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From Al to Deep Learning

Intelligence requires knowledge
Knowledge can be implicit

Explicitly providing knowledge failed (expert
systems)

Learning captures knowledge from data

Real-world distributions have convoluted
unknown structure, not all captured by the
principle of local generalization




What is Generalizing?

= Capturing dependencies between random
variables

= Spreading out the probability mass from
the empirical distribution. Where???

= Discovering underlying abstractions /
explanatory factors




Shallow learning architecture

1-layer NNet, SVM, GP predictor, decision
tree, boosted stumps, etc.




Deep learning architecture

Output: is this bob?

Highest-level features: / E u ' ;1

Faces

Abstract features:

Shapes = E - -

Primitive features:
Edges

Input: Raw pixels g -
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Deep Motivations

=Brains have a deep architecture

»Humans' ideas composed from
simpler ones

= Insufficient depth can be N
exponentially inefficient //ﬂ

= Distributed (possibly sparse)
representations necessary for non-  task1 task2  tosks

local generalization, exponentially
more efficient than 1-of-N ored

- I int diat
enumeration of latent variable values e erosentations

= Multiple levels of latent variables
allow combinatorial sharing of
statistical strength

raw input x




Deep Architecture in our Mind

= Humans organize their ideas and concepts
1gh level representation:

hierarchically

= Humans first learn simpler concepts and
then compose them to represent more
abstract ones

slightly higher level representation

= Engineers break-up solutions into multiple
. . raw input vector representation
levels of abstraction and processing .

= [t would be nice to learn / discover these
concepts

(knowledge engineering failed because of
limits of introspection?)




Deep Learning Hypotheses

o ; useful to
efficiently represent and learn complex abstractions needed
for Al and mammal intelligence.

- Computational & statistical efficiency

2 ; of representations is
a crucial component of the solution.

- Optimization & regularization.

= Theoretical and ML-experimental support for both.




Challenge #1: Non-local learning of
the interactions of many factors of
variation




Easy Learning

% = example (X,y)

learned function: prediction = f(x)

=




Principle of Local Generalization

¢ = training example
YA ° NG

true functign: unkndwn

]E)(re)diction .-~ learnt = interpolateg
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The Curse of
Dimensionality

To generalize 200 positions @
locally, need 5
representative

examples for all

relevant

variations!

1 dimension:
10 positions

“lassical solution: -\ DGO > i postions
smooth enough
target function




Limits of Local Generalization:
Theoretical Results

& 'H-., ) e.g. Gaussian (RBF) SVM

(Bengio, Delalleau & Le Roux 2007)

o Gaussian kernel machines need at least k
examples to learn a function that has 2k zero-

crossings along some line

/N
/f\\/\/ Vv

- For a Gaussian kernel machine to learn
some maximally varying functions over d inputs
requires O(2%) examples




Curse of Dimensionality When Generalizing
Locally on a Manifold (Bengio et al 2006) E‘

O(d r?%) examples are needed

d=manifold dim.
r=radius of curvature




How to Beat the Curse of Many
Factors of Variation”?

Distributed representations / embeddings: feature learning

Deep architecture: multiple levels of feature learning

Can generalize to new configurations




Distributed Representations

Many neurons active simultaneously

Input represented by the activation of a set
of features that are not mutually exclusive

Can be than
local representations

= FEATURE LEARNING instead of only
manual feature-engineering




Local vs Distributed Latent Variables

LOCAL PARTITION

Clustering

regions
defined
by learned
prototypes
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RBM Hidden Units Carve Input Space
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Boltzman Machines and MRFs

. N L v Ty,
Boltzmann machines: — e Energy(z) _ _ ¢t atat Wa

(Hinton 84)

Markov Random Fields:

More interesting with latent variables!




Restricted Bolizmann Machine

The most popular
building block for deep
architectures

Bipartite undirected
graphical model

Inference is trivial;

P(h|x) & P(x | h) factorize




RBM Conditionals Factorize

exp(b’x + c’h + h' Wx)
St exp(b/x + ¢/h + h/Wx)

1[; exp(cih; + h; Wix)
11 25, exp(c;h; + h; W;x)
exp(h;(c; + W;x))
];[ >k, exp(h;(c; + W;x))




RBM Energy Gives Binomial Neurons

With h; € {0,1}, recall Energy(x,h) = —b’x — c’h — h'Wx

e le; +1W,;x+other terms

P(hl = 1‘X)

elci+1W’vl-x+0fhﬁe'r terms + eOci+0W"ix—|—othe-r terms
GCZ' +W;x

eCitWix 1 ]

1
1 + e—Ci—U’?iX
sigm(c; + W;x).

1

since sigm(a) = ==




e—Energy(x,h)

—7 |7z
h

Can be computed exactly and efficiently in RBMs
FreeEnergy(z) = —c¢!x — Z log Z ohi (bi+Wix)
i h;

Marginal likelihood P(x) tractable up to partition function Z




Factorization of the Free Energy

Let the energy have the following general form:
Energy(x,h) = —(x) + >, 7i(x, hy)

; _—FreeEnergy(x) __ » Z C—Energy(x.h)

h

1 B(x)— vi(x,h (x,h
DI WLELEEEDS) 0 el | Gale

hy hs h;. h; hs h;.

—72(x,h2 E :(.—”."k(x‘hk)

DY




Energy-Based Models Gradient

Z _ 2 (_)‘—En(:‘rgy(x_)
b'e

OEnergy(x) ~ OlogZ
00 00

dlogZ _ dlogy, e Brersr (o)
% 00
1 0 Zx G—Enorgy(x)
0
OEnergy(x)
06




RBM with (image, label) visible units

m Can predict a subset y hidgen

of the visible units O O O O O O

given the others x
m Exactly if y takes only / \

few values

} image

= Gibbs <®@@@ LOOOC

sampling o/w label

Y




Boltzmann Machine Gradient

P(z) — % Zh (‘5,—Energ_\;'(:r,h) — %(,—FI‘CCEncrgy(r)

Gradient has two components:

“positive phase” “negative phase”

dFrecEnergy (x) =\ OFrecEnergy (1)

_ Zh P(h’z ()Enmg\ (x,h) + Zl ; P 7 i)()Enm(;g( h)

In RBMSs, easy to sample or sum over h | x
Difficult part: sampling from P(x), typically with a Markov chain




Positive & Negative Samples

Observed (+) examples push the energy down

Generated / dream / fantasy (-) samples / particles push
the energy up




Gibbs Sampling in RBMs

h, ~P(h|x) h, ~ P(h|%,) hy ~ P(h | xs)

<é\./'\./'

X ~ P(x[hy) X3 ~ P(x|hy)

Easy inference

P(h|x) and P(x| h) factorize _ .
Convenient Gibbs sampling




Training RBMs

Contrastive Divergence: start negative Gibbs chain aft
(CD-k) observed x, run k Gibbs steps

Persistent CD: run negative Gibbs chain in
(PCD) background while weights slowly
change

Fast PCD: two sets of weights, one with a large
learning rate only used for negative
phase, quickly exploring modes

Herding: Deterministic near-chaos dynamical
system defines both learning and sampling

Tempered MCMC: use higher temperature to escape
modes



Contrastive Divergence

Contrastive Divergence (CD-k): start negative phase block
Gibbs chain at observed x, run k Gibbs steps (Hinton 2002)

h~P(h|Xx) h' ~P(h|X)
K GD
é c )
Observed x k=2steps Sampled x’
positive phase negative phase
push down

Free Energy

push up



Persistent CD (PCD)

Run negative Gibbs chain in background while weights slowly
change (Younes 2000, Tieleman 2008):

« Guarantees (Younes 89, 2000; Yuille 2004)

* If learning rate decreases in 1/1,
chain mixes before parameters change too much,
chain stays converged when parameters change

h~P(h|x)

previous x’
Observed x new x’
(positive phase)



Persistent CD with large learning rate

Negative phase samples quickly push up the energy of
wherever they are and quickly move to another mode

push

downl

FreeEnergy




Persistent CD with large step size

Negative phase samples quickly push up the energy of
wherever they are and quickly move to another mode

push
FreeEnergy downl




Persistent CD with large learning rate

Negative phase samples quickly push up the energy of
wherever they are and quickly move to another mode

push

down l

FreeEnergy




Challenge #2: Understanding the
expressive power of deep
architectures




RBMs are Universal Approximators

(Le Roux & Bengio 2008, Neural Comp.)  [TEE

Adding one hidden unit (with proper choice of parameters)
guarantees increasing likelihood

With enough hidden units, can perfectly model any discrete
distribution

RBMs with variable nb of hidden units = non-parametric




Unsupervised and Semi-Supervised
Deep Feature Learning

Classical: pre-process data with PCA = leading factors

New: learning multiple levels of features/factors,
often over-complete

Greedy layer-wise sfrategy: Ply 1)

unsupervised

unsupervised *
unsupervised e E— C )
|

raw input x raw input x raw input x raw input x

(Hinton et al 2006, Bengio et al 2007, Ranzato et al 2007)




Deep Convolutional Architectures

Mostly from Le Cun'’s group (NYU), also Ng (Stanford):
state-of-the-art on MNIST digits, Caltech-101 objects, faces
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Deep Belief Nets and Deep
Boltzmann Machines

DBN: Stack RBMs; top k of n

layers = prior for last hidden OO0 QOO

of bottom n-k

DBM: top levels modify the 00 QOO

prior of last hidden of
bottom n-k Q Q Q O <> O
Q00 000

OO0 000

DBN DBM




Convolutional DBNs

(Lee et al, ICML'2009)

faces, cars, airplanes, motorbikes

:

//NP pka N Pk (pooling layer)
/4 \
N 7‘/ / hk \/ H¥ (detection layer)

H : . etection layer
/ i !

Wk

7
é\/v/ wa// / V' (visible layer)




Tiled Convolutional Networks

Like convolutional but without the sharing, allows to increase capacity
without increasing computation much (but increases memory)

Pooling Units Q Q Q Weight Q Q Q Multiple m

Tied untying Tied : | .
‘ Tile $ize k) 2 weights A (Pogling Size =3

P g ' |:> N RN Number
. @ ‘ @ of Maps =3
mte QOO Q000 0000000 Q000000

CNN Tiled CNN Tiled CNN with multiple feature maps

(Our model)

Weights

Simple Units@ é;:}

o0




Parts Are Composed to Form Objects

Layer 3: objects

Selle BEE

<= = |

==E=‘ Layer 2: parts
p— -

YEmbhOR A

PAGNEINETNEE
NN NN =S |

Lee et al. ICML’'2009




Representational Power of

&

Deep Architectures

, Bengio & Delalleau, Learning
Workshop 2011. Delalleau & Bengio paper
submitted to NIPS 2011.




Architecture Depth

output

element neu}on
- j \
’;e;}on  neu}0n Lneu;on

| SR

‘neuron neuron‘neu}o




Deep Architectures are More Expressive

Theoretical arguments: e_ b

Logic gates

2 layers of Formal neurons = universal approximator
RBF units

RBMs & auto-encoders = universal approximai
Theorems on advantage of depth:
(Hastad et al 86 & 91, Bengio et al 2007, Bengio &
Delalleau 2011, Braverman 2011)
2n

Functions compactly represented
with k layers may require
exponential size with 2 layers




1 subsubsub?2
subsubsub / subsubsub3

"
[

subsub

sub sub2 sub3

Nl

malin

"‘Deep” computer program




subroutine1 includes gybroutine? includes
subsub1 code and  sybsub2 code and
subsub2 code and  sybsub3 code and

subsubsub1 code subsubsub3 code and ...

\\ /

"Shallow” computer program
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“Shallow” circuit

Falsely reassuring theorems: one can approximate any
reasonable (smooth, boolean, etc.) function with a 2-layer
architecture




Sharing Components in a Deep Architecture
Polynomial expressed with shared components:
advantage of depth may grow exponentially

(r129)(X29X3) + (r129)(2374) + (X2X3)” + (X2X3)(2324)




Sum-Product Networks

0.521 + x9 + 3.123
0.5

Depth 2 suffices to represent any finite
polynomial (sum of products)

(Poon & Domingos 2010) use deep sum-
product networks to efficiently
parametrize partition functions




Polynomials that Need Depth

(I = (% -+ (é = I'1I9 + I3y = fl(.l'1. To, I3, ‘l,'4)

e 2i layers and n = 4’ input variables
e alternate additive and multiplicative units

e unit (l takes as inputs (>] , and (’ .

* Need O(n) nodes with depth log(n) circuit
« Need O(2'") nodes with depth-2 circuit




More Polynomials that Need Depth

. p 5 9\ ;
(3 =22+ 22+ 23 + 3(2129 + 1175 + T073)

+r113 + 123

e 2; + 1 layers and n variables (n independent of 7)

e alternate multiplicative and additive units

.ok e k=1 :
e unit / takes as inputs {/)"'|m # j}

m

Need O(dn) nodes with depth d circuit
Need O(n9) nodes with depth-2 circuit



More Deep Theory

Braverman, CACM 54(4), April 2011.

If all marginals of the input distribution
involving at most k variables are uniform,
higher depth makes it exponentially easier to
distinguish the joint from the uniform.




Deep Architectures and Sharing Statistical
Strength, Multi-Task Learning

= Generalizing better to fosk | faisk 2 task 3

output yi output y2 output yz

new tasks is crucial to
approach Al
Deep architectures learn

good intermediate
representations that can ared
be shared across tasks infermediate

representation h
Good representations

make sense for many
tasks

raw input x
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Parts Are Re-Used to
Form Different Objects

Layer 3: objects

Layer 2: parts

g‘ Layer 1: edges

Lee et al. ICML’'2009




Feature and Sub-Feature Sharing

Different tasks can
share the same high-
fask | task N level features ask 1 fask N

output y output yn

®® @ - Different high-level
Hig&feo’rurs

oufput yi output yn

Cigh ievel features \ features can be built

from the same set of
% lower-level features

\ More levels = up to
Low-level features exponentia| gain in Low-level features

representational
efficiency




L

Challenge #3: training deep
architectures




Gradient descent

Target
Output 5 7

£(X) s‘ix 2y
™~

N
00\/




em on deep architectures




Failure of deep architectures




Breakthrough!




20006: The Deep Breakthrough

Bengio
Montreal

Before 2006, training deep
architectures was
unsuccessful, except for
convolutional neural nets

Hinton, Osindero & Teh «

», Neural
Computation, 2006

Bengio, Lamblin, Popovici,
Larochelle «

», NIPS’2006

Ranzato, Poultney,
Chopra, LeCun «

NIPS’2006




Deep training




Layer-Wise Unsupervised Pre-training

features @00©® ... @




Layer-Wise Unsupervised Pre-training

_ ?
reconstru_ctlon 0 .0 = 000 O input
of input

N

features @00©® ... @

iInput o0 ..




Layer-Wise Unsupervised Pre-training

features @00©® ... @




Layer-Wise Unsupervised Pre-training

More abstract PP o

features V . w

features @00©® ... @

iInput o0 ..




Layer-Wise Unsupervised Pre-training

reconstruction
of features

More abstract
features

features




Layer-Wise Unsupervised Pre-training

More abstract PP o

features V . w

features @00©® ... @

iInput o0 ..




Layer-Wise Unsupervised Pre-training

Even more abstract
features O

More abstract I/;><

features V

]
... @
features 00® ... @

iInput o0 ..




Supervised Fine-Tuning

Target
Output 0 Y

f(X) SIX

Even more abstract / / \

features

More abstract I/ ><
features V '{

features 0 ©® ©®

iInput o0 ..




Greedy Layer-Wise Pre-Training

'©ooooogwn |
|
|

©ooooo©ﬂ'

RBM for x

| RBM

©OOOO0Q) h

RBM '

y (O @OOOOO@ h2|

S

Y
©OOAOOO® hy

QOOOOO0) «x

RBM for y and h>

@ooooogwq

©ooboo®x

RBM for hy

Stacking Restricted Boltzmann Machines (RBM) - Deep Belief Network (DBN)




Stacking Auto-Encoders

h({QOOO00O

Wi 43

x ©O000CO00Q




Greedy Layerwise Supervised Training

Generally worse than unsupervised pre-training but better than
ordinary training of a deep neural network (Bengio et al. 2007).




Effect of Unsupervised Pre-training

AISTATS'2009+JMLR 2010, with Erhan, Courville, Manzagol, Vincent, S. Bengio

X1 layer without pretraining

' >4 layer with pretraining

X—>4 layers without pretraining

oA layers with pretraining

hodd : :
: : % : : ! h : :
: : | F . . . .
: . A : : ] : .
o : @ o 5 : ik XK. o
: : no Q 5 crc dh |” ” (1] 1

16 . . ! i A H B i i

test error s : : J 2 22 24 26 28 "3
test error




of Depth

Effect

w/0 pre-training

number of layers

number of layers




Level-Local Learning is Important

Initializing each layer of an unsupervised deep Boltzmann
machine helps a lot

Initializing each layer of a supervised neural network as an
RBM, auto-encoder, denoising auto-encoder, etc helps a
loft

Helps most the layers further away from the target
Not just an effect of unsupervised prior

Jointly training all the levels of a deep architecture is
difficult

Initializing using a level-local learning algorithm is a useful
trick




Why Is Unsupervised Pre-Training
Working So Welle

(with Erhan, Courvile, Manzagol, Vincent, Bengio: JMLR, 2010)

d
v

= Regularization hypothesis:

Unsupervised component forces model close to P(x)
Representations good for P(x) are good for P(y | X)

= Opftimization hypothesis:
Unsupervised initialization near better local minimum of
supervised training error

Can reach lower local minimum otherwise not achievable by
random initialization




Learning Trajectories in Function Space
(Erhan et al, JMLR, 2010)

= Each pointis a
model in function
space

= Color = epoch

= Top: trajectories
w/0 pre-training

= No overlap of
regions with and
w/0 pre-training




Visualization in Function Space

= Using ISOMAP
iINnstead of t-

- With pre-tréining

SNE, preserve Ve /o

distances
= Pre-fraining:
small volume

compared to
without.

1500 I i i i I '
4000 -3000 -2000 -1000 0 1000 2000 3000 400)




Unsupervised Learning as
Reqgularizer —
Adding extra regularization eger SRS E

3 layers wio pre-training

(reducing # hidden units)
hurts more the pre-trained
models

Pre-trained models have
less variance wrt training
sample

Test error

Regularizer = infinite
penalty outside of region
compatible with
unsupervised pre-training




= (Untested) Explanatory theory:

Stacked RBMs & disentangle factors
of variation in P(x) (Goodfellow et al, NIPS'09)

Most salient factors are unrelated to vy, but
some factors are highly predictive of y

RBMs with too few units learn features
worse at predicting y than randomly
initialized networks

RBMs with many hidden units are much
more predictive of y

Test error

Jnsupervised Disentangling of
~actors of Variation

3-layer DEN
3-layer SDAE

3 layers wio pre-training




Better Optimization of Online Error

sudget of 10 million Iterations

Both training and online error .

. o : = = =1 layer without pre-trainin
O re S m O | | e r Wl -I- h U n S U p e rV I S e d . 3 Ia:‘ers \'/ithoutppre-trajni:g
p re_.l.rO i n i n g . \ : 1 layer with REM pre-training

3 layers with RBM pre-training
771 layer with denoising auto-encoder pre-training

As # samples > OCQ
training err. = online err. =
generalization err.

Online classification error

Without unsup. pre-training:
can’t exploit capacity to
capture complexity in target 5SSO S S SR SO
function from training data N

Number of examplgs s

Denoising auto-encoder




Initial Examples Matter More
(crifical period?)
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Variance of the output

1 I 1 I 1 I

< =< 1-layer network without pretraining

@® -@1-layer network with RBM pre-training

02 03 04 05 06
Fraction at which we vary the examples

Vary 10% of the
training set at the
beginning, middle,
or end of the
online sequence.
Measure the effect
on learned
function.




Learning Dynamics of

Deep Nets

2] e A PO 2 S P O

SUBNINZY SUBYERES
| |

ASF BTN 047 BuLmR

mECAEDS & .!UEHB

. ‘ ‘.*

Before fine-tuning

1
As weights become larger, get tfrapped in(\ ]
basin of attraction (sign does not change)

Critical period. Initialization matters.

After fine-tuning

NG




Order & Selection of Examples Matters

(with Louradour, Collobert & Weston, ICML"2009)

= Curriculum learning
(Bengio et al, ICML'2009; Krueger & Dayan 2009)

= Start with easier examples

= Faster convergence to o
better local minimum in —
deep OrChITeCTUreS no-curriculum

= Also acts like a regularizer
with optimization effect?

= Influencing learning .
dynamics can make a big
difference




New Developments in Optimizing
Deep Architectures

= Hessian-Free (HF) optimization
Applied to deep auto-encoders (Martens,
ICML 2010)

Applied to recurrent nets & modeling text
(Martens & Sutskever (& Hinton), ICML 2011)

= Large minibatches (also at Stanford)

= High-curvature directions correlated with
small (but important) components of

gradient




Unsupervised Learning:
Disentangling Factors of Variation

= (Goodfellow et al NIPS’2009): some hidden units
more invariant (with more depth) to input
geometry variations

(Glorot et al ICML’2011): some hidden units

specialize on one aspect (domain) while others
on another (sentiment)

We don’t want invariant representations because
it is not clear to what aspects, but disentangling
factors would help a lot

Sparse/saturated units seem to help
Why?
How to train more towards that objective?




Temporal Coherence and Scales

= One of the hints from nature about different
explanatory factors:
Rapidly changing factors (often noise)
Slowly changing (generally more abstract)
Different factors at different time scales

= \We should exploit those hints!

= (Becker & Hinton 1993, Wiskott & Sejnowski 2002,
Hurri & Hyvarinen 2003, Berkes & Wiskott 2005,
Mobahi et al 2009, Bergstra & Bengio 2009)




Advantages of Sparse Representations

Information disentangling (compare to dense
compression).

More likely to be linearly separable (high-
dimensional space).

Locally low-dimensional representation = local chart

Efficient variable size representation.

Few bits of information Many bits of information




Sparsity as a Disentangling Hint

Look for a few ‘explanations’

Mixing a sparse signal = entangling
Sparse representations: add a sparsity
penalty

Group sparsity with different L , on
different types of coefficients can be used
to induce a separation between them
(Kowalski)




Challenge #4: What criteria or
gradient estimators to train
unsupervised non-linear feature

extractors (since straight
maximum-likelihood is not
straightforward at all)




The Partition Function Gradient

_—energy(xz,0) e—energy(a?.@)

€

Z;r e —energy(x,0) o Z((L))

00 00

0 log pg(x) Oenergy(x, 0)

Oenergy(x, 0) ~,  Oenergy(z,0)

= Untractable sum (or integral)

= Positive example (observed x) vs negative example
(sampled x)




Positive & Negative Samples

= Observed (+) examples push the energy down

= Generated / dream / fantasy (-) samples / particles push
the energy up




Palette of Tricks to Train Energy-
Based Models

Partition function expensive (vocab.) or intractable
Contrastive Divergence
PCD /SML + MCMC tricks

* Tempering
+ Mean-field / variational, etc.

(regularized) Score Matching / denoising
Sparse coding / Sparse Predictive Decomposition
Ratio Matching

Pseudo-likelihood

Ranking / margin-based criteria

Noise contrastive estimation

= Most rely on + vs — examples contrast

See my book / review paper (F&TML 2009): Learning Deep Architectures for Al




Auto-Encoders

Reconstruction=decoder(encoder(input)), e.g.
h tanh(b+ Wx)

reconstruction tanh(c + W7Th)

cost |reconstruction — x||?
Probable inputs have small reconstruction error
Linear decoder/encoder = PCA up to rotation
Minimizing reconstruction error ensures that hidden units capture

the directions of largest variation

Can be stacked successfully (Bengio et al 2006) to form highly non-

linear representations, sparse ones increasing disentangling
(Goodfellow et al, NIPS 2009)

What is the corresponding probabilistic model?

code= latent features

00000

000 O 000 O

input reconstruction




Sparse Auto-Encoders

Successfully used by Andrew Ng's group
at Stanford (e.g. ICML 2011)

Used by Google in their Google Goggles
vision system

Sparsity penalty = binomial KL div.
between mean output prob. (over
minibatch) and small target prob. (0.05),
which works also on RBMs

Prevents units from becoming always
stuck at 0




Link Between Contrastive Divergence and
Auto-Encoder Reconstruction Error Gradient

= (Bengio & Delalleau 2009):

CD-2k estimates the log-likelihood gradient
from 2k diminishing terms of an expansion that
mimics the Gibbs steps

reconstruction error gradient looks only at the
first step, i.e., is a kind of mean-field
approximation of CD-0.5

00

dlog P(x;)|
a0 |

(E [ dlog P(x,|hy) Xl] VK l dlog P(h|xs.1) .\‘1])

00




Denoising Auto-Encoder - >

f R
S

A =%
/ -
-t

(Vincent et al 2008, 2010)

= Stochastically corrupt the input
= Reconstruction target = clean input

Code h=tanh(b+Wz) Reconstruction error

Corrupted input z Clean input x Reconstruction r=tanh(c+W’h)




Denoising Auto-Encoder

Learns a vector field
towards higher probability
regions

Minimizes variational

lower bound on a
generative model

Similar to pseudo-
likelihood

A form of regularized
score matching

Corrupted input

Corrupted input




Stacked Denoising Auto-
Encoders

* No partition function,
can measure training
criterion

Encoder & decoder:
any parametrization

Performs as well or

better than stacking

RBMs for

unsupervised pre- o
training B

Number of examples seen
Infinite MNIST




Stacked Denoising Auto-Encoders

Layerwise unsupervised pre-training (vincent et al, ICML08)
SIVIRIG NI ~ , (x|x) = N (X;x,02])

Try reconstructing the clean (uncorrupted) input
Better results with noise variance away from 0

Use uncorrupted encoding as input to next level

o000 00000
x ()




SCOre MOTC hiﬂg (Hyvarinen 2005)

Score of model p: dlogP(x)/dx

Matching score of p to target score:
dlogp(x) 8log q(x H ]

0xX

Hyvarinen shows it equals

— 1ng(x> H + 82 1ng(x) + const

B 2 ‘ Ox
and proposes to minimize corresponding empirical mean

Shown to be asymptotically unbiased to estimate parameters




Denoising Auto-Encoders doing Score

Matching on Gaussian RBMs
P. Vincent, 2010

+ cleaninput - corrupted input = direction of increasing log-likelihood [CA:XME<P)
~ in generating density 85{
X — X

reconstruction — input = direction of increasing log-likelihood 8p(x;9)
~ ~ according fo auto-encoder
r(x) —x Ox




Sparse Predictive Decomposition

From LeCun’s group over last 5 years

Sparse coding + parametric encoder +
penalty between output of parametric
encoder and non-parametric sparse code:

X =W z||2 + A |2],

Initialize FISTA with W’x: much faster
encoding than sparse coding, much faster
dictionary learning

Successful (deep) representation learning in
object recognition (MNIST, Caltech,
pedestrian detection)




Representations as Coordinate Systems

« PCA: removing low-variance directions - easy but what if
signal has low variance? \We would like to disentangle
factors of variation, keeping them all.

Overcomplete representations: richer, even if underlying
distribution concentrates near low-dim manifold.

Sparse/saturated features: allows for variable-dim
manifolds. Different few sensitive features at x = local
chart coordinate system.




Deep Sparse Rectifier Neural Networks

following up on (Nair & Hinton 2010)

Neuroscience motivations
Leaky integrate-and-fire model

200

— —
) W
(=) (=)

Firing rate (Hz)

N

Machine learning motivations

==) Sparse representations

== Sparse and linear gradients
6 8 10
Input current (A) -9
x 10

Hidden layer 1

X

Recifier
f(x)=max(0,x)
== One-sided

Commonly used functions

=) Real zeros

=) “default’ regime at0




Deep Sparse Rectifier Neural Nets: Results

Experiments and results

=) Stacked denoising autoencoder

==) 4 image recognition and 1 sentiment analysis datasets

Better generalization than hyperbolic tangent networks

Rectifier networks achieve their best performance without
needing unsupervised pre-training

Unsupervised pre-training is beneficial in the semi-

supervised setting

2y

e ’l

STielav%

Neuron

MNIST

CIFAR10

NISTP

NORB

W

ith unsupervised pr

e-training

Rectifier

1.20%

49.96 %

32.86%

16.46 %

Tanh

1.16 %

50.79 %

35.89%

17.66%

Softplus

1.17 %

49.52%

33.27 %

19.19%

Without unsupervised |

yre-training

Rectifier

1.43 %

50.86 %

32.64%

16.40%

Tanh

1.57%

52.62%

36.46%

19.29%

Softplus

1.77%

53.20%

35.48%

17.68%

-="Tanh

-—Rect

Tanh+pretraining ||

— Rect+pretraining _

20

30

50

70

Ratio of supervised examples (%)




Sparse Auto-Encoders & Sparse
Predictive Decomposition

(Ranzato et al, 2007; Ranzato et al 2008, Kavukcuoglu et al 2009, 2010)

Sparsity penalty on the intfermediate codes
Like sparse coding but with efficient run-fime encoder

Sparsity penalty pushes up the free energy of all
configurations (proxy for minimizing the partition
function)

Impressive results in object classification (convolutional
nets):

MNIST A% error  =record-breaking

 Caltech-101 65% correct = state-of-the-art (Jarrett et al, ICCV 2009)

Similar results obtained with a convolutional DBN (eeetal
ICML’2009)




Contractive Auto-Encoders

. Rifai, Vincent,
Muller, Glorot & Bengio, ICML 2011.
. Rifal,
Mesnil, Vincent, Muller, Bengio, Dauphin,
Glorot, ECML 2011.




Contractive Auto-Encoders

. Few active units
represent the active
subspace ( )
Jacobian’s spectrum is
peaked = local low-
dimensional
representation / relevant
factors

cannot afford contraction
in manifold directions wants contraction in all

Training criterion: directions




Contractive Auto-Encoders

»

basic

bg-rand .28+0. .30+02 .
/)g' img 23.0C . .3: 10+0.3:

I‘f’('f—il)l(q 24.04&1),37 24.05+0.37 22.50&1),37 21.59:036|21.86+036| 21.54-0.36

Most hidden units saturate
One a few are active and represent the active

subspace ( )
Jacobian’s spectrum is peaked = local low-

dimensional representation / relevant factors




Distributed vs Local
(CIFAR-10 unsupervised)

« CAE manifold directions

o8 A 5 I

 Local PCA directions

- 2 - g ) 2
\ 4 L;u - oy ! g &
“\; .d . < o -’. ‘ ' | e
e : o . L% :..Ar. ' A R g




Learned Tangent Prop: the
Manifold Tangent Classifier

3 hypotheses:
Semi-supervised hypothesis (P(x) related to P(y|x))

Unsupervised manifold hypothesis (data concentrates
near low-dim. manifolds)

Manifold hypothesis for classification (low density
between class manifolds)

Algorithm:

1. Estimate local principal directions of variation U(x) by
CAE (principal singular vectors of dh(x)/dx)

2. Penalize f(x)=P(y|x) predictor by || df/dx U(x) ||




Manifold Tangent Classifier Results
» Leading singular vectors on MNIST, CIFAR-10, RCV1:

0.(6.Mﬁ@0
o Dt 5 I

Trading +gilt -slow +matur  -percent | +bin -anti +interest -sen
& +yen -term +auction -sent +coupon  -predict | +calcul -californ
Markets | +usda -debt +treasur -pressure | +discount -belgian | +overnight -introduc

K-NN NN SVM  DBN CAE DBM CNN MTC
3.09% 1.60% 1.40% 1.17% 1.04% 0.95% 0.95% 0.81%

« Semi-sup. NN SVM CNN TSVM DBN-INCA EmbedNN CAE MTC
2581 2344 2298 1681 - 1686 1347 12.03

1144 885 7.68  6.16 . 5.97 63 513

107 777 645 538 - 5.73 477  3.64

6.04 421 335 345 3.3 3.59 322 257

N SIS CUN T EMIES] SVM  Distributed SVM - MTC
4.11% 3.46% 3.13%




Unsupervised and Transfer
Learning Challenge

5 datasets, 73 entrants, knowledge-free

Goal: learning good representations from
unlabeled examples of training classes so that
they generalize well to unknown test classes.

Protocol: given 4096 test inputs, provide their
representation. Server’s Hebbian classifier
trained on top. label of test classes given.



Unsupervised and Transfer Learning
Challenge: 15t Place in Final Phase

SYLVESTER VALID: ALC=06238 SYLVESTER VALID: ALC=0.7878

)

Raw data ICML'2011

workshop
on UTL

Area under the ROC curve (AL

2 layers

2 3 4
Log,(NuMber ot training exammples)

SYLVESTER VALID: ALC=0.8511

SYLVESTER VALID: ALC=09316

& ® &

1

3 layers

4 layers

Area under the AROC curve (AUC

Area under the AOC cune (AUC)

2 3
Log,(Number ot training sxarmples)

2 3 4
Lo-gEIN umber ot training examples)




Opportunity #1: DL Applications
and Architectures




Recent DL Highlights

Google Goggles uses stacked sparse auto-encoders (Hartmut
Neven @ ICML 2011)

UofT breaks old accuracy ceiling in TIMIT phoneme detection

Microsoft (Li Deng) breaks speech recognition records (WER)
using deep architectures

Stanford breaks records in video / gesture classification
NYU breaks records in traffic sign class.
Montreal wins Unsupervised & Transfer Learning Challenge

IBM working with LeCun’s lab on DBNs for speech

Mikolov (Czech Rep. + JHU & Microsoft people) RNN LM reduces
Broadcast News WER by 10% vs 4-gram (13.12>11.8%)

DARPA Deep Learning program (LeCun, Bengio, Ng)




Spike & Slab RBMs

Courville, Bergstra & Bengio, AISTATS 2011.

, Courville, Bergstra & Bengio, ICML 2011.

Much better than Gaussian RBM to deal with
continuous-valued inputs

Part of our winning entry to Unsupervised and
Transfer Learning Challenge.




Spike & Slab RBMs

E(v,s,h) Zv W;s;ih; +§’U

1 >
+ 5 E ;S; — E (X'iu'is’ih'i —
i=1 i=1 i

Model condiy v
(given hidden units) Coln = (A + 2 i Pih

idden representation decomposed into
a product s*h, h is binary, s is real
s*h is often O (naturally sparse)




Spike & Slab RBMs

Can use efficient 3-way Gibbs sampling
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ssRBM is not Cheating
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Nearest examples in CIFAR:
(least square dist.)




Deep & Distributed NLP

i-th output = P(w; = i | context)

» See “Neural Net
Language
Models”
Scholarpedia
entry

o NIPS’2000 and

gJMLR 2003 “

. Each word represented
by a distributed
\ 4 continuous-valued code

VP87 | Generalizes to sequences
of words that are
semantically similar to
training sequences

normalized exponential

~. Matrix '

shared parameters
across words




Generalization through distributed
semantic representation

* Training sentence
The cat is walking in the bedroom

. odn ghndralizd o |, |

* because of the similarity between
distributed representations for (a,the),
(cat,dog), (is,was), etc.

* Word classes help but are too coarse.




Nearby Words in Semantic Space

a

A

Spain
France

England [taly

Germany

Denmark

Jesus
God Christ

Sin Prayer

\

Collobert & Weston, ICML’2008

Spain
Italy
Russia
Poland
Sple]lelgle
Denmark
Germany
Portugal

Sweden

Austria

Christ
God

Resurrection

Prayer
Yahweh
Josephus
Moses
Sin
Heaven

Salvation

Dreamcast

PSH#H##
SNES

WH

NES
Nintendo

Gamecube

PSP
Amiga

Yellowish
Greenish
Brownish
Bluish
Creamy
Whitish
Blackish
N\Z=18%

Greyish

ell=

Playstation

Smashed
Ripped
Brushed
Hurled
Grabbed
Tossed
Squeezed
Blasted

Tangled
Slashed
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Joint Image- Query Embedding Space

DOLPHIN
— OBAMA

TN e —EIFFEL TOWER
J. Weston | i

ctal @ g
Google

(NIPS'2010,
JMLR 2010, .
MLJ 2010, Smbedding space
NIPS’2009)

Learn (<) and ®,-) to optimize precision@k.




Some results with deep distributed
representations for NLP

« (Bengio et al 2001, 2003): beating n-grams on small datasets
(Brown & APNews), but much slower

. beating state-of-the-art large-
vocabulary speech recognizer using deep & distributed NLP model,
with speech recognition

better & faster models through hierarchical representations

. reaching state-of-the-art in multiple NLP
tasks ( , POS, NER, chunking) thanks to unsupervised pre-
training and multi-task learning

: ranking & semantic indexing (info retrieval).
Deep Learning for Efficient Discriminative Parsing
joint

embedding space for images and keywords,
. beating SOA in text compression.

. parsing with recursive nets, ICML 2011
distinguished application paper award

. beating the SOA in perplexity with recurrence




Domain Adaptation gcm 2011)

RV TR T T SR
Ra- (L 0 i

y
)

7 Small (4-domain) Amazon benchmark:

, . o § g
A’ il “"{
e 1

SR

.Q'.

 Autoencoders find
more features that 2
tend to be useful | I
either for predicting |
domain or sentiment,
not both

Baseline SCL. MCT SFA T-SVM SDA SDAsh




Sentiment Analysis: Transfer Learning

25 Amazon.com
domains: toys,
software, video, books,
music, beauty, ...

Unsupervised pre-
training of input space
on all domains
Supervised SVM on 1
domain, generalize out-
of-domain

B ase I I ne. bag _Of_WO rd S | Baseline Sk Baseline 100k MLP
+ SVM

in-domain ratio




| | | Output
[j [ Hidden layer 2

[j [j Hidden layer 1
f(z) = mazx(0,x) KX

Benglo’ ICML 2011 “code= latent features
00000

000 O 000 - O

sparse input dense output probabilities




Stochastic reweighted loss

Sample which
iInputs to
reconstruct

Importance sampling
reweighting

Minimum-variance: guess

wrong reconstructions

, As many randomly
,X)|/d. otherwise chosen other bits
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Deep Self-Taught Learning for Handwritten
Character Recognition

« discriminate 62 character classes (upper,
lower, digits), 800k to 80M examples

* Deep learners beat state-of-the-art on NIST
and reach human-level performance

Prediction of Deep Network:

* Deep learners benefit more from perturbed / .

(out-of-distribution) data - -
* Deep learners benefit more from multi-task P >
Settlng Prediction of Shallow Network:

m — 15 %

3 — 8 %

r . 6 %




Online Java applet demo

Draw a character, see instant classification. Runs client-side.

Resulting Image

http://deep.host22.com




left-hand right-hand
of of
_has_part _has_part

, Bordes, Weston,
Collobert & Bengio, AAAI

_door_l}as_{a,rt lock 2/




energy

Ihs rhs

relation

Model (Ihs, relation, rhs

Each concept = 1 embedding vector
Each relation = 2 matrices

Ranking criterion

Energy = ....




energy

choose vector

Ihs relation rhs

Verb = relation. Too many to have a matrix each.
Each concept = 1 embedding vector
Each relation = 1 embedding vector
Can handle relations on relations on relations




energy

Elem:nt-;se max. Element-wise max. Element-wi

Subj. words Verb words Obj. words
black_2 cat_1 eat__2 white_ 1 mouse_2

- Use SENNA (Collobert 2010) = embedding-based NLP

tagger for Semantic Role Labeling, breaks sentence into
(subject part, verb part, object part)

- Use max-pooling to aggregate embeddings of words

iInside each part




Combining Multiple Sources of
Evidence with Shared Embeddings

« The undirected graphical model version of
relational learning

« With embeddings (shared representations) to
nelp propagate information among data sources:
nere WordNet, XWN, Wikipedia, FreeBase,...

Different energy functions can be used for
different types of relations, or a generic
representation and generic relation symbols
used for everything




Generalizing

WordNet or

exploiting
Wikipedia

Model (All)

TextRunner

lhs

-army_NN_1

army

rel

_attack_VB_1

attacked

top
ranked
rhs

_troop_ NN _4
_armed_service_NN_1
_ship_ NN_1
_territory NN _1
_military _unit NN_1

Israel
the village
another army
the city
the fort

top
ranked
lhs

_business_firm NN _1
_person_NN_1
family NN_1
_payoff NN_3

card_game NN_1

People
Players
one
Students
business

rel

_earn_-VB_1

carmn

rhs

-money_NN_1

money




Question Answering: Ranking Score

Bigram WN only
Counts




Word Sense Disambiguation

« Senseval-3 results

F1 score (%)

MFS=most frequent sense
All=training from all sources fandom | Gamble | MES Al AIMES

Gamble=Decadt et al 2004
(Senseval-3 SOA)

e XWN results
XWN = eXtended WN

F1 score (%)

All All+MFS




Recursive Application of
Relational Operators

Bottou 2011: ‘From machine learning to
machine reasoning’, also Socher ICML2011.




Relations on Multiple Data Types

* Add energy terms associated to relations from
different data sources, shared embeddings

energy(object image, is-a, object label) +
energy(part image, is-a, part label) +
energy(part image, image-part-of, object image)
+ energy(part label, label-part-of, object label)

Table 1: Summary of Test Set Results on ImageNet-WordNet. Precision at 1 and 10, and Mean
Average Precision (MAP) are given. (IW) resp. (I) refers to the (Image,Word) setup resp. (Image).

Image Annotation Part-Object Detection Triplet

Models

p@l

p@10

MAP

p@]l

p@10

MAP

p@l

p@10

MAP

Shared (IW)
UnShared (IW)

0.14%
9.45%

351%
3.68%

0.1768
0.1847

11.48%

10.01%

3.40%
3.02%

0.1892
0.1669

26.31%
33.13%

9.90%
9.62%

0.5545
0.5595

Shared (I)
UnShared (I)

11.21%
12.94%

3.85%
4.10%

0.2021
0.2219

5.13%
6.08%

1.84 %

2.11%

0.0955
0.1118

11.21%
12.94%

3.85%
4.10%

0.2021
0.2219

SVM

10.02%

3.72%

0.1864

10.02%

3.72%

0.1864




Recurrent and Recursive Nets

* Replicate a parametrized function over different
time steps or nodes of a DAG

« QOutput state at one time-step / node is used as
input for another time-step / node

* Very deep once unfolded!

t+1




Combining RBMs and Temporal
Recurrence

« RTRBM (Sutskever, Hinton & Taylor, NIPS 2008)

« One RBM per time step, modeling visible at t

« Hidden units biases are function of mean-field of
previous hidden units, thus introducing a recurrence.




RNN-RBM [6
(Boulanger, Vincent & Bengio)

f//‘
Expandlng parametrization of RTRBM to remove constraint that recurrent
weights correspond to link from recurrent state to RBM hiddens and that
visible-hidden weights correspond to recurrent net input weights.

. o
by = by + WA=

O = o(Wo® +b57) = o(Wo® + WHED 4 py)




Experiments with RNN-RBM

Bouncing balls dataset: RNN-RBM is twice
more accurate (MSE 0.005) than RTRBM
(MSE 0.01) at predicting next ball position

E »

L ®

Training example RTRBM-generated sample

Motion capture dataset: RNN-RBM (MSE
0.33) vs RTRBM (MSE 0.41)




Music Transcription

Map acoustic | M’MM
signal to sequence

of chords (note
tuples over time

intervals)




Acoustic Models Comparison
Pitch Detection

METHODE FIDELITE RAPPEL PRECISION
SVM |[36] 38.5 % 93.6 % 38.5 %
Yeh & Robel (33 66.3 % 67.6 % 86.0 %
NNC 62.5 % 67.4 % 84.0 %
NNSC 70.6 % 74.6 % 89.1 %
MLP3 71.8 % 771 % 88.5 %
DBN 77.5 % 80.2 % 93.2 %

Data from 6 SoundFont 2.0 banks, used for training/validation/test




RNN-RBMSs for Music Transcription

up to 5 notes at a time

Combine pitch detection + music language model
with RNN-RBM with a product of expert model:

log Pj,4(NOtes sequence)+a’log P, 4,(notes|acoustic)

RNN-RBM predicts next chord given previous
ones

Improves state-of-the-art (Mozer dataset) from
68.6% to 77.8% accuracy




Acoustic Transcription:
Comparison

MODELE FIDELITE RAPPEL PRECISION
Uniforme 70.6 % 74.6 % 89.1 %
Unigramme 1.6 % 74.2 % 91.7 %
RNN 72.1 % 74.6 % 02.3 %

RBM 3.4 % 75.9 % 92.6 %
RNN-RBM 5.8 % 7.5 % 94.5 %

Uniforme 7.5 % 80.2 % 93.2 %
Unigramme 77.9 % 79.4 % 95.0 %
RNN 8.5 % 79.9 % 95.6 %
RBM 79.9 % 81.2 % 95.9 %
RNN-RBM 81.9 % | 83.0 % 96.5 %




Generating Music with RNN-RBM

Q

RBM (no
temporal
modeling)

Q

RNN (no
joint model

of notes =
chords)

Q

RNN-RBM

Q

RNN-
RBM,
sample
with
repetitions




Conclusions

* Deep Learning: powerful arguments &
generalization principles

* Unsupervised Feature Learning is crucial:
many new algorithms and applications in
recent years

» DL particularly suited for multi-task
learning, transfer learning, domain
adaptation, self-taught learning, and semi-
supervised learning with few labels




Deep Questions

Generic learning algorithms (large-spectrum priors) vs e.g. vision-
specific or language-specific architectures?

Try to filter the noise out vs keep all the information but separate the
explanatory factors?

Why are RBMs and various sparse (auto-en) coding disentangling to
some extent?

What criteria to disentangle the factors of variation?

Why is sparsity working and helping the disentangling?

How to avoid the partition fn? Strengths and weaknesses of existing
proxys for likelihood?

How to represent and train recursive / relational learners?
How?could the brain possibly do the equivalent of back-prop through
time”

Are 2"-order optimization methods really needed when N is large?
(e.g. Polyak averaging converges as quickly asymptotically)




http://deeplearning.net
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