A Pot-Pourri of Recent
Advances at MILA

Yoshua Bengio
July 6, 2018

Facebook Al Research, New York

& CIFAR .
CANADIAN b
'o'. HHHN\”. INSTITUTE »e°‘°\ wee
aVAY) FOR
ADVANCED . o’@‘

RESEARCH

Université f'”\ "
de Montréal

/
&«
o \

,. . '
L ] L J




InfoBot: Identifying Decision States Using
Information Bottleneck

Anirudh Goyal, Riashat Islam, Zafarali Ahmed,
Doina Precup, Matthew Botvinick, Hugo
Larochelle, Sergey Levine and Yoshua Bengio



Relevant Goal Information
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Information identifies useful subgoals
Grounding Subgoals in Information Transitions, 2011



InfoBot: Identifying Decision State

Variational information minimization b/w action
and goal given state
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Agent pays the price for querying the
goal.
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“Querying” the goal state

KL[encoding | prior|



Using KL for Structured Exploration

« High KL == “Interesting State”
« Train Primitives to go to “High KL” states to
qguery the goal.
« Incentivize agents to go to “High KL states” ==
Use KL as intrinsic motivation



Decision States v/s Bottleneck States

Distinction b/w
bottleneck states and
decision states

e Decision states = linked to available information to an agent
® Bottleneck states = Based on MDP connectivity structure.

Concept of decision states

Decision states are not binary, it's more of a continuum.
Some states are less decision-ey, and other states are more decision-ey.



Fundamental distinction between automatic and controlled action selection.

e Automatic Responding - Perceptual 2:;:::““”‘1' Tt | policy
inputs directly trigger actions. ] m(a|s,9)
e Controlled Behaviour - Automatic

responding is overridden to align
behaviour with the goal. |

decoder k\\\
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encoder
l"‘llt‘ v

By S
- Goal to Action (“controlled”) : @ @
- State to Action (“Automatic

responding”)

(Left) Diagram credit - Matthew
Botvinick



Identifying Decision Points

Agent gets a partial view (POMDP)
Policy trained on smaller maze (left),
generalizes well to bigger mazes (right)

I

(a) KL Maps on the Maze ~ (b) Simple Grid world with
two rooms.

(a) KL Maps on a Large Maze (b) Grid world with 10 rooms



Better generalization

Wa I | fOI IOW' ng St rategy. NXSY - Grid with X no. of rooms, of atmost size Y.

a) MultiRoom-N4-54  (b) MultiRoom-N5-54  (c¢) MultiRoom-N6-S8  (d) MultiRoom-N12-
S10




Better Generalization

(a) FindObjS5 (b) FindObjS6 (¢) FindOb;S7 (d) FindOb;S10
Train Task Minigrid-FindObjS7-v0  Minigrid-FindObjS10-v0
Minigrid-FindObjS5-v0 (a2c baseline) 56% 36%
Minigrid-FindObjS7-v0 (a2c baseline) 62% 40%
Minigrid-FindObjS5-v0 (Infobot + No KL cost) 44% 24%
Minigrid-FindObjS5-v0 (Infobot) 78% 61%

Table 1: Generalization of the agent to larger grids in Minigrid-FindObjSY envs.



Structured Exploration - Use KL as
exploration Bonus

NXSY - Grid with X number of rooms, of atmost size Y (procedurally generated)

Exploration Bonus on N3S4 Exploration Bous on NéS4 Exploration Boaus on N554
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Method MiniGrid-MultiRoom-N3-S4  MiniGrid-MultiRoom-N5-S4
A2c baseline 0% 0%
TRPO + VIME 54% 0%
Count based exploration 95% 0%
A2c + KL exploration 90% 85%

Table 2: Comparison of InfoBot’s exploration strategy with a count-based exploration method as well
as VIME.



Better Exploratory Policy -
Continuous Control Tasks

- Use high value states as goals (Recall Traces: Backtracking Model)

Baseline - Proximal policy

optimization (PPO)

Infobot-low-value = Use
low value states as goal.
Infobot-zero-KL - coeff. Of

KL loss is O.
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Disentangling
optimization and
generalization

The traditional ML picture is that optimization and
generalization are neatly separated aspects

That makes theory easier to handle, separately

Unfortunately not the case

SGD variants influence optimization AND generalization



Memorization in
’De.e.p Nelbworlkes

Mostly from preprint arXiv:1706.05394

Devansh Arpit, Stanistaw Jastrzebski, Nicolas Ballas, David Krueger,
Emmanuel Bengio, Maxinder S Kanwal, Tegan Maharaj, Asja
Fischer, Aaron Courville, Yoshua Bengio, Simon Lacoste-Julien




Memorization in
‘be.ep Neblworlkes

e Deep networks trained with SGD generalize well due to its
implicit regularization effect (zhang et al 2016)

e Deep networks achieve ~100% train accuracy on random data
(Zhang et al 2016)

e Do deep networks also memorize real data?



Real data has
Dominant Patterns

— cifarl0
0.8r — randX
—_ —  randY
0 0.6+
o
S
= 0.4f .
0.0 "

0 200 400 600 800 1000
units sorted by P(correct)

Fraction of times each of 1000
samples is classified correctly
after 1 epoch across 100 runs

Real data: some samples are
learned first.

Random data: samples are
learned in arbitrary order.



Larger Margin on
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Critical sample ratio =
fraction of samples which
have adversarial examples
in their vicinity

Real data: distance from
decision boundary is large

Random data: distance from
decision boundary is small



Paklterns come First

e Validation accuracy peaks
before falling

| e Patternsin real data learned
R A R before overfitting noise

noise_0.2

= noise_0.4]
= noise_0.6
= noise_0.8

20 40 60 80 100
Epoch(s)

Train (full) and validation
(dotted) accuracy on
MNIST during training
with noisy labels



Reqularization Hinders
Memorization

T

|

—— wéight dlcay
—— gaussia
—— hidden gaussian

—e— dropout
adversarial + dropaut

+— input binary mask
|

Best performance on real data

Training performance on random labels

Best validation performance (picked
across hyper parameter grid) on real
data vs. training performance on
noise labels for the same model, for
different regularizers.

Dropout is best at hindering
memorization

Maintains performance on
real data for reduced
memorization on random
data.



Take Home Message

e DNNs learn patterns before memorizing noise

e Regularization hinders memorization



On the relevance of
Loss function
geomelry for F
generalization 0

Laurent Dinh, Razvan Pascanu,
Samy Bengio, Yoshua Bengio




Flatness

LOSS

~

Parameter ¢

LOSS

Parameter ¢



Reparametrization
1=g7(0)  Ly(n)=L(g(n))

 Differentiation at critical point

(V2Ly)(n) = (Vg)(n) (VL) (g(n)) (Vg)(n)

« Flat minima i> Sharp minima

g

Sharp minima =y Flat minima



Reparametrization

AT

Sharp minima can generalize
Flat minima can poorly generalize



Eppur, sl muove!

And yet, It moves



~actors
influencing
Minima in SGD

Mostly from preprint arXiv:1711.04623
Stanistaw Jastrzebski, Zachary Kenton, Devansh Arpit, Nicolas Ballas, Asja Fischer,
Yoshua Bengio, Amos Storkey



Behavior of SGD

e Small mini-batch finds wider minima (keskar et al 2016)

e What dynamics/factors govern the quality of minima
found by SGD?



SGD as Skochastic Differential
Eqm&io\r\
e Mini-batch gradient g”(0) (due to CLT), batch size S:

e SGD with learning rate n is described by:

1
(S) _
g7’ (0)=g(0) + —~=
OL(6) VS
00
e Continuous stochastic differential equation (SDE) form: (Liet al

2017)

Ag(0), where Ag(0) ~ N(0,C(0))

0(t +1) = 6(t) — ng>(6)

If small enough
learning rate, ie.

dé B n small steps
& =190+ =BO()

Note: C(0) = B(8)'B(0)



q uilibrium
Distribution of SGD

e The equilibrium distribution of this SDE is given by:
e ~Inverse relation between loss and density
P(8) = Pyexp (— QL(O))

no?
* Noise n controls the granularity of the

ilib distributi
equilik rium distribution |M
Py — >\W
|w N '

> W

n= r]/S n=10

Note: n = learning rate, S = batch size, o:= fixed isotropic gradient variance



Implications of the
Theory

* Probability of ending in a minima A described by Hessian H,:

1 2
_c
PA X vdetHpy exp( no? A)

* In general, minima with larger volume is favored more (simply
because it has higher probability mass)

e Higher noise n prioritizes width (volume) over depth

e Final equilibrium distribution is unchanged when learning rate
and batch size are scaled proportionally n->pgn, s>ps

ro-nes (52) [\

>

Note: n = n/S, n = learning rate, S = batch size, o:= fixed isotropic gradient variance



Smaller Noise -
Skarper Bowl

e Interpolation between apparent minima found by SGD at
large/small noise level

CIFAR10 (Resnet56): n/S=0.1/128, n/S=0.1/1024 CIFAR10 (Resnet56): n/S=0.1/128, n/S=0.01/128
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a = 1: small noise due to large a = 1: small noise due to small

batch size learning rate



E
E

quad. noise —
quat Widkh

Interpolation between minima found by SGD at the same
noise level (due to different learning rate/batch-size

configurations)

CIFAR10 (VGG11): =1, B=0.25 CIFAR10 (VGG11): 8=1,B8=4
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Same Noise - Same
Learning Dynamics

Theory talks about final equilibrium distribution but seems
to apply along trajectory as well

But even learning dynamics is similar when learning rate
and batch size are scaled proportionally n=>Bn, S>BS

100 100
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—— Cyclic LR Train —— bs=640, Ir0.005 train
--—- Cyclic BS Test | --—— bs=128, Ir=0.001 test
207 ~—— Cyclic LR Test 207 ——— bs=640, Ir=0.005 test
0 100 200 300 0 100 200 300
Epoch Epoch

Cyclic Learning Rate and Cyclic Constant Learning Rate and
Batch-size Constant Batch-size



Take Home Messaqges

e DNNs learn patterns before memorizing noise
e Regularization hinders memorization

 The quality of final minima and learning dynamics is similar

when learning rate and batch size are scaled proportionally
e Larger noise favors large volume minima over deep ones

e Larger noise (e.g. due to BS or l.rate) hinders memorization



A Walle with SGD

Xing, Arpit, Tsirigotis F Bengio ArXiv:1502,05770

e |nterpolate in parameter space

between minibatch SGD [~
updates and see convex shape

N

N
/

/

Training Loss
= N
(o] o
1 1

e Afterinitial phase, updates

bounce off valley floor, which

0 10 20 30 40
monotonically improves, L
traversing larger distances with 3
smaller batch sizes (BS) s ©
e Learningrate: height from floor ~ | =~
0 10 20 30 40

e BS: exploration noise

Pure GD gets stuck on floor,
while SGD finds flatter regions, which generalize better

36



Sharpest Directions Along the SGD

Tro Jector
(Jastrzgbsii, Kellton, Ballas, Fischer, Bengio, Storkey)

37

Even at the beginning of training, a high learning rate or small
batch size influences SGD to visit flatter loss regions.

the largest eigenvalues appears to always follow a similar
pattern, with a fast increase in the early phase and a decrease
thereafter, where the peak value is determined by the learning

rate and batch size.

altering the learning rate just in the direction of the eigenvectors
associated with the largest eigenvalues, SGD can be steered
towards regions which are an order of magnitude sharper but
correspond to models with similar generalization, confirming
that curvature of the endpoint found by SGD is not predictive of
its generalization properties.



Using a discriminator to

optimize independence,

mutual information or entropy

£ Brakel & Bengio ArXiv:1710.05050
. . '* Train a discriminator to separate

) between pairs (A,B) coming from P(A,B)
and pairs coming from P(A) P(B)

Discriminator

Minibatch
per-
Generalize this to measuring ‘chii
independence of all the outputs of a
representation function (encoder). f
Maximize independence by Nonlinear
backpropagating the independence ICA

' d
score into the encoder encoder

- NON-LINEAR ICA.



Non-Linear Independent
Component Analysis Results

* Sources were either mixed linearly or non-linearly,
iIndependent components recovered in both cases
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(a) Source signals.

(b) Anica reconstructions pmax = .997.

Linearly mixed

(a) Anica PNL reconstructions pmax = .997.

Nonlinearly mixed



Using a discriminator to
optimize independence,

mutual information or entropy

Discriminator

MINE: Mutual Information Neural Estimator
™ Belghazi et al ArXiv:1801.04062

Minibatch
per-
variable

Same architecture, but with a twist in shuffle
the training objective which provides an
asymptotically consistent estimator of
mutual independence



Mutual information, KL divergence and

Donsker-Varadhan Representation
[Belghazi et. al., 2018]

Mutual information: measure of dependence btwn 2 variables

I(X: Z) = Dru(Przl|Px @P2) = Bz, [log (F 0|

I[(X;Z2)=H(X)+ H(Z) - H(X,Z) = Dkr(Pxz || Px ® Pz)

(Donsker & Varadhan, 1983):
Drr(P||Q) = sup Ep[T]—log(Eg[e])

T:QQ—R
Optimal T: With suboptimal T:
dlP
T =log— +C Drr(P || Q) > sup Ep[T] — log(Egle’])

dQ TeF

41



MINE: Estimator of Ml

Given two r.v. X & Z and samples of their joint &
marginals:

Discriminator T

/'\ = - A — - - Tén (,2) inibatc
I(X, Z)n EPE?% [Ten (ZL‘, Z)] log(EP%)Q@P(Zn) [6 ]) M P_Z:;tl h
shuffle

where discriminator T is optimized to maximize the rhs



MINE: Consistency

Theorem: there exists a neural net architecture such that for
all ¢ > 0 there exists an integer N s.t.

/\

Vn>N, |I(X,Z)—-1(X;Z), | <e with probability one



Demonstration of estimation

Mutual Information of 2-dimensional variables

— MINE
—— MINE-f
\ —— Kraskov /

True MI

MI between 2
Gaussians

44 [Belghazi et. al., 2018]



Demonstration of estimation

40

35

30

(Xa; Xb)

Mutual Information of 20-dimensional variables

—— MINE i

—— MINEf [

—— Kraskov 1

-==- True MI ,"
,,' MI between 2
',' Gaussians
I

45 [Belghazi et. al., 2018]



Maximizing ENTROPY: avoid GAN mode
dropping by max MI(X,Z)

GAN+MINE
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Manifold Mixup

Alex Lamb?*, Vikas Verma®*, Chris Beckham, Aaron
Courville, loannis Mitliagkas, Yoshua Bengio



How to improve
generalization

Conjecture: some novel points which are off of the manifold
contain combinations of attributes which we’ve seen during
training.

-Examples:
-A deer with wheels instead of legs
-Tokyo city but with the eiffel tower in the skyline.
-A blue pig.



Manifold Mixup

-Augment the training set by randomly combining attributes.
-How to combine attributes?
-Take a convex combination of the representations.
-l.e. King - Queen + Child == Boy
-What attributes? In the latent space of a deep net!
-Earlier layers cover more of the network.

-Later layers make it easier to span the space.



Details of Manifold Mixup

-On each update, pick a random layer uniformly (including the
input).

-Sample A~ Beta(a, Oz)

-Mix between two random examples from the minibatch at that
layer with coeff \.

-Mix the labels for those two examples accordingly (soft label).
t]_\\ )\t1—|—\\ tQ\\

N

(1 — )\)tg S S

Ahi+

hl (1 )\)hg- h2—
1 1 L2




Results - Classification

Test Test
Test T
Model Aisct Neifi Model Acc NLL
PreActResNet18 PreActResNet18
No Mixup 94.88  0.2646 :
Input Mixup (o = 1.0) (Zhangeetal,, 2017) 9610  n/a No Mixup (Zhang et al., 2017) 744 na
Input Mixup (@ = 1.0) (ours) 96.498  0.1945 No Mixup (ours) 7532 1.284
Manifold Mixup (o = 2.0) 97.104  0.1407 Input Mixup (o = 1.0) (Zhang et al., 2017) 789  n/a
PreActResNet152 Manifold MLxup (a = 20) 78.95 0.913
No Mixup 95.797 0.1994 PreActResNet34
Input Mixup (o = 1.0) 96.844 0.2312 .
Manifold Mixup (o = 2.0) 97.238  0.1419 Input Mixup (o = 1.0) 71.208  1.085
Manifold Mixup all layers (o = 6.0) 97.622  0.0957 Manifold Mixup (o = 2.0) 79.609 0.930
CIFAR - 10 CIFAR - 100

-ShakeShake is 97.14% on CIFAR-10.

-Best or close-to-best results on CIFAR-10 that don’t use complicated and
expensive hyperparameter search procedure (like AutoAugment or Neural
Architecture Search)



Results - Likelihood

-Likelihood is WAY better with manifold mixup. Means it’s less
confident when it makes wrong predictions.

06 — No Mixup
Mixup Visible

7 —— Mixup Hidden
0.6 -

Negative 05 ]

Log- y

Likelihood

(lower is »

better) 021

0 200 400 600 800 1000 1200

Epoch



Results - Novel Deformations

NoMixup Input Mixup Input Mixup Manifold Mixup

Test Set Deformation Baseline a=1.0 a=2.0 a=2.0
Rotation U(-20°,20°) 52.96 55.55 56.48 60.08
Rotation U(-60°,60°) 26.77 28.47 27.53 33.78
Shearing U(-28.6°, 28.6°)  55.92 58.16 60.01 62.85
Shearing U(—-57.3°, 57.3°)  35.66 39.34 39.7 44.27
Zoom In (80% rescale) 47.95 52.18 50.47 52.7

Zoom Out (140% rescale)  19.34 41.81 42.02 45.29
Zoom Out (160% rescale)  11.12 25.48 25.85 27.02

CIFAR-100



Results - Adversarial

FGSM
CIFAR10 Models e=0.03
Adv. Training (Madry) 60.30
Adversarial Training +
Fortified Networks 81.80
Baseline (ours) 36.32

Input Mixup (o = 1.0) 71351
Manifold Mixup (a = 2.0) 77.50

FGSM
CIFAR100 Models e=0.03

Input Mixup (o = 1.0) 40.7
Manifold Mixup (o = 2.0) 44.96

70 4

60 -

50 4

—— Baseline

Visible Mixup (1.0)
= Hidden Mixup (2.0)
~ Visible Mixup (2.0)

0

30

100

150 200 250 300

350 400



Semi-supervised Learning

Table 4: Results on semi-supervised learning on CIFAR-10 (4k labels) and SVHN (1k labels) (in test
error %). All results use the same standardized architecture (WideResNet-28-2). Each experiment
was run for 5 trials. T refers to the results reported in (Oliver et al., 2018)

SSL Approach CIFAR-10 SVHN
Supervised T 2026 £0.38  12.83 £ 0.47
Mean-Teacher 156.87+0.28  5.60 £ 0.47
VAT { 13.86 £0.27  5.63+0.20
VAT-EM 1 13.13+£039 5.35+0.19
Semi-supervised Input Mixup 10.71£0.44  6.54 £ 0.62
Semi-supervised Manifold Mixup  10.26 £ 0.32 5.70 £ 0.48

-Not too close to SOTA (CIFAR-10 down to 5%).
-For computational reasons, may still be preferable over VAT.



Analysis - How are
representations changed?

0.8
o
o, :
L 0.4

0.14 .
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-If we block gradients at the mixing points - Manifold Mixup no
longer helps!

-Manifold Mixup is changing our representations to make
interpolations less likely to collide.



Analysis - interpolations

X interpolations h1 interpolations h2 interpolations

8.0 0.2 0.4 0.6 0.8 1.0 8.0 0.2 0.4 0.6 0.8 1.0

[— Baseline ==+ Trained with Input Mixup -+ Trained with Manifold Mixup]

-So manifold mixup helps a lot along hidden space interpolations.

-But input mixup helps a lot with hidden interpolations too. Why?



Visualizing interpolations
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Figure 4: Interpolations in the hidden states (using a small convolutional network trained to pre-
dict the input from the output of the second resblock). The interpolations in the hidden states show
a better blending of semantically relevant features, and more of the images are visually consistent.



Biological Plausibility

-Let’s say that you’re a neuron and your job is recognizing
animals.

-Another part of the brain uses your outputs, but takes a variable
amount of time to return a feedback signal.

brain brain brain brain
* ctually 3

x[t=0] x[t=1] X[t=1] You were
is a cat! is a was a wrong: x[t=0]
dog! cat! is a dog!

Neuron Neuron Neuron Neuron

x[t=0] x[t=1] x[t=2] x[t=3]



Current Practical Value

-Applying Manifold Mixup is rather straightforward.
-Requires (essentially) no additional computation or memory.
-Competitive with virtual adversarial training for semi-supervised.

-Provides significant gains in classification.






