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Deep Architectures Work Well

� Beating shallow neural networks on vision and NLP tasks

� Beating SVMs on visions tasks from pixels (and handling dataset 
sizes that SVMs cannot handle in NLP)

� Reaching state-of-the-art performance in NLP

� Beating deep neural nets without unsupervised component

� Learn visual features similar to V1 and V2 neurons

WHY?
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V1 and V2-like Filters Learned

Slow features 1st layer

RBM 1st layer
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RBM 1st layer

DBN 2nd layer

Denoising auto-encoder 1st layer



Greedy Layer-Wise Pre-Training

Stacking Restricted Boltzmann Machines (RBM) � Deep Belief Network (DBN)

� Supervised deep neural network



Effect of Unsupervised Pre-training
AISTATS’2009 
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Effect of Depth
w/o pre-training with pre-training
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Why are Classifiers Obtained from 
Unsupervised Pre-Training  Working 
so Well?

� General principles?� General principles?

� Would these principles work for other single-level algorithms?

� Explanatory hypotheses?



Greedy Layerwise Supervised Training

Generally worse than unsupervised pre-training but better than 
ordinary training of a deep neural network (Bengio et al. 2007).



Stacking Auto-Encoders



Auto-Encoders and CD

RBM log-likelihood gradient written as converging  expansion:

• CD-k = 2 k terms

• reconstruction error ~ 1 term

(Bengio & Delalleau 2009)

• reconstruction error ~ 1 term



Supervised Fine-Tuning is Important

� Greedy layer-wise 
unsupervised pre-training 
phase with RBMs or auto-
encoders on MNIST

� Supervised phase with or 
without unsupervised 
updates, with or without 
fine-tuning of hidden 
layers

� Can train all RBMs at the 
same time, same results



Two phases?
Pre-training + Fine-tuning

� Currently best results generally obtained when doing purely 
supervised fine-tuning after unsupervised pre-training

� Kind of disappointing

� Can we avoid the fine-tuning alltogether?

� Can we fold both phases together? (would be very useful for 
online learning on huge datasets)

� Can we avoid layer-wise initialization?



Sparse Auto-Encoders

� Sparsity penalty on the intermediate codes

� Like sparse coding but with efficient run-time encoder

(Ranzato et al, 2007; Ranzato et al 2008)

� Sparsity penalty pushes up the free energy of all configurations 
(proxy for minimizing the partition function)

� Impressive results in object classification (convolutional nets):

• MNIST 0.5% error    = record-breaking

• Caltech-101 65% correct = state-of-the-art (Jarrett et al, ICCV 2009)

� Similar results with a sparse convolutional DBN (Lee et al, ICML’2009)



Denoising Auto-Encoder

� Corrupt the input

� Reconstruct the uncorrupted input

(Vincent et al, ICML 2008)

� Reconstruct the uncorrupted input

KL(reconstruction | raw input)
Hidden code (representation)

Corrupted input Raw input reconstruction



Denoising Auto-Encoder

� Learns a vector field towards 
higher probability regions

� Minimizes variational lower bound 
on a generative model

Corrupted input

on a generative model

� Similar to pseudo-likelihood

Corrupted input



Stacked Denoising Auto-Encoders

� No partition function, 
can measure training 
criterion

Encoder & decoder: � Encoder & decoder: 
any parametrization

� Performs as well or 
better than stacking 
RBMs for usupervised 
pre-training

Infinite MNIST



Learning Layer-Local Embeddings

� (Weston & Collobert, ICML 2008) similar/dissimilar examples provide 
layer-local unsupervised criterion (Hadsell et al, CVPR 2006)

� Margin hinge loss: learned representations of similar examples 
should be more similar than of non-similar pairsshould be more similar than of non-similar pairs

� Global supervised + layer-local unsupervised gradients

� Successfully tested in semi-supervised setting

� Trained up to 15-layer deep networks!

� No comparison yet with RBMs and auto-encoder variants



Slow Features & Temporal Constancy

� Similar pairs = successive inputs in a sequence (e.g. video)

� Try to make code covariance ~ I, can be done in O(nfeat)



Why is Unsupervised Pre-Training 
Working So Well? Hypotheses:

� Regularization hypothesis: 

• Unsupervised component forces model close to P(x)• Unsupervised component forces model close to P(x)

• Representations good for P(x) are good for P(y|x) 

� Optimization hypothesis:

• Unsupervised initialization near better local minimum of P(y|x)

• Can reach lower local minimum otherwise not achievable by 
random initialization



Learning Trajectories in Function Space

� Each point a model 
in function space

� Color = epoch

� Top: trajectories      � Top: trajectories      
w/o pre-training

� Each trajectory 
converges in 
different local min.

� No overlap of 
regions with and     
w/o pre-training



Pre-Training Lower Layers More Critical 

What matters is not just the marginal distribution over initial weight 
values (Histogram init.) 



Unsupervised Learning as Regularizer

� Adding extra regularization 
(reducing # hidden units) 
hurts more the pre-trained 
models

� Pre-trained models have 
less variance wrt training 
sample

� Regularizer = infinite 
penalty outside of region 
compatible with 
unsupervised pre-training



Better Optimization of Online Error

� Both training and online error 
are smaller with unsupervised 
pre-training

As # samples �� As # samples �
training err. = online err. = 
generalization err.

� Without unsup. pre-training: 
can’t exploit capacity to 
capture complexity in target 
function from training data



Critical Impact of Early Updates



Learning Dynamics of Deep Nets

Before fine-tuning After fine-tuning



Learning Dynamics of Deep Nets

� As weights become larger, get 
trapped in basin of attraction 
(“quadrant” does not change)

� Initial updates have a crucial 
influence (“critical period”), 
explain more of the variance

� Unsupervised pre-training initializes 
in basin of attraction with good 
generalization properties

0



What Optimiztion Tricks?

� Humans somehow find a good solution to an intractable non-
convex optimization problem

How?

� Guiding the optimization near good solutions

� Guiding / giving hints to intermediate layers



Continuation Methods

Final solution

Track local minima

Easy to find 
minimum



The Credit Assignment Problem

� Even with the correct gradient, lower layers (far from the 
prediction, close to input) are the most difficult to train

� Lower layers benefit most from unsupervised pre-training:
• Local unsupervised signal = extract / disentangle factors• Local unsupervised signal = extract / disentangle factors
• Temporal constancy
• Mutual information between multiple modalities

� Credit assignment / error information not flowing easily?

� Related to difficulty of credit assignment through time?



Guiding the Stochastic Optimization 
of Representations

� Train lower levels first (DBNs)

Start with more noise / larger learning rate � Start with more noise / larger learning rate 

(babies vs adults)

� Slow features / multiple time scales

� Cross-modal mutual information

� Curriculum / shaping



Curriculum Learning
� Guided learning helps training humans and animals

ICML’200
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Shaping

� Start from simpler examples / easier tasks   (Piaget 1952, Skinner 1958)
� Cognition Journal: (Elman 1993) vs (Rohde & Plaut 1999), (Krueger & Dayan 2009)

Education



Curriculum Learning as Continuation

� Sequence of 
training distributions

3 • Most difficult examples

• Higher level abstractions
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� Initially peaking on 
easier / simpler ones

� Gradually give more 
weight to more 
difficult ones until 
reach target 
distribution

1
• Easiest
• Lower level
abstractions



Shape Recognition

First: easier, basic shapes

Second = target: more varied geometric shapes



Shape Recognition Results



Language Modeling Results

� Gradually increase the 
vocabulary size (dips)

� Train on Wikipedia with 
sentences containing 
only words in 
vocabulary



Order & Selection of Examples Matters

� Curriculum learning 
(Bengio et al, ICML’2009; Krueger & Dayan 2009) 

� Start with easier examples

� Faster convergence to a better local 
minimum in deep architectures

� Also acts like a regularizer with 
optimization effect?

� Influencing learning dynamics can 
make a big difference



Level-Local Learning is Important?
� Initializing each layer of an unsupervised                                 
Deep Boltzmann Machine helps a lot 

� Initializing each layer of a supervised neural network as            
an RBM helps a lotan RBM helps a lot

� Helps most the layers further away from the target

� Not just an effect of unsupervised prior

� Jointly training all the levels of a deep architecture is difficult

� Initializing using a level-local learning algorithm                     
(RBM, auto-encoders, etc.) is a useful trick  



Take-Home Messages
� Unsupervised pre-training greatly helps deep architectures

� Unsupervised pre-training of classifiers acts like a strange 
regularizer with improved optimization of online error

� Inference approximations and learning dynamics at least as 
important as the model

� Early examples have greater influence: critical period?

� Guiding learning dynamics seems important:

• Local hints to each layer

• Curriculum / shaping = continuation?



Some Open Problems

� Why is it difficult to train deep architectures?

� What is important in the learning dynamics?

How to improve joint training and sampling of all layers?� How to improve joint training and sampling of all layers?

� Other ways to guide training of intermediate representations?

� How to design curricula / select examples?

� More complex models to handle spatial structure of images, 
occlusion, temporal structure, stereo, multiple modalities, etc.



Thank you for your attention!

� Questions?

� Comments?


