A Pot-Pourri of Recent Advances at MILA

Yoshua Bengio

July 6, 2018

Facebook AI Research, New York

PLUG: Deep Learning, MIT Press, chapters for free online
InfoBot: Identifying Decision States Using Information Bottleneck

Anirudh Goyal, Riashat Islam, Zafarali Ahmed, Doina Precup, Matthew Botvinick, Hugo Larochelle, Sergey Levine and Yoshua Bengio
Relevant Goal Information

Information identifies useful subgoals
Grounding Subgoals in Information Transitions, 2011
InfoBot: Identifying Decision State

Variational information minimization b/w action and goal given state

\[
I(A; G | S) \leq I(Z; G | S) \\
\leq \sum_g p(g) \sum_s p(s | g) KL[p_{enc}(z | s, g) | r(z)]
\]

Agent pays the price for querying the goal.
“Querying” the goal state
Using KL for Structured Exploration

- High KL == “Interesting State”
- Train Primitives to go to “High KL” states to query the goal.
- Incentivize agents to go to “High KL states” == Use KL as intrinsic motivation
Decision States v/s Bottleneck States

Distinction b/w

- bottleneck states and
- decision states

- Decision states \Rightarrow linked to available information to an agent
- Bottleneck states \Rightarrow Based on MDP connectivity structure.

Concept of decision states

- Decision states are not binary, it’s more of a continuum.
- Some states are less decision-ey, and other states are more decision-ey.
Fundamental distinction between automatic and controlled action selection.

- **Automatic Responding** - Perceptual inputs directly trigger actions.
- **Controlled Behaviour** - Automatic responding is overridden to align behaviour with the goal.

Infobot architecture contains 2 pathways

- Goal to Action ("controlled")
- State to Action ("Automatic responding")

(Left) Diagram credit - Matthew Botvinick
Identifying Decision Points

- Agent gets a partial view (POMDP)
- Policy trained on smaller maze (left), generalizes well to bigger mazes (right)
Better generalization

- Wall following strategy.
 NXY - Grid with X no. of rooms, of atmost size Y.
Better Generalization

<table>
<thead>
<tr>
<th>Train Task</th>
<th>Minigrid-FindObjS7-v0</th>
<th>Minigrid-FindObjS10-v0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minigrid-FindObjS5-v0 (a2c baseline)</td>
<td>56%</td>
<td>36%</td>
</tr>
<tr>
<td>Minigrid-FindObjS7-v0 (a2c baseline)</td>
<td>62%</td>
<td>40%</td>
</tr>
<tr>
<td>Minigrid-FindObjS5-v0 (Infobot + No KL cost)</td>
<td>44%</td>
<td>24%</td>
</tr>
<tr>
<td>Minigrid-FindObjS5-v0 (Infobot)</td>
<td>78%</td>
<td>61%</td>
</tr>
</tbody>
</table>

Table 1: Generalization of the agent to larger grids in Minigrid-FindObjSY envs.
Structured Exploration - Use KL as exploration Bonus

NXSY - Grid with X number of rooms, of atmost size Y (procedurally generated)

<table>
<thead>
<tr>
<th>Method</th>
<th>MiniGrid-MultiRoom-N3-S4</th>
<th>MiniGrid-MultiRoom-N5-S4</th>
</tr>
</thead>
<tbody>
<tr>
<td>A2c baseline</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>TRPO + VIME</td>
<td>54%</td>
<td>0%</td>
</tr>
<tr>
<td>Count based exploration</td>
<td>95%</td>
<td>0%</td>
</tr>
<tr>
<td>A2c + KL exploration</td>
<td>90%</td>
<td>85%</td>
</tr>
</tbody>
</table>

Table 2: Comparison of InfoBot’s exploration strategy with a count-based exploration method as well as VIME.
Better Exploratory Policy - Continuous Control Tasks

- Use high value states as goals (Recall Traces: Backtracking Model)

- **Baseline** - Proximal policy optimization (PPO)
- **Infobot-low-value** = Use low value states as goal.
- **Infobot-zero-KL** - coeff. Of KL loss is 0.
Disentangling optimization and generalization

- The traditional ML picture is that optimization and generalization are neatly separated aspects
 - That makes theory easier to handle, separately
 - Unfortunately not the case
 - SGD variants influence optimization AND generalization
Memorization in Deep Networks

Mostly from preprint arXiv:1706.05394
Devansh Arpit, Stanisław Jastrzębski, Nicolas Ballas, David Krueger,
Emmanuel Bengio, Maxinder S Kanwal, Tegan Maharaj, Asja
Fischer, Aaron Courville, Yoshua Bengio, Simon Lacoste-Julien
Memorization in Deep Networks

- Deep networks trained with SGD generalize well due to its implicit regularization effect (Zhang et al 2016)

- Deep networks achieve ~100% train accuracy on random data (Zhang et al 2016)

- Do deep networks also memorize real data?
Real data has Dominant Patterns

- Real data: some samples are learned first.
- Random data: samples are learned in arbitrary order.

Fraction of times each of 1000 samples is classified correctly after 1 epoch across 100 runs.
Larger Margin on Real data

- Real data: distance from decision boundary is large
- Random data: distance from decision boundary is small

Critical sample ratio = fraction of samples which have adversarial examples in their vicinity
Patterns come First

- Validation accuracy peaks before falling
- Patterns in real data learned before overfitting noise

Train (full) and validation (dotted) accuracy on MNIST during training with noisy labels
Regularization Hinders Memorization

- Dropout is best at hindering memorization
- Maintains performance on real data for reduced memorization on random data.

Best validation performance (picked across hyper parameter grid) on real data vs. training performance on noise labels for the same model, for different regularizers.
Take Home Message

• DNNs learn patterns before memorizing noise

• Regularization hinders memorization
On the relevance of loss function geometry for generalization

Laurent Dinh, Razvan Pascanu, Samy Bengio, Yoshua Bengio
Reparametrization

\[\eta = g^{-1}(\theta) \quad L_\eta(\eta) = L(g(\eta)) \]

- Differentiation at critical point

\[(\nabla^2 L_\eta)(\eta) = (\nabla g)(\eta)^T (\nabla^2 L) (g(\eta)) (\nabla g)(\eta) \]

- Flat minima \(\xrightarrow{g} \) Sharp minima
- Sharp minima \(\xrightarrow{g} \) Flat minima
Reparametrization

Sharp minima can generalize
Flat minima can poorly generalize
Eppur, si muove!

And yet, it moves
Factors influencing Minima in SGD

Mostly from preprint arXiv:1711.04623
Stanisław Jastrzębski, Zachary Kenton, Devansh Arpit, Nicolas Ballas, Asja Fischer, Yoshua Bengio, Amos Storkey
Behavior of SGD

• Small mini-batch finds wider minima (Keskar et al 2016)

• What dynamics/factors govern the quality of minima found by SGD?
SGD as Stochastic Differential Equation

• Mini-batch gradient $g^{(s)}(\theta)$ (due to CLT), batch size S:

• SGD with learning rate η is described by:

$$g^{(S)}(\theta) = g(\theta) + \frac{1}{\sqrt{S}} \Delta g(\theta), \text{ where } \Delta g(\theta) \sim N(0, C(\theta))$$

• Continuous stochastic differential equation (SDE) form: (Li et al 2017)

$$\theta(t + 1) = \theta(t) - \eta g^{(S)}(\theta)$$

$$\frac{d\theta}{dt} = -\eta g(\theta) + \frac{\eta}{\sqrt{S}} B(\theta)f(t)$$

Note: $C(\theta) = B(\theta)^T B(\theta)$

If small enough learning rate, ie. small steps
The equilibrium distribution of this SDE is given by:

\[P(\theta) = P_0 \exp\left(-\frac{2L(\theta)}{n\sigma^2} \right) \]

- Inverse relation between loss and density

Noise n controls the granularity of the equilibrium distribution.

Note: $\eta =$ learning rate, $S =$ batch size, $\sigma^2 =$ fixed isotropic gradient variance
Implications of the Theory

- Probability of ending in a minima A described by Hessian \mathbf{H}_A:

$$p_A \propto \frac{1}{\sqrt{\det \mathbf{H}_A}} \exp \left(-\frac{2}{n\sigma^2} L_A \right)$$

- In general, minima with larger volume is favored more (simply because it has higher probability mass)
- Higher noise n prioritizes width (volume) over depth
- Final equilibrium distribution is unchanged when learning rate and batch size are scaled proportionally $\eta \to \beta \eta$, $S \to \beta S$

$$P(\theta) = P_0 \exp \left(-\frac{2L(\theta)}{n\sigma^2} \right)$$

Note: $n = \eta / S$, $\eta =$ learning rate, $S =$ batch size, $\sigma^2 =$ fixed isotropic gradient variance
Smaller Noise – Sharper Bowl

- Interpolation between apparent minima found by SGD at large/small noise level

\[\alpha = 0: \text{baseline noise level} \]

\[\alpha = 1: \text{small noise due to large batch size} \]

\[\alpha = 0: \text{baseline noise level} \]

\[\alpha = 1: \text{small noise due to small learning rate} \]
Equal noise - Equal Width

- Interpolation between minima found by SGD at the same noise level (due to different learning rate/batch-size configurations)

\[\alpha = 0: \text{baseline noise level } \eta/S \]
\[\alpha = 1: \text{same noise level } 0.25\eta/0.25S \]
\[\alpha = 0: \text{baseline noise level } \eta/S \]
\[\alpha = 1: \text{same noise level } 4\eta/4S \]
Same Noise – Same Learning Dynamics

- Theory talks about final equilibrium distribution but seems to apply along trajectory as well
- But even learning dynamics is similar when learning rate and batch size are scaled proportionally $\eta \rightarrow \beta \eta$, $S \rightarrow \beta S$
Take Home Messages

• DNNs learn patterns before memorizing noise
• Regularization hinders memorization
• The quality of final minima and learning dynamics is similar when learning rate and batch size are scaled proportionally
• Larger noise favors large volume minima over deep ones
• Larger noise (e.g. due to BS or l.rate) hinders memorization
Interpolate in parameter space between minibatch SGD updates and see convex shape.

After initial phase, updates bounce off valley floor, which monotonically improves, traversing larger distances with smaller batch sizes (BS).

Learning rate: height from floor.

BS: exploration noise.

Pure GD gets stuck on floor, while SGD finds flatter regions, which generalize better.
Sharpest Directions Along the SGD Trajectory

(Jastrzębski, Kenton, Ballas, Fischer, Bengio, Storkey)

• Even at the beginning of training, a high learning rate or small batch size influences SGD to visit flatter loss regions.

• the largest eigenvalues appears to always follow a similar pattern, with a fast increase in the early phase and a decrease thereafter, where the peak value is determined by the learning rate and batch size.

• altering the learning rate just in the direction of the eigenvectors associated with the largest eigenvalues, SGD can be steered towards regions which are an order of magnitude sharper but correspond to models with similar generalization, confirming that curvature of the endpoint found by SGD is not predictive of its generalization properties.
Using a discriminator to optimize independence, mutual information or entropy

- Train a discriminator to separate between pairs \((A,B)\) coming from \(P(A,B)\) and pairs coming from \(P(A) \ P(B)\).

- Generalize this to measuring independence of all the outputs of a representation function (encoder). Maximize independence by backpropagating the independence score into the encoder.

\[\Rightarrow \text{NON-LINEAR ICA}. \]

\[\text{Brakel & Bengio ArXiv:1710.05050} \]
Non-Linear Independent Component Analysis Results

- Sources were either mixed linearly or non-linearly, independent components recovered in both cases

(a) Source signals. (b) Anica reconstructions $\rho_{\text{max}} = .997$. (a) Anica PNL reconstructions $\rho_{\text{max}} = .997$.

Linearly mixed

Nonlinearly mixed
Using a discriminator to optimize independence, mutual information or entropy

MINE: Mutual Information Neural Estimator
Belghazi et al ArXiv:1801.04062

Same architecture, but with a twist in the training objective which provides an asymptotically consistent estimator of mutual independence.
Mutual information, KL divergence and Donsker-Varadhan Representation

[Belghazi et. al., 2018]

Mutual information: measure of dependence between 2 variables

\[
I(X; Z) = D_{KL}(\mathbb{P}_{X,Z} \| \mathbb{P}_X \otimes \mathbb{P}_Z) = \mathbb{E}_{P_{X,Z}} \left[\log \left(\frac{p(x,z)}{p(x)p(z)} \right) \right]
\]

\[
I(X; Z) = H(X) + H(Z) - H(X, Z) = D_{KL}(\mathbb{P}_{XZ} \| \mathbb{P}_X \otimes \mathbb{P}_Z)
\]

(Donsker & Varadhan, 1983):

\[
D_{KL}(\mathbb{P} \| \mathbb{Q}) = \sup_{T: \Omega \to \mathbb{R}} \mathbb{E}_\mathbb{P}[T] - \log(\mathbb{E}_\mathbb{Q}[e^T])
\]

Optimal T:

\[
T^* = \log \frac{d\mathbb{P}}{d\mathbb{Q}} + C
\]

With suboptimal T:

\[
D_{KL}(\mathbb{P} \| \mathbb{Q}) \geq \sup_{T \in \mathcal{F}} \mathbb{E}_\mathbb{P}[T] - \log(\mathbb{E}_\mathbb{Q}[e^T])
\]
Given two r.v. X & Z and samples of their joint & marginals:

$$I(X; Z)_n = \mathbb{E}_{\hat{P}_{XZ}^{(n)}}[T_{\hat{\theta}_n}(x, z)] - \log(\mathbb{E}_{\hat{P}_{X}^{(n)} \otimes \hat{P}_{Z}^{(n)}}[e^{T_{\hat{\theta}_n}(x, z)}])$$

where discriminator T is optimized to maximize the rhs
MINE: Consistency

Theorem: there exists a neural net architecture such that for all $\epsilon > 0$ there exists an integer N s.t.

$$\forall n \geq N, \quad |I(X, Z) - \hat{I}(X; Z)_n| \leq \epsilon$$

with probability one.
Demonstration of estimation

• GAN: Adversarial generative framework between D and G
• Goal: generate from samples from noise, z, transformed by a function G, such that \(p_g(x) \) is close (equal) to a target distribution \(p_d(x) \).
• Introduce a discriminator D
• (Original) D maximizes the value function (min-max game):
 - At the optimal discriminator (maximizing \(V \)), minimizing \(V \) amounts to minimizing JSD between \(p_g(x) \) and \(p_d(x) \).
• Train purely through back-prop
• Produces highly realistic data compared to MLE methods
• Does not work naturally with discrete data

Belghazi et. al., 2018
Demonstration of estimation

GAN: Adversarial generative framework between D and G

Goal: generate from samples from noise, z, transformed by a function G, such that $p_g(x)$ is close (equal) to a target distribution $p_d(x)$.

Introduce a discriminator D

(Original) D maximizes the value function (min-max game):

At the optimal discriminator (maximizing V), minimizing V amounts to minimizing JSD between $p_g(x)$ and $p_d(x)$.

Train purely through back-prop

Produces highly realistic data compared to MLE methods

Does not work naturally with discrete data

[Belghazi et. al., 2018]
Maximizing ENTROPY: avoid GAN mode dropping by max MI(X,Z)

since \(H(X|Z) = 0 \)
\[
I(X;Z) = H(X)
\]
\[
I(X;Z) := H(X) - H(X | Z)
\]
Manifold Mixup

Alex Lamb*, Vikas Verma*, Chris Beckham, Aaron Courville, Ioannis Mitliagkas, Yoshua Bengio
How to improve generalization

Conjecture: some novel points which are off of the manifold contain combinations of attributes which we’ve seen during training.

-Examples:
 - A deer with wheels instead of legs
 - Tokyo city but with the eiffel tower in the skyline.
 - A blue pig.
Manifold Mixup

-Augment the training set by randomly combining attributes.

-How to combine attributes?
 -Take a convex combination of the representations.
 -I.e. King - Queen + Child == Boy

-What attributes? In the latent space of a deep net!
 -Earlier layers cover more of the network.
 -Later layers make it easier to span the space.
Details of Manifold Mixup

- On each update, pick a random layer uniformly (including the input).

- Sample $\lambda \sim \text{Beta}(\alpha, \alpha)$

- Mix between two random examples from the minibatch at that layer with coeff λ.

- Mix the labels for those two examples accordingly (soft label).
Results - Classification

CIFAR - 10

<table>
<thead>
<tr>
<th>Model</th>
<th>Test Acc</th>
<th>Test NLL</th>
</tr>
</thead>
<tbody>
<tr>
<td>PreActResNet18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No Mixup</td>
<td>94.88</td>
<td>0.2646</td>
</tr>
<tr>
<td>Input Mixup ((\alpha = 1.0)) (Zhang et al., 2017)</td>
<td>96.10</td>
<td>n/a</td>
</tr>
<tr>
<td>Input Mixup ((\alpha = 1.0)) (ours)</td>
<td>96.498</td>
<td>0.1945</td>
</tr>
<tr>
<td>Manifold Mixup ((\alpha = 2.0))</td>
<td>97.104</td>
<td>0.1407</td>
</tr>
<tr>
<td>PreActResNet152</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No Mixup</td>
<td>95.797</td>
<td>0.1994</td>
</tr>
<tr>
<td>Input Mixup ((\alpha = 1.0))</td>
<td>96.844</td>
<td>0.2312</td>
</tr>
<tr>
<td>Manifold Mixup ((\alpha = 2.0))</td>
<td>97.238</td>
<td>0.1419</td>
</tr>
<tr>
<td>Manifold Mixup all layers ((\alpha = 6.0))</td>
<td>97.622</td>
<td>0.0957</td>
</tr>
</tbody>
</table>

CIFAR - 100

<table>
<thead>
<tr>
<th>Model</th>
<th>Test Acc</th>
<th>Test NLL</th>
</tr>
</thead>
<tbody>
<tr>
<td>PreActResNet18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No Mixup</td>
<td>74.4</td>
<td>n/a</td>
</tr>
<tr>
<td>No Mixup (Zhang et al., 2017)</td>
<td>75.32</td>
<td>1.284</td>
</tr>
<tr>
<td>Input Mixup ((\alpha = 1.0)) (Zhang et al., 2017)</td>
<td>78.9</td>
<td>n/a</td>
</tr>
<tr>
<td>Manifold Mixup ((\alpha = 2.0))</td>
<td>78.95</td>
<td>0.913</td>
</tr>
<tr>
<td>PreActResNet34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Mixup ((\alpha = 1.0))</td>
<td>77.208</td>
<td>1.085</td>
</tr>
<tr>
<td>Manifold Mixup ((\alpha = 2.0))</td>
<td>79.609</td>
<td>0.930</td>
</tr>
</tbody>
</table>

- ShakeShake is 97.14% on CIFAR-10.
- Best or close-to-best results on CIFAR-10 that don’t use complicated and expensive hyperparameter search procedure (like AutoAugment or Neural Architecture Search)
Results - Likelihood

-Likelihood is WAY better with manifold mixup. Means it’s less confident when it makes wrong predictions.
Results - Novel Deformations

<table>
<thead>
<tr>
<th>Test Set Deformation</th>
<th>No Mixup Baseline</th>
<th>Input Mixup $\alpha=1.0$</th>
<th>Input Mixup $\alpha=2.0$</th>
<th>Manifold Mixup $\alpha=2.0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rotation $U(-20^\circ,20^\circ)$</td>
<td>52.96</td>
<td>55.55</td>
<td>56.48</td>
<td>60.08</td>
</tr>
<tr>
<td>Rotation $U(-60^\circ,60^\circ)$</td>
<td>26.77</td>
<td>28.47</td>
<td>27.53</td>
<td>33.78</td>
</tr>
<tr>
<td>Shearing $U(-28.6^\circ,28.6^\circ)$</td>
<td>55.92</td>
<td>58.16</td>
<td>60.01</td>
<td>62.85</td>
</tr>
<tr>
<td>Shearing $U(-57.3^\circ,57.3^\circ)$</td>
<td>35.66</td>
<td>39.34</td>
<td>39.7</td>
<td>44.27</td>
</tr>
<tr>
<td>Zoom In (80% rescale)</td>
<td>47.95</td>
<td>52.18</td>
<td>50.47</td>
<td>52.7</td>
</tr>
<tr>
<td>Zoom Out (140% rescale)</td>
<td>19.34</td>
<td>41.81</td>
<td>42.02</td>
<td>45.29</td>
</tr>
<tr>
<td>Zoom Out (160% rescale)</td>
<td>11.12</td>
<td>25.48</td>
<td>25.85</td>
<td>27.02</td>
</tr>
</tbody>
</table>

CIFAR-100
Results - Adversarial

<table>
<thead>
<tr>
<th>CIFAR10 Models</th>
<th>FGSM $\varepsilon=0.03$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adv. Training (Madry)</td>
<td>60.30</td>
</tr>
<tr>
<td>Adversarial Training +</td>
<td>81.80</td>
</tr>
<tr>
<td>Fortified Networks</td>
<td>36.32</td>
</tr>
<tr>
<td>Baseline (ours)</td>
<td>71.51</td>
</tr>
<tr>
<td>Input Mixup ($\alpha = 1.0$)</td>
<td>77.50</td>
</tr>
<tr>
<td>Manifold Mixup ($\alpha = 2.0$)</td>
<td>40.7</td>
</tr>
<tr>
<td>CIFAR100 Models</td>
<td>FGSM $\varepsilon=0.03$</td>
</tr>
<tr>
<td>Input Mixup ($\alpha = 1.0$)</td>
<td>44.96</td>
</tr>
<tr>
<td>Manifold Mixup ($\alpha = 2.0$)</td>
<td>44.96</td>
</tr>
</tbody>
</table>

![Graph showing performance comparison](image-url)
Semi-supervised Learning

Table 4: Results on semi-supervised learning on CIFAR-10 (4k labels) and SVHN (1k labels) (in test error %). All results use the same standardized architecture (WideResNet-28-2). Each experiment was run for 5 trials. † refers to the results reported in (Oliver et al., 2018)

<table>
<thead>
<tr>
<th>SSL Approach</th>
<th>CIFAR-10</th>
<th>SVHN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supervised †</td>
<td>20.26 ± 0.38</td>
<td>12.83 ± 0.47</td>
</tr>
<tr>
<td>Mean-Teacher †</td>
<td>15.87 ± 0.28</td>
<td>5.65 ± 0.47</td>
</tr>
<tr>
<td>VAT †</td>
<td>13.86 ± 0.27</td>
<td>5.63 ± 0.20</td>
</tr>
<tr>
<td>VAT-EM †</td>
<td>13.13 ± 0.39</td>
<td>5.35 ± 0.19</td>
</tr>
<tr>
<td>Semi-supervised Input Mixup</td>
<td>10.71 ± 0.44</td>
<td>6.54 ± 0.62</td>
</tr>
<tr>
<td>Semi-supervised Manifold Mixup</td>
<td>10.26 ± 0.32</td>
<td>5.70 ± 0.48</td>
</tr>
</tbody>
</table>

- Not too close to SOTA (CIFAR-10 down to 5%).
- For computational reasons, may still be preferable over VAT.
Analysis - How are representations changed?

- If we block gradients at the mixing points - Manifold Mixup no longer helps!

- Manifold Mixup is changing our representations to make interpolations less likely to collide.
Analysis - interpolations

- So manifold mixup helps a lot along hidden space interpolations.
- But input mixup helps a lot with hidden interpolations too. Why?
Visualizing interpolations

Figure 3: **Interpolations in the input space** with a mixing rate varied from 0.0 to 1.0.

Figure 4: **Interpolations in the hidden states** (using a small convolutional network trained to predict the input from the output of the second resblock). The interpolations in the hidden states show a better blending of semantically relevant features, and more of the images are visually consistent.
Biological Plausibility

- Let’s say that you’re a neuron and your job is recognizing animals.

- Another part of the brain uses your outputs, but takes a variable amount of time to return a feedback signal.

\[
\begin{align*}
\text{brain} & \quad \text{brain} & \quad \text{brain} & \quad \text{brain} \\
\text{Neuron} & \quad \text{Neuron} & \quad \text{Neuron} & \quad \text{Neuron} \\
x[t=0] & \quad x[t=1] & \quad x[t=2] & \quad x[t=3] \\
\text{x[t=0] is a cat!} & \quad \text{x[t=1] is a dog!} & \quad \text{Actually x[t=1] was a cat!} & \quad \text{You were wrong: x[t=0] is a dog!}
\end{align*}
\]
Current Practical Value

- Applying Manifold Mixup is rather straightforward.
- Requires (essentially) no additional computation or memory.
- Competitive with virtual adversarial training for semi-supervised.
- Provides significant gains in classification.
Montreal Institute for Learning Algorithms