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DEQF Represehka&i.oh Learning

Learn multiple levels of representation

of increasing complexity/abstraction i
* theory: exponential gain hym—
X

* brains are deep
e cognition is compositional
e Better mixing (Bengio et al, ICML 2013)

e They work! SOTA on industrial-scale Al tasks
(object recognition, speech recognition,
language modeling, music modeling)



Mowntreal Deep Nebks Win Emotion
Recognition in the Wild Challenge

Predict emotional expression from video (using images + audio)

Dec. 9, 2013




New theoretical result:
Expressiveness of deep hets with
plecewise-linear activation fns

(Pascanu, Montufar, Cho & Bengio; ICLR 2014)

Deeper nets with rectifier/maxout units are exponentially more
expressive than shallow ones (1 hidden layer) because they can split
the input space in many more (not-independent) linear regions, with
constraints, e.g., with abs units, each unit creates mirror responses,
folding the input space:




Deea Learning Challenges
(Benglo, arxiv 1305.04-45 Deep Learning
of representations: Looking forward)

e Computational Scaling
e Optimization & Underfitting

* Intractable Marginalization, Approximate
Inference & Sampling

e Disentangling Factors of Variation
e Reasoning & One-Shot Learning of Facts



bee.ﬁ Learning Challenges
(Benglo, arxiv 1305.04-45 Deep Learning
of representations: Looking forward)

e Computational Scaling
e Optimization & Underfitting

* Intractable Marginalization, Approximate
Inference & Sampling

e Disentangling Factors of Variation
e Reasoning & One-Shot Learning of Facts



Challenge: Compu&a&mnat Scaling

e Recent breakthroughs in speech, object recognition and NLP
hinged on faster computing, GPUs, and large datasets

e A 100-fold speedup is possible without waiting another 10 yrs?

e Challenge of distributed training
* Challenge of conditional computation
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Conditional Com fp«.d:ad:’f.c>\r\" l.? visik a
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Hard mixtures of experts (Collobert, Bengio & Bengioms

2002) - .
Conditional computation for deep nets: sparse =
distributed gaters selecting combinatorial - -
subsets of a deep net

Deep nets vs decision trees

Output softmax
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Distributed Training

e Minibatches
e Large minibatches + 2"9 order & natural gradient methods
e Asynchronous SGD (Bengio et al 2003, Le et al ICML 2012, Dean et al NIPS 2012)

* Bottleneck: sharing weights/updates among nodes, to avoid
node-models to move too far from each other

e |deas forward:
* Low-resolution sharing only where needed

 Specialized conditional computation (each computer
specializes in updates to some cluster of gated experts, and
prefers examples which trigger these experts)
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Optimization & Underfitting

e On large datasets, major obstacle is underfitting

Marginal utility of wider MLPs decreases quickly below
memorization baseline

e Current limitations: local minima, ill-conditioning or else?
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Guided Training, Intermediate
Cos«cep&s

 In (Gulcehre & Bengio ICLR’2013) we set up a task that seems
almost impossible to learn by shallow nets, deep nets, SVMs,
trees, boosting etc

e Breaking the problem in two sub-problems and pre-training
each module separately, then fine-tuning, nails it

e Need prior knowledge to decompose the task

e Guided pre-training allows to find much better solutions, escape
effective local minima
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On the difficulty of traiming RNNs

e |CASSP 2013 & ICML 2013 papers:

e Putting together techniques to reduce the difficulty of
training RNNs

* |CLR 2014 paper: Deep Recurrent Nets

* New architectures to boost capacity while maintaining
traininability, by introducing more non-linearities as well as
skip connections
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RNN Training Tricks

(Pascanu, Mikolov, Bengio, ICML 2013; Bengio, Boulanger & Pascanu, ICASSP 2013)

e Clipping gradients (avoid exploding gradients)

e Leaky integration (propagate long-term dependencies)

e Momentum (cheap 2" order)

e |nitialization (start in right ballpark avoids exploding/vanishing)

e Sparse Gradients (symmetry breaking)
e Gradient propagation regularizer (avoid vanishing gradient)
e LSTM self-loops (avoid vanishing gradient)
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Increasing the E:xpressi;ve Power of
RNNs m.&h more Depth

e |CLR 2014, How to construct deep recurrent neural networks

+ deep hid-to-out
+ deep hid-to-hid
+deep in-to-hid

t-1 t t+1
Ordinary RNNs Vi Vi
Y 4
Z1 t
+ stacking — hté he
he §
- t
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+ skip connections for
creating shorter paths
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Why Unsupervised Learning?

e Recent progress mostly in supervised DL

e 1 real challenges for unsupervised DL

e Potential benefits:
* Exploit tons of unlabeled data
* Answer new questions about the variables observed
* Regularizer — transfer learning — domain adaptation
e Easier optimization (local training signal)
 Structured outputs
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How do humans generalize
from very few examples?

They transfer knowledge from previous learning:
* Abstract (i.e. deep) representations

Explanatory factors
Previous learning from: unlabeled data

+ labels for other tasks
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Unsupervised and Transfer Learning
Challenge + Transfer Learning
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Basic Challenge with Probabilistic
Models: marginalization

e Joint and marginal likelihoods involve intractable sums over
configurations of random variables (inputs x, latent h, outputs y)

e.g.

P(x) = 2, P(x,h)

P(X,h) = @-energy(x,h) /Z

7 = zx ) @-energy(x,h)

e MCMC methods can be used for these sums, by sampling from a
chain of x’s (or of (x,h) pairs) approximately from P(x,h)
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Two Fundamental Problems
with Probabilistic Models
with Many Random Variables

1. MCMC mixing between modes
(manifold hypothesis) “«
5555555500000 0
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2. Many non-negligeable modes
(both in posterior & joint distributions)
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For gradient & inference:
More difficult ko mix with better
trained models

e Early during training, density smeared out, mode bumps overlap

/AR YRR YA
e Later on, hard to cross empty voids between modes

Are we doomed if
we rely on MCMC
during training?
Will we be able to
train really large &
complex models?

Training updates

Gicious circl§

Mixing
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Poor Mixing: Depth to the Rescue

(Bengio et al ICML 2013)

e Sampling from DBNs and stacked Contractive Auto-Encoders:
1. MCMC sampling from top layer model
2. Propagate top-level representations to input-level repr.
e Deeper nets visit more modes (classes) faster
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Space-Filling in Representation-Space
* Deeper representations = abstractions = disentangling
e Manifolds are expanded and flattened

- X-space
4 Pixel space A Representation space
" 3 il q symantol e htod X
Lmenr interpolation at Iayer 2 3’s manifold
. 3
o} ®
9’s mahifold B -
Pe_Linear interpolation at layer 1 ®

1 E

Linear mterpolatlon in pixel space
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Many Modes Challenge: Instead of
Lleariiing P(x) directly, learn Markov
chain operator P(x, | ;)

e P(x) may have many modes, making the normalization constant
intractable, and MCMC approximations poor

e Partition fn of P(x, | x,;) much simpler because most of the time
a local move, might even be well approximated by unimodal
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Grenerative Sktochastic Nebworlks

* Generalizes the denoising auto-encoder training scheme
* Introduce latent variables in the Markov chain (over X,H)

 |nstead of a fixed corruption process, have a deterministic
function with parameters 6, and a noise source Z as input

Ht—l—l — f@l (Xta Zta Ht)

H, > H, > H,
NSNS
Hipw ~ P, (H|H, Xy)
Xey1 ~ Po,(X|Heyq)
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Cownsistent Estimatbtor Theorem

If the parametrization is rich enough to have P(X|H) a consistent
estimator and the Markov chain is ergodic, then maximizing the
expected log of Py, (X | fo, (X, Z;_1, H¢_1)) makes the
stationary distribution of the Markov chain a consistent estimator
of the true data generating distribution.
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A Proper Grenerative Model for
De ev\de.wcv Nebtworks, MP-DBMs, and
e fﬁcien& deep NADE sampling

* Dependency nets (Heckerman et al 2000) estimate Pg (X, | X)
not guaranteed to be conditionals of a unique joint

e Heckerman et al’s sampling iterates over i: not ergodic?

e Randomly choosing i: proper GSN

e Defines a unique joint distribution = stationary distr. of chain
(which averages out over resampling orders)

e Generalized to estimators of P(subset(X) | X \ subset(X)) and
justify efficient sampling schemes for MP-DBMs and deep NADE.
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MP-DBM Results

e Single model of (X,Y) vs multiple stages
of training DBM + fine-tuning

e SOTA on permutation-invariant MNIST
(at time of submission):

* 0.88% error
e Salakhutdinov & Hinton’s DBM: 0.95%

e NORB: 10.6% (vs 10.8% with S&H’s
DBM)

e DBM (Gibbs) samples of trained MP-
DBM are ugly, while GSN sampling
works because it better corresponds to

the training criterion:
32
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Reparametrizing Latent variables

e Insight from (Bengio et al 2013, arxiv 1306.1091 & 1308.3432)
papers on GSNs and stochastic neurons:

e Sampling from continuous latent variables (given some
ancestors) can be rewritten as a deterministic function of
other variables and of independent noise sources: h = f(x;n)

* This enables rewriting the gradient log-likelihood as back-
prop, averaged over samples of the noise sources

Plylz) = / P(ylh, 2)P(hlz)dh = / P(y\f (i m), ) P(n)dn

OP(yle) / OP(y|f (;n).x)

90 Y P(n)dn

e A deeper formal analysis of this approach:

* Kingma & Welling 2014, arxiv 1402.0480; see also Wierstra et al 2014,
arxiv 1401.4082.
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Invariance and Disentangling

e |nvariant features

e Which invariances?

e Alternative: learning to disentangle factors

e Good disentangling =
avoid the curse of dimensionality
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Emergence of 'Dusenkangtmg

e (Goodfellow et al. 2009): sparse auto-encoders trained
on images

* some higher-level features more invariant to
geometric factors of variation

e (Glorot et al. 2011): sparse rectified denoising auto-
encoders trained on bags of words for sentiment
analysis

 different features specialize on different aspects
(domain, sentiment)
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Broad Priors as Hinks to Disentangle
the Factors of Variation

e Multiple factors: distributed representations

e Multiple levels of abstraction: depth

e Semi-supervised learning: Y is one of the factors explaining X
e Multi-task learning: different tasks share some factors

e Manifold hypothesis: probability mass concentration

e Natural clustering: class = manifold, well-separated manifolds
e Temporal and spatial coherence

e Sparsity: most factors irrelevant for particular X

e Simplicity of factor dependencies (in the right representation)
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Cownclusions

e Deep Learning has matured
e Int. Conf. on Learning Representation 2013 a huge success!

e Industrial applications (Google, Microsoft, Baidu, Facebook, ...)

e Room for improvement:
e Scaling computation
* Optimization
e Bypass intractable marginalizations
* More disentangled abstractions
* Reason from incrementally added facts
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