) Explanatory theory:

•  Stacked RBMs & DAE disentangle factors
of variation in P(x) (Goodfellow et al, NIPS’09)

•  Most salient factors are unrelated to y, but
some factors are highly predictive of y

à RBMs with too few units learn features
worse at predicting y than randomly
initialized networks

à RBMs with many hidden units are much
more predictive of y

Better Optimization of Online Error

¡  Both training and online error
are smaller with unsupervised
pre-training

¡ As # samples à
training err. = online err. =
generalization err.

¡ Without unsup. pre-training:
can’t exploit capacity to
capture complexity in target
function from training data

Denoising auto-encoder

Initial Examples Matter More
(critical period?)

Vary 10% of the
training set at the
beginning, middle,
or end of the
online sequence.
Measure the effect
on learned
function.

Learning Dynamics of Deep Nets

Before fine-tuning After fine-tuning

0
¡ As weights become larger, get trapped in

basin of attraction (sign does not change)

¡ Critical period. Initialization matters.

Order & Selection of Examples Matters
(with Louradour, Collobert & Weston, ICML’2009)

§  Curriculum learning
(Bengio et al, ICML’2009; Krueger & Dayan 2009)
§  Start with easier examples
§  Faster convergence to a

better local minimum in
deep architectures

§  Also acts like a regularizer
with optimization effect?

§  Influencing learning
dynamics can make a big
difference

!"#$%

&%

&"!$%

&"$%

'% $''% ('''% ($''%

!"
#
$%
&
'
(
)'
*
+
,)
-
"
%.
/)

01!!1"'))

23.&,*4)

)*++,)*-*.%

/01)*++,)*-*.%

!"#$%

&%

&"!$%

&"$%

'% $''% ('''% ($''%

!"
#
$%
&
'
(
)'
*
+
,)
-
"
%.
/)

01!!1"'))

23.&,*4)

)*++,)*-*.%

/01)*++,)*-*.%

New Developments in Optimizing
Deep Architectures

§  Hessian-Free (HF) optimization
ú  Applied to deep auto-encoders (Martens,

ICML 2010)
ú  Applied to recurrent nets & modeling text

(Martens & Sutskever (& Hinton), ICML 2011)
§  Large minibatches (also at Stanford)
§  High-curvature directions correlated with

small (but important) components of
gradient

Unsupervised Learning:
Disentangling Factors of Variation
§  (Goodfellow et al NIPS’2009): some hidden units

more invariant (with more depth) to input
geometry variations

§  (Glorot et al ICML’2011): some hidden units
specialize on one aspect (domain) while others
on another (sentiment)

§  We don’t want invariant representations because
it is not clear to what aspects, but disentangling
factors would help a lot

§  Sparse/saturated units seem to help
§  Why?
§  How to train more towards that objective?

Temporal Coherence and Scales

§  One of the hints from nature about different
explanatory factors:
ú  Rapidly changing factors (often noise)
ú  Slowly changing (generally more abstract)
ú  Different factors at different time scales

§  We should exploit those hints!
§  (Becker & Hinton 1993, Wiskott & Sejnowski 2002,

Hurri & Hyvarinen 2003, Berkes & Wiskott 2005,
Mobahi et al 2009, Bergstra & Bengio 2009)

Advantages of Sparse Representations

•  Information disentangling (compare to dense
compression).

•  More likely to be linearly separable (high-

dimensional space).

•  Locally low-dimensional representation = local chart

•  Efficient variable size representation.

Few bits of information Many bits of information

Sparsity as a Disentangling Hint

§  Look for a few ‘explanations’
§  Mixing a sparse signal = entangling
§  Sparse representations: add a sparsity

penalty
§  Group sparsity with different Lp,q on

different types of coefficients can be used
to induce a separation between them
(Kowalski)

Challenge #4: What criteria or
gradient estimators to train
unsupervised non-linear feature
extractors (since straight
maximum-likelihood is not
straightforward at all)

The Partition Function Gradient

§  Untractable sum (or integral)
§  Positive example (observed x) vs negative example

(sampled x)

Positive & Negative Samples

§  Observed (+) examples push the energy down
§  Generated / dream / fantasy (-) samples / particles push

the energy up

X+

X-

Palette of Tricks to Train Energy-
Based Models
 Partition function expensive (vocab.) or intractable

ú  Contrastive Divergence
ú  PCD / SML + MCMC tricks

�  Tempering
�  Mean-field / variational, etc.

ú  (regularized) Score Matching / denoising
ú  Sparse coding / Sparse Predictive Decomposition
ú  Ratio Matching
ú  Pseudo-likelihood
ú  Ranking / margin-based criteria
ú  Noise contrastive estimation

§  Most rely on + vs – examples contrast
See my book / review paper (F&TML 2009): Learning Deep Architectures for AI

Auto-Encoders
§  Reconstruction=decoder(encoder(input)), e.g.

§  Probable inputs have small reconstruction error
§  Linear decoder/encoder = PCA up to rotation
§  Minimizing reconstruction error ensures that hidden units capture

the directions of largest variation
§  Can be stacked successfully (Bengio et al 2006) to form highly non-

linear representations, sparse ones increasing disentangling
(Goodfellow et al, NIPS 2009)

§  What is the corresponding probabilistic model?

…

 code= latent features

…

 encoder decoder

 input reconstruction

Sparse Auto-Encoders

§  Successfully used by Andrew Ng’s group
at Stanford (e.g. ICML 2011)

§  Used by Google in their Google Goggles
vision system

§  Sparsity penalty = binomial KL div.
between mean output prob. (over
minibatch) and small target prob. (0.05),
which works also on RBMs

§  Prevents units from becoming always
stuck at 0

Link Between Contrastive Divergence and
Auto-Encoder Reconstruction Error Gradient

§  (Bengio & Delalleau 2009):
ú  CD-2k estimates the log-likelihood gradient

from 2k diminishing terms of an expansion that
mimics the Gibbs steps

ú  reconstruction error gradient looks only at the
first step, i.e., is a kind of mean-field
approximation of CD-0.5

Denoising Auto-Encoder
(Vincent et al 2008, 2010)

§  Stochastically corrupt the input
§  Reconstruction target = clean input

Clean input x Corrupted input z

Code h=tanh(b+Wz)

Reconstruction r=tanh(c+W’h)

Reconstruction error

Denoising Auto-Encoder

•  Learns a vector field
towards higher probability
regions

•  Minimizes variational
lower bound on a
generative model

•  Similar to pseudo-
likelihood

•  A form of regularized
score matching

Corrupted input

Corrupted input

Stacked Denoising Auto-
Encoders

•  No partition function,
can measure training
criterion

•  Encoder & decoder:
any parametrization

•  Performs as well or
better than stacking
RBMs for
unsupervised pre-
training

Infinite MNIST

Stacked Denoising Auto-Encoders

•  Layerwise unsupervised pre-training (Vincent et al, ICML’08)

•  Corrupt the input
•  Try reconstructing the clean (uncorrupted) input
•  Better results with noise variance away from 0
•  Use uncorrupted encoding as input to next level

Hidden code (representation)

Corrupted input Clean input Reconstruction

Score Matching (Hyvarinen 2005)

•  Score of model p: dlogP(x)/dx does not contain partition fn Z

•  Matching score of p to target score:

•  Hyvarinen shows it equals

•  and proposes to minimize corresponding empirical mean

•  Shown to be asymptotically unbiased to estimate parameters
•  Requires O(#parameters x #inputs) computation!

?

Denoising Auto-Encoders doing Score
Matching on Gaussian RBMs

P. Vincent, 2010

•  clean input - corrupted input = direction of increasing log-likelihood
 in generating density

•  reconstruction – input = direction of increasing log-likelihood
 according to auto-encoder

corrupted input in low-density region

original input

data near high-density manifold

¡  Denoising error =

Sparse Predictive Decomposition

•  From LeCun’s group over last 5 years
•  Sparse coding + parametric encoder +

penalty between output of parametric
encoder and non-parametric sparse code:
 ||x – W z||2 + λ1 |z|1 + λ2 ||z – W’x||2

•  Initialize FISTA with W’x: much faster
encoding than sparse coding, much faster
dictionary learning

•  Successful (deep) representation learning in
object recognition (MNIST, Caltech,
pedestrian detection)

Representations as Coordinate Systems
•  PCA: removing low-variance directions à easy but what if

signal has low variance? We would like to disentangle
factors of variation, keeping them all.

•  Overcomplete representations: richer, even if underlying
distribution concentrates near low-dim manifold.

•  Sparse/saturated features: allows for variable-dim
manifolds. Different few sensitive features at x = local
chart coordinate system.

Deep Sparse Rectifier Neural Networks
X. Glorot, A. Bordes and Y. Bengio, following up on (Nair & Hinton 2010)

Leaky integrate-and-fire model

Rectifier Commonly used functions

One-sided

Real zeros

“default” regime at 0

Neuroscience motivations

Machine learning motivations

Sparse representations

Sparse and linear gradients

f(x)=max(0,x)

Deep Sparse Rectifier Neural Nets: Results

Experiments and results

Stacked denoising autoencoder

4 image recognition and 1 sentiment analysis datasets

Better generalization than hyperbolic tangent networks

Rectifier networks achieve their best performance without
needing unsupervised pre-training

Unsupervised pre-training is beneficial in the semi-
supervised setting

NORB

NISTP

Kavukcuoglu Kavukcuoglu

Sparse Auto-Encoders & Sparse
Predictive Decomposition

•  Sparsity penalty on the intermediate codes
•  Like sparse coding but with efficient run-time encoder
•  Sparsity penalty pushes up the free energy of all

configurations (proxy for minimizing the partition
function)

•  Impressive results in object classification (convolutional
nets):

•  MNIST .4% error = record-breaking
•  Caltech-101 65% correct = state-of-the-art (Jarrett et al, ICCV 2009)

•  Similar results obtained with a convolutional DBN (Lee et al,
ICML’2009)

(Ranzato et al, 2007; Ranzato et al 2008, Kavukcuoglu et al 2009, 2010)

•  Contractive Auto-Encoders: Explicit Invariance
During Feature Extraction, Rifai, Vincent,
Muller, Glorot & Bengio, ICML 2011.

•  Higher Order Contractive Auto-Encoders, Rifai,
Mesnil, Vincent, Muller, Bengio, Dauphin,
Glorot, ECML 2011.

•  Part of winning toolbox in final phase of the
Unsupervised & Transfer Learning Challenge
2011

Contractive Auto-Encoders

Contractive Auto-Encoders

Training criterion:

wants contraction in all
directions

cannot afford contraction
in manifold directions

•  Few active units
represent the active
subspace (local chart)

•  Jacobian’s spectrum is
peaked = local low-
dimensional
representation / relevant
factors

Contractive Auto-Encoders

•  Most hidden units saturate
•  One a few are active and represent the active

subspace (local chart)
•  Jacobian’s spectrum is peaked = local low-

dimensional representation / relevant factors

Distributed vs Local
(CIFAR-10 unsupervised)

•  CAE manifold directions

•  Local PCA directions

Learned Tangent Prop: the
Manifold Tangent Classifier

3 hypotheses:
1.  Semi-supervised hypothesis (P(x) related to P(y|x))
2.  Unsupervised manifold hypothesis (data concentrates

near low-dim. manifolds)
3.  Manifold hypothesis for classification (low density

between class manifolds)
Algorithm:
1.  Estimate local principal directions of variation U(x) by

CAE (principal singular vectors of dh(x)/dx)
2.  Penalize f(x)=P(y|x) predictor by || df/dx U(x) ||

Manifold Tangent Classifier Results
•  Leading singular vectors on MNIST, CIFAR-10, RCV1:

•  Knowledge-free MNIST: 0.81% error

•  Semi-sup.

•  Forest (500k examples)

•  5 datasets, 73 entrants, knowledge-free

•  Goal: learning good representations from
unlabeled examples of training classes so that
they generalize well to unknown test classes.

•  Protocol: given 4096 test inputs, provide their
representation. Server’s Hebbian classifier
trained on top. No label of test classes given.

Unsupervised and Transfer
Learning Challenge

Unsupervised and Transfer Learning
Challenge: 1st Place in Final Phase

Raw data

1 layer 2 layers

4 layers

3 layers

ICML’2011
workshop
on UTL

Opportunity #1: DL Applications
and Architectures

Recent DL Highlights
•  Google Goggles uses stacked sparse auto-encoders (Hartmut

Neven @ ICML 2011)
•  UofT breaks old accuracy ceiling in TIMIT phoneme detection
•  Microsoft (Li Deng) breaks speech recognition records (WER)

using deep architectures
•  Stanford breaks records in video / gesture classification
•  NYU breaks records in traffic sign class.
•  Montreal wins Unsupervised & Transfer Learning Challenge
•  IBM working with LeCun’s lab on DBNs for speech
•  Mikolov (Czech Rep. + JHU & Microsoft people) RNN LM reduces

Broadcast News WER by 10% vs 4-gram (13.1à11.8%)
•  DARPA Deep Learning program (LeCun, Bengio, Ng)

•  A Spike and Slab Restricted Boltzmann Machine,
Courville, Bergstra & Bengio, AISTATS 2011.

•  Unsupervised Models of Images by Spike-and-
Slab RBMs, Courville, Bergstra & Bengio, ICML 2011.

•  Latent = binary r.v. (spike) x cont. r.v (slab)
•  Much better than Gaussian RBM to deal with

continuous-valued inputs
•  Part of our winning entry to Unsupervised and

Transfer Learning Challenge.

Spike & Slab RBMs

•  Model conditional covariance of pixels
(given hidden units)

•  Hidden representation decomposed into
a product s*h, h is binary, s is real

•  s*h is often 0 (naturally sparse)

Spike & Slab RBMs

•  Can use efficient 3-way Gibbs sampling

Spike & Slab RBMs

Spike & Slab RBMs
CIFAR-10 Filters

Convolutionally Trained Spike & Slab RBMs Samples

ssRBM is not Cheating

Deep & Distributed NLP

•  See “Neural Net
Language
Models”
Scholarpedia
entry

•  NIPS’2000 and
JMLR 2003 “A
Neural Probabilistic
Language Model”
•  Each word represented

by a distributed
continuous-valued code

•  Generalizes to sequences
of words that are
semantically similar to
training sequences

Generalization through distributed
semantic representation

•  Training sentence
The cat is walking in the bedroom

•  can generalize to
A dog was running in a room

•  because of the similarity between
distributed representations for (a,the),
(cat,dog), (is,was), etc.

•  Word classes help but are too coarse.

Nearby Words in Semantic Space

France Jesus XBOX Reddish Scratched
Spain Christ Playstation Yellowish Smashed

Italy God Dreamcast Greenish Ripped

Russia Resurrection PS### Brownish Brushed

Poland Prayer SNES Bluish Hurled

England Yahweh WH Creamy Grabbed

Denmark Josephus NES Whitish Tossed

Germany Moses Nintendo Blackish Squeezed

Portugal Sin Gamecube Silvery Blasted

Sweden Heaven PSP Greyish Tangled

Austria Salvation Amiga Paler Slashed

Collobert & Weston, ICML’2008
France

Spain

ItalyEngland

Denmark
Germany

Jesus
ChristGod

PrayerSin

t-SNE of Embeddings

t-SNE of Embeddings: zoom 1

t-SNE of Embeddings: zoom 2

t-SNE of Embeddings: zoom 3

Joint Image-Query Embedding Space

S. Bengio,
J. Weston
et al @
Google

(NIPS’2010,
JMLR 2010,
MLJ 2010,
NIPS’2009)

Some results with deep distributed
representations for NLP

•  (Bengio et al 2001, 2003): beating n-grams on small datasets
(Brown & APNews), but much slower

•  (Schwenk et al 2002,2004,2006): beating state-of-the-art large-
vocabulary speech recognizer using deep & distributed NLP model,
with *real-time* speech recognition

•  (Morin & Bengio 2005, Blitzer et al 2005, Mnih & Hinton 2007,2009):
better & faster models through hierarchical representations

•  (Collobert & Weston 2008): reaching state-of-the-art in multiple NLP
tasks (SRL, POS, NER, chunking) thanks to unsupervised pre-
training and multi-task learning

•  (Bai et al 2009): ranking & semantic indexing (info retrieval).
•  (Collobert 2010): Deep Learning for Efficient Discriminative Parsing
•  (S. Bengio, J. Weston et al @ Google, 2009,2010,2011): joint

embedding space for images and keywords, Google image search
•  (Sutskever & Martens 2011): beating SOA in text compression.
•  (Socher et al 2011): parsing with recursive nets, ICML 2011

distinguished application paper award
•  (Mikolov et al 2011): beating the SOA in perplexity with recurrence

•  Small (4-domain) Amazon benchmark:
we beat the state-of-the-art handsomely

Domain Adaptation (ICML 2011)

•  Sparse rectifiers
Stacked Denoising
Autoencoders find
more features that
tend to be useful
either for predicting
domain or sentiment,
not both

Sentiment Analysis: Transfer Learning

•  25 Amazon.com
domains: toys,
software, video, books,
music, beauty, …

•  Unsupervised pre-
training of input space
on all domains

•  Supervised SVM on 1
domain, generalize out-
of-domain

•  Baseline: bag-of-words
+ SVM

•  Deep Sparse Rectifier Neural Networks,
Glorot, Bordes & Bengio, AISTATS 2011.

•  Sampled Reconstruction for Large-Scale
Learning of Embeddings, Dauphin, Glorot &
Bengio, ICML 2011.

Representing
Sparse High-

Dimensional Stuff

…

 code= latent features

…
 sparse input dense output probabilities

 cheap expensive

Representing Sparse High-
Dimensional Stuff: Sampled

Reconstruction

Sample which
inputs to
reconstruct

Importance sampling
reweighting

Minimum-variance: guess
wrong reconstructions

As many randomly
chosen other bits

Stochastic reweighted loss

Speedup from Sampled Reconstruction

Deep Self-Taught Learning for Handwritten
Character Recognition

Y. Bengio & 16 others
(IFT6266 class project & AISTATS 2011 paper)

•  discriminate 62 character classes (upper,
lower, digits), 800k to 80M examples

•  Deep learners beat state-of-the-art on NIST
and reach human-level performance

•  Deep learners benefit more from perturbed
(out-of-distribution) data

•  Deep learners benefit more from multi-task
setting

145

Learning Structured
Embeddings of Knowledge
Bases, Bordes, Weston,
Collobert & Bengio, AAAI
2011

+ ongoing work (submitted)

Modeling Semantics

Model (lhs, relation, rhs)
Each concept = 1 embedding vector
Each relation = 2 matrices
Ranking criterion
Energy = ….

Modeling Relations with Matrices

lhs relation

energy

rhs

choose vector choose matrices

|| . ||1

Verb = relation. Too many to have a matrix each.
Each concept = 1 embedding vector
Each relation = 1 embedding vector
Can handle relations on relations on relations

Allowing Relations on Relations

lhs relation

energy

rhs

choose vector

|| . ||1

mlp mlp

à Use SENNA (Collobert 2010) = embedding-based NLP
tagger for Semantic Role Labeling, breaks sentence into

 (subject part, verb part, object part)
à Use max-pooling to aggregate embeddings of words
inside each part

Training on Full Sentences

Subj. words Verb words

energy

Obj. words

|| . ||1

mlp mlp

Element-wise max. Element-wise max. Element-wise max.

black__2 eat__2cat__1 white__1 mouse_2

Combining Multiple Sources of
Evidence with Shared Embeddings

•  The undirected graphical model version of
relational learning

•  With embeddings (shared representations) to
help propagate information among data sources:
here WordNet, XWN, Wikipedia, FreeBase,…

•  Different energy functions can be used for
different types of relations, or a generic
representation and generic relation symbols
used for everything

Generalizing
WordNet or
Freebase,
exploiting
Wikipedia

Question Answering

Question Answering: Ranking Score

Word Sense Disambiguation
•  Senseval-3 results

MFS=most frequent sense
All=training from all sources
Gamble=Decadt et al 2004

(Senseval-3 SOA)

•  XWN results
XWN = eXtended WN

Recursive Application of
Relational Operators

Bottou 2011: ‘From machine learning to
machine reasoning’, also Socher ICML2011.

Relations on Multiple Data Types

•  Add energy terms associated to relations from
different data sources, shared embeddings

energy(object image, is-a, object label) +
energy(part image, is-a, part label) +
energy(part image, image-part-of, object image)
+ energy(part label, label-part-of, object label)

Recurrent and Recursive Nets
•  Replicate a parametrized function over different

time steps or nodes of a DAG
•  Output state at one time-step / node is used as

input for another time-step / node
•  Very deep once unfolded!

xt-1 xt xt+1

zt-1 zt zt+1

Combining RBMs and Temporal
Recurrence

•  RTRBM (Sutskever, Hinton & Taylor, NIPS 2008)
•  One RBM per time step, modeling visible at t
•  Hidden units biases are function of mean-field of

previous hidden units, thus introducing a recurrence.

RNN-RBM
(Boulanger, Vincent & Bengio)

Expanding parametrization of RTRBM to remove constraint that recurrent
weights correspond to link from recurrent state to RBM hiddens and that
visible-hidden weights correspond to recurrent net input weights.

Experiments with RNN-RBM

•  Bouncing balls dataset: RNN-RBM is twice
more accurate (MSE 0.005) than RTRBM
(MSE 0.01) at predicting next ball position

•  Motion capture dataset: RNN-RBM (MSE
0.33) vs RTRBM (MSE 0.41)

Training example RTRBM-generated sample

Music Transcription
Map acoustic
signal to sequence
of chords (note
tuples over time
intervals)

Acoustic Models Comparison
Pitch Detection

Data from 6 SoundFont 2.0 banks, used for training/validation/test

RNN-RBMs for Music Transcription

•  up to 5 notes at a time
•  Combine pitch detection + music language model

with RNN-RBM with a product of expert model:
log Plang(notes sequence)+a*log Paudio(notes|acoustic)

•  RNN-RBM predicts next chord given previous
ones

•  Improves state-of-the-art (Mozer dataset) from
68.6% to 77.8% accuracy

Acoustic Transcription:
Comparison

Generating Music with RNN-RBM

RBM (no
temporal
modeling)

RNN-RBM

RNN (no
joint model
of notes =
chords)

RNN-
RBM,
sample
with
repetitions

Conclusions

•  Deep Learning: powerful arguments &
generalization principles

•  Unsupervised Feature Learning is crucial:
many new algorithms and applications in
recent years

•  DL particularly suited for multi-task
learning, transfer learning, domain
adaptation, self-taught learning, and semi-
supervised learning with few labels

Deep Questions
•  Generic learning algorithms (large-spectrum priors) vs e.g. vision-

specific or language-specific architectures?
•  Try to filter the noise out vs keep all the information but separate the

explanatory factors?
•  Why are RBMs and various sparse (auto-en) coding disentangling to

some extent?
•  What criteria to disentangle the factors of variation?
•  Why is sparsity working and helping the disentangling?
•  How to avoid the partition fn? Strengths and weaknesses of existing

proxys for likelihood?
•  How to represent and train recursive / relational learners?
•  How could the brain possibly do the equivalent of back-prop through

time?
•  Are 2nd-order optimization methods really needed when N is large?

(e.g. Polyak averaging converges as quickly asymptotically)

http://deeplearning.net/software/theano : numpy à GPU

http://deeplearning.net

Merci! Questions?
LISA team:

